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Abstract 
In this paper we consider two-dimensional risk models where the claim 
counting processes of the two classes of business are assumed to be Poisson 
processes. We assume that the dividends are paid because of the presence of a 
reflecting upper barrier. Furthermore, in order to avoid ruin, we consider 
dynamic solvency insurance contracts that depend on two different defini-
tions of time of ruin. We present a rather general model and, under different 
assumptions, we obtain the equations fulfilled by the discounted dividend 
payments and by the net single premium of dynamic solvency insurance. We 
also derive some boundary conditions and provide explicit solutions for some 
special cases. 
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1. Introduction 

The classical model of collective risk theory has been modified and extended 
over the years in several ways. Some authors [1] [2] [3] [4] have introduced a 
two-dimensional risk process where the insurer has two classes of business and 
in each of the two classes he has a surplus process similar to the one of the clas-
sical model. The two-dimensional risk process is defined by a two-dimensional 
vector having as components the above surplus processes. In this two-dimensional 
case, different interpretations of the concept of ruin have been proposed, and 
different definitions of time of ruin have been introduced. As it is well known, 
classical models of collective risk theory can forecast the dividends payment (for 
instance, see [5]) and, as proposed in [6], they can also have a dynamic solvency 
insurance. Under these assumptions we have models with two barriers. The 
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two-dimensional models and some definitions of time of ruin encouraged us to 
investigate about dividends and the net single premium of a dynamic insurance 
contract in the two-dimensional models. 

The paper is organized as follows: Section 2 is devoted to the presentation of 
the two-dimensional models under different claim arrival processes; Section 3 
considers barriers referring to two definitions of time of ruin. Under these two 
different assumptions of time of ruin, Sections 4 and 5 contain the detailed 
computations to get the integro-differential equations, both of the net single 
premium of the dynamic solvency insurance and of the present value of divi-
dends. In Sections 6 and 7 some boundary conditions for the above equations 
with some explicit solutions are given. 

2. The Model 

We assume that an insurer has two classes of business or insurance risks. Let 
( )iU t  the surplus process, at time 0t ≥ , of the i-th class given by: 

( ) ( )i i i iU t u c t S t= + −  

where: 
 ( )0i iu U=  is the initial surplus; 
 0ic >  is the constant premiun rate; 
 ( )iS t  is the aggregate claim amount. 

These assumptions define a two-dimensional risk model that can be formally 
stated as: 

( )
( )

( )
( )

1 1 1 1

2 2 2 2

.
U t u c S t

t
U t u c S t
      

= + −      
      

 

We assume that the claim number processes are 

( ){ }, 1, 2, 0 ,iN t i t= ≥  

which are defined as follows: 

( ) ( ) ( )0 , 1, 2, 0,i iN t Q t Q t i t= + = ≥              (1) 

where 1Q , 2Q  and 0Q  are Poisson random variables with positive parameters 

1θ , 2θ  and 0θ , respectively. 
Let j be a strictly positive integer number and let ijX , 1, 2i = , be the claim 

size random variables which we assume to have the same distribution function 

iF  of class 1C , with: 
 i iF f′= , and such that ( ) 0iF x =  for 0x ≤ . 

Furthermore, we assume that: 
 ij iE X µ   = < +∞ ; 

 the moment generating functions ( )
ijXM r  exist. 

As usually stated, the random variables ijX  are mutually independent for 
each 1, 2,j =  , and are independent of ( ) , 0iN t t ≥ . 

Let 1,2i = ; the aggregate claim amount of each class of insurance risk is: 
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( )
( )

1

iN t

i ij
j

S t X
=

= ∑ . 

Our two-dimensional risk model can be written as: 

( )
( )

( )

( )

1

2

111 1 1

2 2 2 21

.
N t

jj

N t
jj

XU t u c
t

U t u c X

=

=

        = + −              

∑
∑

               (2) 

We observe that, since we have assumed 0θ , 1θ , and 2θ  to be positive, the 
two counting processes ( ){ }1N t  and ( ){ }2N t , both appearing in (2), are cor-
related; a similar assumption has been made, for example, in [3]. 

If instead we assume 0 0θ >  and 1 2 0θ θ= = , from (1) we have: 

( ) ( )0 , 1, 2,iN t Q t i= =                       (3) 

and the model (2) becomes: 

( )
( )

( )

( )

0

0

111 1 1

2 2 2 21

,
Q t

jj

Q t
jj

XU t u c
t

U t u c X

=

=

        = + −              

∑
∑

                 (4) 

where the counting process ( )0Q t  is the same for both the classes of insurance 
risk (this assumption has been made, for instance, in [1] and in [2]). 

Finally, if we assume 0 0θ =  and 1 0θ > , 2 0θ > , from (1) we get: 

( ) ( ) , 1, 2,i iN t Q t i= =                         (5) 

and the model (2) becomes: 

( )
( )

( )

( )

1

2

111 1 1

2 2 2 21

,
Q t

jj

Q t
jj

XU t u c
t

U t u c X

=

=

        = + −              

∑
∑

                (6) 

with different but independent counting processes for each class of insurance 
risk (this assumption has been made, for instance, in [4]). 

3. The Ruin and the Barriers 

It is well known that, in two-dimensional risk models, the time of ruin can be 
defined in different ways (see for instance [1] [2] and [3]): 

( ) ( ){ }sum 1 2inf | 0T t U t U t= + <                   (7) 

( ) ( ){ }{ }min 1 2inf | min , 0T t U t U t= <                 (8) 

and 

( ) ( ){ }{ }max 1 2inf | max , 0 .T t U t U t= <  

In this paper we consider the time of ruin (7) or (8). Indeed, we observe that 
under the definition of maxT  the ruin would not occur also in the case that one 
of the two surplus is deeply negative, provided that the other one is even only 
slightly positive: this scenario seems to be too risky for the insurance company. 

Under the definition of sumT  (7) the ruin does not occur when the surplus 
( ) ( ) ( )1 2U t U t U t= +  is greater than or equal to zero; under the assumption (8) 

https://doi.org/10.4236/me.2018.912131


C. Gosio et al. 
 

 

DOI: 10.4236/me.2018.912131 2107 Modern Economy 
 

the survival occurs when both ( )1U t  and ( )2U t  are greater than or equal to 
zero. Therefore, the dynamic solvency insurance (see [6]) under the assumption 
(7) refers to the sum process and its payments are made immediately as soon as 
the surplus ( )U t  falls below zero; instead, under the assumption (8), the dy-
namic solvency insurance refers separately to ( )1U t  and ( )2U t  and its pay-
ments are made immediately as soon as the surplus ( )1U t  or ( )2U t  falls be-
low zero. 

This means that, in the first scenario, we have a reflecting inferior barrier at 
zero for the sum process, whereas in the second scenario we have reflecting infe-
rior barriers for each process with surplus ( ) , 1, 2iU t i = . 

Even for the dividends payment it is necessary to introduce barriers. In par-
ticular, we assume to have the constant upper barrier ib , with i ib u≥ , 1,2i = , 
for the the 𝑖𝑖-th class of the two-dimensional risk process, and we consider to 
have the constant upper barrier 1 2 1 2b b b u u= + ≥ +  for the sum process. We 
recall that dividends are paid whenever the corresponding surplus reaches its 
upper barrier. 

Because of all the above assumptions, models in (2), (4) and (6) need to be 
consequently and coherently modified. This will be achieved in the following 
sections, where we address the problems of the net single premiums and the 
discounted dividend payments in the case of two barriers. 

4. The Net Single Premium of Dynamic Solvency Insurance 

This section is devoted to determine the equations fulfilled by the net single 
premium of the dynamic solvency insurance under the assumptions made in 
Sections 2 and 3. We use a procedure similar to the one presented in [7] and in 
[8] to determine the ruin probability. Hence, we introduce the force of interest 

0δ > . 
We first consider the case in which the time of ruin is sumT  defined in (7). 

We therefore consider the sum process having a surplus with initial value (in 
0t = ) 1 2 0u u u= + ≥  and constant premium rate 1 2 0c c c= + > . The upper 

barrier is 1 2 1 2 0b b b u u u= + ≥ + = ≥ . Referring to the sum process, we recall 
that ( ) ( ) ( )1 2U t U t U t= +  is the surplus at time t, whose value is obviously de-
pendent both on the dividends payment and on the assumption of the dynamic 
solvency insurance. We denote by ( ),A u b  the net single premium of the dy-
namic solvency insurance. Let T be the length of the interval time passing before 
the occurrence of some first claim for the sum process and let X be the amount 
of the claim occurred at time T. If no claim occurs, we have that ( )U t u ct= +  
and ( )U t  crosses the barrier b at time *t  defined by: 

* .b ut
c
−

=                           (9) 

Following the approach of [7] and [8], we compute ( ),A u b  as the mean val-
ue of the random variable ( ),T XA . Because of the dividends payment, if 
T t=  and X x= , ( ),T XA  is given by: 
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( )

( )
( ) ( )( )

( )
( ) ( )

*

*

*

*

e , if and

e 0, if and
,

e , if and
e 0, if and

t

t

t

t

A u ct x b t t x u ct

A b x u ct t t x u ct
T X

A b x b t t x b
A b x b t t x b

δ

δ

δ

δ

−

−

−

−

 + − ≤ ≤ +


 + − + ≤ > +  = 
− > ≤

 + − > >  

A    (10) 

Since we have assumed that the arrival claims processes have the bivariate 
Poisson distribution defined in (1), the event T t=  happens when no claim 
occurs during the time interval going from 0 to t and the first arrival of (any 
kind of) claim arrives at the end of this period of time. 

Using the results of [9], the above events depend on the following probabili-
ties (neglecting contributions of order higher than dt): 

( ) ( ) ( ) ( ) ( ) ( )
( )0 1 2

1 1 2 2 1 2Prob 0 0 and 0 0 | 0 0 0

e t

N t N N t N N N
θ θ θ− + +

− = − = = =  

=
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )0 1 2

1 1 2 2 1 2

d
0 1 2

Prob d 0 and d 0 | , ,

e 1 dt

N t t N t N t t N t N s N s s t

tθ θ θ θ θ θ− + +

+ − = + − = ≤  

= ≈ − + +
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )0 1 2

1 1 2 2 1 2

d
1 0 1 2 1 1

Prob d 1 and d 0 | , ,

e d 1 d d dt

N t t N t N t t N t N s N s s t

t t t tθ θ θ θ θ θ θ θ θ− + +

+ − = + − = ≤  

= ≈ − + + ≈
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( )0 1 2

1 1 2 2 1 2

d
2 0 1 2 2 2

Prob d 0 and d 1| , ,

e d 1 d d dt

N t t N t N t t N t N s N s s t

t t t tθ θ θ θ θ θ θ θ θ− + +

+ − = + − = ≤  

= ≈ − + + ≈
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )0 1 2

1 1 2 2 1 2

d 2 0
1 2 0 1 2 0 02

1 2

Prob d 1 and d 1| , ,

d
e d 1 1 d d d

d
t

N t t N t N t t N t N s N s s t

t
t t t t

t
θ θ θ θ

θ θ θ θ θ θ θ
θ θ

− + +

+ − = + − = ≤  
 

= + ≈ − + + ≈ 
 

 

Recalling that T t=  is the moment when some first claims occur, if we as-
sume that at time t it is 11 1X x=  and/or 21 2X x=  we have: 

1 1

2 2

1 2 0

with probability d
with probability d
with probability d

x t
X x t

x x t

θ
θ
θ


= 
 +

               (11) 

We denote by F the distribution function of the random variable 11 21X X+ . 
Because of the assumptions on the distribution functions iF , 1, 2i = , it follows 
that (see [10]) 

( ) ( ) ( )2 1 1 1 10
d ,

x
F x F x x f x x= −∫  

further, letting F f′ =  we have: 

( ) ( ) ( ) ( )1 1 2 1 10
d .

x
f x F x f x f x x x′= = −∫  

Now, we are able to write the following integral equation for the net single 
premium of dynamic solvency insurance: 
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( ) ( )
( ) ( ) ( )(

( ) ( )( )( ) ( ) )
( ) ( )(

( ) ( )( )( ) ( ) )

0 1 2
2

0 0
1

0 0

, ,

e e , d

e 0, d

e , d

e 0, d d

t u ctt t
i i

i

t
iu ct

u ct t

t
u ct

A u b E T X

A u ct x b f x x

A b x u ct f x x

A u ct x b f x x

A b x u ct f x x t

θ θ θ δ

δ

δ

δ

θ

θ

∗ +− + + −

=

+∞ −

+

+ −

+∞ −

+

=   


= + −


+ + − +

+ + −

+ + − + 

∑∫ ∫

∫

∫

∫

A

 

( ) ( ) ( )(
( ) ( )( ) ( ) )
( ) ( )(
( ) ( )( ) ( ) )

0 1 2
2

0
1

0 0

e e , d

e 0, d

e , d

e 0, d d

bt t
i it

i

t
ib

b t

t
b

A b x b f x x

A b x b f x x

A b x b f x x

A b x b f x x t

θ θ θ δ

δ

δ

δ

θ

θ

∗

+∞ − + + −

=

+∞ −

−

+∞ −


+ −



+ + −

+ −

+ + − 

∑∫ ∫

∫

∫

∫

 

Hence, by substituting u ct+  with z, and subsequently b x−  with y, we ob-
tain: 

( )
( ) ( )

( ) ( )(
( ) ( )( ) ( ) ) ( ) ( )(
( ) ( )( ) ( ) ) ( )

0 1 2 0 1 2

0 1 2

2

00

0
1

1, e e , d

0, d , d

0, d d e

u z
c c

i i
i

iz
z
c

z

z

z

b

b

u
A u b A z x b f x x

c

A b x z f x x A z x b f x x

A b x z f x x z

θ θ θ δ θ θ θ δ

θ θ θ δ

θ

θ

+ + + − + + +

=

+∞

− + + ++∞ +∞

 = − 


+ + − + −

+ + − +

∫ ∫

∫

∑

∫

∫ ∫

 

( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) }

2 2 2

0
1 1 1

2

0
1

0

0

0 0

, d

0, 1 1

, d d

i i i i i i
i i i

i i
i

b

b

A y b y f b y y bF b

A b b F b F b

A y b y f b y y bF b z

θ θ θ θ µ

θ θ

θ θ

= = =

=


⋅ + − − + +


 
+ − − + − 

 
+ + − − 

∑ ∑

∑

∫

∑∫

(12) 

By deriving (12) with respect to u, we obtain the following integro-differential 
equation: 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )

( )( ) ( ) ( )

2

0 1 2 0
1

2

0
1

2 2

1 1
0

00 0

,
,

0, 1 1

, d

, d

i i
i

i i
i

i i i i
i i

u

u

A u b
c A u b

u

A b u F u F u

A y b y f u y y uF u

A y b y f u y y uF u

θ θ θ δ θ θ µ

θ θ

θ θ

θ θ

=

=

= =

∂
− + + + + +

∂

 
+ − − + − 

 

= − + − +

− + − +

∫

∫

∑

∑

∑ ∑

         (13) 

Obviously, if 1 2 0θ θ= = , expression (13) leads to the equation of the net sin-
gle premium of the solvency insurance for the model given in (4). Similarly, if 

0 0θ = , from (13) we find the equation of the net single premium of the solvency 
insurance contract for the model given in (6). 

We now consider the case in which the time of ruin is minT  defined by (8). 

https://doi.org/10.4236/me.2018.912131


C. Gosio et al. 
 

 

DOI: 10.4236/me.2018.912131 2110 Modern Economy 
 

We recall that, using this definition, the ruin occurs when at least one of the sur-
plus ( )iU t , 1,2i = , becomes negative. Thus, the dynamic solvency insurance 
has to intervene separately in the two classes, and it has to avoid that both sur-
plus become negative. Let 1, 2i =  and let ( ),i i iA u b  be the net single premium 
of the dynamic solvency insurance contract of the i-th insurance class. The 
two-dimensional risk process holder will have to bear the total single premium 

( )2
1 ,i i ii A u b
=∑ . In the following, using a procedure similar to the one adopted in 

the previous discussion, we deduce the equations fulfilled by ( ),i i iA u b , with 
1,2i = . To this end, we let iT  be the length of the interval time passing before 

the occurrence of some first claim for the 𝑖𝑖-th process and 1iX  be the amount 
of the first claim. If no claim occurs, we have that ( )i i iU t u c t= +  and ( )iU t  
crosses the barrier ib  at time *

it  defined by: 

* .i i
i

i

b u
t

c
−

=                           (14) 

We compute ( ),i i iA u b  as the mean value of the random variable 

( )1,i
i iT XA . Because of the payment of the dividends, in the case i

iT t=  and 

1i iX x= , arguing as in the case of the sum process, ( )1,i
i iT XA  can be simply 

obtained by evaluating (10) at iA A= , iu u= , ic c= , ib b= , * *
it t=  defined 

in (14). We recall that the arrival claims process has the bivariate Poisson distri-
bution defined in (1). Since the two processes are considered separately, for any 

1,2i =  it results (neglecting contributions of order higher than dt): 

( ) ( ) ( ) ( )0Prob 0 0 | 0 0 e i t
i i iN t N N θ θ− +− = = =    

( ) ( ) ( )
( ) ( )( )0 d

0

Prob d 0 | ,

e 1 di

i i i

t
i

N t t N t N s s t

tθ θ θ θ− +

+ − = ≤  

= ≈ − +
 

( ) ( ) ( )
( ) ( )( )0 d

0

Prob d 0 | ,

e 1 di

i i i

t
i

N t t N t N s s t

tθ θ θ θ− +

+ − = ≤  

= ≈ − +
 

Hence, recalling that i
iT t=  is the moment when some first claims occur and 

that the amount of the claim is 1iX  with 1i iX x= , it results: 

( )1 0with probability d .i i iX x tθ θ= +                 (15) 

We are now able to write the following integral equation for the net single 
premium of dynamic solvency insurance for the i-th claim, 1,2i = : 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )

0

0

1

00 0

0 0

, ,

e e , d

e 0, d d

e e , d

e 0, d d

i i ii

i i

ii

i

i

i
i i i i

t u c tt t
i i i i i i

t
i i i i iu c t

bt t
i i i i it

t
i i i ib

A u b E T X

A u c t x b f x x

A b x u c t f x x t

A b x b f x x

A b x b f x x t

θ θ δ

δ

θ θ δ

δ

θ θ

θ θ

∗

∗

+− + −

+∞ −

+

+∞ − + −

+∞ −

 =  
= + + −

+ + − + 
+ + −

+ + − 

∫ ∫

∫

∫ ∫

∫

Ai

 

Hence, by substituting i iu c t+  with z, and subsequently ib x−  with y, we 
obtain: 
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( )
( ) ( )

( )( ) ( )

( )( ) ( )( )
( )

( )( ) ( ) ( )

( )( ) ( )( )

0 0

0

0
0

0

,

e e , d

0, 1 d

e , d

0, 1 d , 1,2

i
i iii i

i

i ii

i

i i i
u z

b zc ci
i i iu

i

i i i i
z

bc
i i i i i i ib

i i i i i i

A u b

A z x b x f x x
c

A b z F z z

A y b y f b y y b F b

A b b F b z i

θ θ δ θ θ δ

θ θ δ

θ θ

µ

µ

+ + − + +

− + ++∞

+  = − − 
+ − − + 

+ + − −
+ − − + = 

∫ ∫

∫ ∫

    (16) 

By deriving (16) with respect to iu , we obtain the following integro-differential 
equation: 

( ) ( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )

0 0

0

0 00

,
,

0, 1

, d , 1, 2i

i i i
i i i i i i i

i

i i i i i i
u

i i i i i i i i i

A u b
c A u b

u
A b u F u

A y b y f u y y u F u i

θ θ δ θ θ µ

θ θ

θ θ θ θ

∂
− + + + +

∂
+ + − −

= − + + − + + =∫
  (17) 

Obviously, if we restrict ourselves to the case of model given in (4), that is if 
we let 1 2 0θ θ= = , expressions (16) and (17) lead to the same kind of equation 
for the net single premium of the two classes of insurance business. In the same 
vein, if we consider the model given in (6), that is if we let 0 0θ = , Equations 
(12)-(13) and (16)-(17) are comparable. 

5. Discounted Value of the Dividend Payments 
In this section we determine the equations fulfilled by the discounted value of 
the dividend payments under the different assumptions made in Section 4. To 
get our results, we follow a similar approach to the one used for the net single 
premium of dynamic solvency insurance. 

We first consider the case where the time of ruin is sumT  defined in (7). 
Hence, we consider the sum process having a surplus ( )U t  with initial value 
(in 0t = ) 1 2 0u u u= + ≥  and constant premium rate 1 2 0c c c= + > . The up-
per barrier is 1 2 0b b b= + ≥ . We let T be the length of the interval time passing 
before the occurrence of some first claim for the sum process and X be the 
amount of the claim occurred in T. If no claims occur, then ( )U t  crosses the 
barrier b at time *t  defined in (9). We denote by ( ),D u b  the discounted val-
ue of the dividend payments, using the force of interest 0δ > . 

We find ( ),D u b  as the mean value of the random variable ( ),T XD . Be-
cause of the dynamic solvency insurance, in the case T t=  and X x= , 
( ),T XD  is given by: 

( )

( )
( )
( ) ( )
( ) ( )

*

*

*

*

e , if and
e 0, if and

,
e , , , if and
e 0, , , if and

t

t

t

t

D u ct x b t t x u ct
D b t t x u ct

T X
D b x b u b t t t x b
D b u b t t t x b

δ

δ

δ

δ

−

−

−

−

 + − ≤ ≤ +


≤ > += 
− + > ≤

 + > >

D




    (18) 

where ( ), ,u b t  is the value of the dividends paid in the interval time ( )* ,t t , 
evaluated at 0t = : 
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( )
*

*

e e, , e d .
t tt s

t
u b t c s c

δ δ
δ

δ

− −
− −

= =∫              (19) 

As in Section 4, we assume that T t=  is the instant when claims occur. If at 
time t we have 11 1X x=  and/or 21 2X x= , then formula (11) still holds. There-
fore, we are able to write the following integral equation for the discounted value 
of the dividend payments: 

( ) ( )
( ) ( ) ( )(

( ) ( ) ) ( ) ( )(
( ) ( ) ) ( )

*
0 1 2

0 1 2
*

2

0 0
1

0 0

, ,

e e , d

e 0, d e , d

e 0, d d e

t u ctt t
i i

i
u ctt t

iu ct

tt
u ct t

D u b E T X

D u ct x b f x x

D b f x x D u ct x b f x x

D b f x x t

θ θ θ δ

δ δ

θ θ θδ

θ

θ

+− + + −

=
+∞ +− −

+

+∞ +∞ − + +−

+

=   


= + −


+ + + −

+ +

∑∫ ∫

∫ ∫

∫ ∫

D

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

0 1 2
*

2

0
1

0 0

2

0
1

0 0

e , d e 0, d

e , d e 0, d d

e , , d

, , d d

b t t
i i ib

i
b t t

b

t
i it

i

D b x b f x x D b f x x

D b x b f x x D b f x x t

u b t f x x

u b t f x x t

δ δ

δ δ

θ θ θ

θ

θ

θ

θ

+∞− −

=
+∞− −

+∞ +∞− + +

=
+∞


⋅ − +


+ − + 


+ 


+ 

∑ ∫ ∫

∫ ∫

∑∫ ∫

∫





       (20) 

where, by using (19) and with some computations, the last integral can be re-
written as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )

0 1 2
*

0 1 2
*

0 1 2

2

00 0
1

0 1 2

0 1 2

e , , d , , d d

e , , d

e

t
i it

i
t

t
b u
c c

u b t f x x u b t f x x t

u b t t

c

θ θ θ

θ θ θ

θ θ θ δ

θ θ

θ θ θ

θ θ θ δ

+∞ +∞ +∞− + +

=
+∞ − + +

 − + + + − 
 

 
+ 

 
= + +

=
+ + +

∑∫ ∫ ∫

∫

 

   (21) 

Hence, by substituting in (20) the expression (21) and the new variables 
z u ct= +  and y b x= − , we obtain: 

( )
( ) ( )

( ) ( )(
( ) ( ) ) ( ) ( )(
( ) ( ) ) ( )

0 1 2 0 1 2

0 1 2

2

0
1

0 0

,
1e e , d

0, d , d

10, d d e

u z
b zc c

i iu
i

z
iz

z
c

z b

D u b

D z x b f x x
c

D b f x x D z x b f x x

D b f x x z
c

θ θ θ δ θ θ θ δ

θ θ θ δ

θ

θ

+ + + − + + +

=

+∞

− + + ++∞ +∞

 = − 


+ + −

+ +

∑∫ ∫

∫ ∫

∫ ∫

 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
( )0 1 2

2 2

1 1

0 0

0 2

0

1

0
, d 1 0,

, d 1 0, d

e

i i i i
b

b
i i

b
c

D y b f b y y F b D b

D y b f b y y F b D b z

c θ θ θ δ

θ θ

θ θ

θ θ θ δ

= =

− + + +


⋅ − + −


+ − + − 
+ 

+ + + 

∫

∑ ∑∫
         (22) 

From the previous expression, deriving with respect to u, we obtain the fol-
lowing integro-differential equation: 
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( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
0 0

0 1 2

2

0
1

2

0
1

,
,

1 0, 1 0,

, d , d

i i
i

i
u u

i
i

D u b
c D u b

u

F u D b F u D b

D y b f u y y D y b f u y y

θ θ θ δ

θ θ

θ θ

=

=

∂
− + + +

∂

+ − + −

= − − − −∫

∑

∑ ∫

       (23) 

Obviously, letting 1 2 0θ θ= =  in (23), we find the equation of the discounted 
value of the dividend payments of the solvency insurance for the model given in 
(23). Similarly, if 0 0θ = , from (23) we find the equation of the discounted value 
of the dividend payments for the model given in (6). 

We now consider the case in which the time of ruin is minT  defined by (8). 
We note that the observations pointed out in Section 4 still hold and we deter-
mine the equations fulfilled by the present value of the dividend payments. We 
let 1,2i = ; we denote by ( ),i i iD u b  the present value of the dividend payments 
of the i-th insurance class. The total dividends of the two-dimensional risk 
process holder will be equal to ( )2

1 ,i i ii D u b
=∑ . Even in this case, we find 

( ),i i iD u b  as the mean value of the random variable ( )1,i
i iT XD  that, because 

of the payment of the dividends, if i
iT t=  and 1i iX x= , can be simply obtained 

by evaluating (18) and (19) at iD D= , iu u= , ic c= , ib b= , and * *
it t=  de-

fined in (14). Following Section 4, we note that formula (15) still holds. There-
fore, we are able to write the following integral equation for the discounted value 
of the dividend payments: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

*
0

0
*

0

1

00 0

0

0

0

, ,

e e , d

e 0, d d e

e , d e 0, d d

e , , d

i i ii

i

i i i

i

i

i

i
i i i i i

t u c tt t
i i i i i i

tt
i i i iu c t t

b t t
i i i i i i ib

t
i i it

D u b E T X

D u c t x b f x x

D b f x x t

D b x b f x x D b f x x t

u b t t

θ θ δ

θ θδ

δ δ

θ θ

θ θ

θ θ

θ θ

+− + −

+∞ +∞ − +−

+

+∞− −

− +

 =  
= + + −

+ + +
⋅ − +  

+ +

∫ ∫

∫ ∫

∫ ∫

D

*
i

+∞

∫

     (24) 

where, by using (19) and with some computations, the last integral can be re-
written as follows: 

( ) ( ) ( )
( )0

0
* 0

0

e , d e .,
i i

i
i i i

i

b u
t c ci

i i it
i

c
u b t t

θ θ δ
θ θ θ θ

θ θ δ

 
− + + −  +∞ − +  + =

+ +∫     (25) 

Hence, by substituting in (24) the expression (25) and the new variables 

i iz u c t= +  and iy b x= − , we get: 

( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )( )
( )

0 0

0

0

0
0

0

0

,

e e , d

0, d d e , d

e0, 1 d , 1,2

i
i iii i

i

i ii

i

i i
i

i i

i i i
u z

b zc ci
i i iu

i
z

bc
i i i i i i iz b

b u
c c

i i i i i
i

D u b

D z x b f x x
c

D b f x x z D y b f b y y

D b F b z c i

θ θ δ θ θ δ

θ θ δ

θ θ δ

θ θ

θ θ δ

+ + − + +

− + ++∞ +∞

 
− + + −  

 

+   − 

 + + −  

+ − + = + +

=



∫ ∫

∫ ∫ ∫
  (26) 
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From the previous expression, deriving with respect to iu , we obtain the fol-
lowing integro-differential equation: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
0

0 0

0

,
, 0, 1

, d , 1, 2i

i i i
i i i i i i i i i i

i
u

i i i i i

D u b
c D u b D b F u

u

D y b f u y y i

θ θ δ θ θ

θ θ

∂
− + + + + −

∂

= − + − =∫
   (27) 

Obviously, if we restrict ourselves to the case of model given in (4), that is if 
we let 1 2 0θ θ= = , expressions (26) and (27) lead to the same kind of equation 
for the dividends payment of the two classes of insurance business. In the same 
vein, if we consider the model given in (6), that is if we let 0 0θ = , Equations 
(22)-(23) and (26)-(27) are comparable. 

6. Boundary Conditions 

In this section we compute some boundary conditions satisfied by the net single 
premium ( ),A u b  and ( ),i i iA u b  (see (12), (13) and (16), (17)) and by the 
discounted value of dividend payments ( ),D u b  and ( ),i i iD u b  (see (22), (23) 
and (26), (27)), which will be used in Section 7 to provide some explicit solu-
tions. 

By simply substituting 0u =  in Equation (13) we get: 

( ) ( ) ( )
2

0
10

, 1 0, ;i i
iu

A u b
A b

u c
δ θ θ µ

==

∂  
= − + ∂  

∑            (28) 

whereas, by substituting u b=  in Equations (12) and (13), and combining 
them we obtain: 

( ),
0.

u b

A u b
u

=

∂
=

∂
                        (29) 

In the same way we get the boundary conditions for ( ),i i iA u b , 1,2i = : 

( ) ( ) ( )( )

( )

0
0

, 1 0,

,
0

i

i i

i i i
i i i i

i iu

i i i

i u b

A u b
A b

u c

A u b
u

δ θ θ µ
=

=

∂
= − +

∂

∂
=

∂

          (30) 

Analogously, by simply substituting 0u =  in Equation (23) we get: 

( ) ( )
0

,
0, ;

u

D u b
D b

u c
δ

=

∂
=

∂
                   (31) 

whereas, by substituting u b=  in Equations (22) and (23), and combining 
them we obtain: 

( ),
1.

u b

D u b
u

=

∂
=

∂
                      (32) 

In the same way we get the boundary conditions for ( ),i i iD u b , 1, 2i = : 
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( ) ( )

( )
0

,
0,

,
1

i

i i

i i i
i i

i iu

i i i

i u b

D u b
D b

u c

D u b
u

δ

=

=

∂
=

∂

∂
=

∂

                  (33) 

7. Explicit Solutions for Some Special Cases 

In this section we provide explicit solutions for the net single premium and the 
discounted value of dividend payments in some special cases. 

We first consider the net single premium ( ),A u b  and the discounted value 
of dividend payments ( ),D u b . In the special case 0 0θ =  and ( ) 1 e x

iF x β−= − , 
with 0β > , 1,2i = , the integro-differential Equation (13) becomes: 

( ) ( ) ( ) ( )

( )( ) ( )
( ) ( )( )

1 2 1 2

1 2 1 2

1 2 0

, 1,

0, e

e , e dyu

u

u

A u b
c A u b

u
A b u

A y b y y

β

β β

θ θ δ θ θ
β

θ θ θ θ

θ θ β

−

−

∂
− + + + +

∂

+ + − +

= − + +∫

 

By deriving the previous equation with respect to u and with some computa-
tions, we get the following second order linear homogeneous differential equa-
tion with constant coefficients: 

( ) ( ) ( ) ( )
2

1 22

, ,
, 0

A u b A u b
c c A u b

uu
θ θ δ β βδ

∂ ∂
− + + − − =

∂∂
 

whose characteristic equation is given by: 

( )2
1 2 0,c cλ θ θ δ β λ βδ− + + − − =                (34) 

with distinct real solutions 1 20λ λ< < . Using the boundary condition (28) and 
(29), we get the explicit solution of the net single premium ( ),A u b : 

( )
( ) ( )

2 1 1 2

2 1

1 2 2 1

1 2 2 1

e e e e
, .

e e

b u b u

b bA u b
c c

λ λ λ λ

λ λ

θ θ λ λ
β δ λ λ δ λ λ
+ −

=
− − −

        (35) 

In the same way, using our hypotheses, the integro-differential Equation (23) 
can be rewritten as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( )
0

1 2 1 2

1 2

,
, 0, e

e , e d

u

uu y

D u b
c D u b D b

u

D y b y

β

β β

θ θ δ θ θ

θ θ β

−

−

∂
− + + + +

∂

= − + ∫
 

Therefore, using the boundary conditions (31) and (32), the explicit solution 
of the the discounted value of dividend payments ( ),D u b  is given by: 

( ) ( ) ( )
( ) ( )

1 2

1 2

2 1

2 1 1 2

e e
, ,

e e

u u

b b

c c
D u b

c c

λ λ

λ λ

δ λ δ λ
δ λ λ δ λ λ

− − −
=

− − −
          (36) 

where 1 20λ λ< <  are the two real distinct solutions of (34). 
Now, we consider the net single premium ( ),i i iA u b  and the discounted val-

ue of dividend payments ( ),i i iD u b , with 1, 2i = . In the special case  
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( ) 1 e i x
iF x β−= − , with 0iβ > , 1,2i = , the integro-differential Equation (17) 

becomes: 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )( )

0 0

0 0

00

, 1,

0, e

e , e d , 1, 2

i i

ii i i

i i i
i i i i i i

i i
u

i i i i i

uu y
i i i i

A u b
c A u b

u

A b u

A y b y y i

β

β β

θ θ δ θ θ
β

θ θ θ θ

θ θ β

−

−

∂
− + + + +

∂

+ + − +

= − + + =∫

 

By deriving the previous equation with respect to iu  and with some compu-
tations, we get the following second order linear homogeneous differential equa-
tion with constant coefficients: 

( ) ( ) ( ) ( )
2

02

, ,
, 0i i i i i i

i i i i i i
ii

A u b A u b
c c A u b

uu
θ θ δ β β δ

∂ ∂
− + + − − =

∂∂
 

whose characteristic equation is given by: 

( )2
0 0,i i i i ic cλ θ θ δ β λ β δ− + + − − =                (37) 

with distinct real solutions 1 20λ λ< < . Using the boundary conditions (30), we 
get the explicit solution of the net single premium ( ),i i iA u b : 

( )
( ) ( )

2 1 1 2

2 1

0 2 1

1 2 2 1

e e e e
, .

e e

i i i i

i i

b u b u
i

i i i b b
i i i

A u b
c c

λ λ λ λ

λ λ

θ θ λ λ
β δ λ λ δ λ λ
+ −

=
− − −

        (38) 

In the same way, using our hypotheses, the integro-differential Equation (27) 
can be rewritten as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( )

0

0 0

0

,
, 0, e

e , e d , 1, 2

i i

ii i i

i i i u
i i i i i i i i

i
uu y

i i i i

D u b
c D u b D b

u

D y b y i

β

β β

θ θ δ θ θ

θ θ β

−

−

∂
− + + + +

∂

= − + =∫
 

Therefore, using the boundary conditions (33), the explicit solution of the the 
discounted value of dividend payments ( ),i i iD u b  is given by: 

( ) ( ) ( )
( ) ( )

1 2

1 2

2 1

2 1 1 2

e e
, ,

e e

i i

i i

u u
i i

i i i b b
i i

c c
D u b

c c

λ λ

λ λ

δ λ δ λ
δ λ λ δ λ λ

− − −
=

− − −
           (39) 

where 1 20λ λ< <  are the two real distinct solutions of (37). 

8. Final Conclusions 
In this paper we presented a two-dimensional risk model which is rather general 
with respect to the claim number processes, and we derived three different kinds 
of models which we studied in details. We assumed that the insurer applies a 
strategy of dividends payments and that he avoids the ruin through a dynamic 
solvency insurance. We considered two classical definitions of time of ruin, 
well-known in the literature. We obtained the integral and integro-differential 
equations for the net single premium of dynamic solvency insurance and for the 
discounted value of dividends payments. Further, we determined some boun-
dary conditions, which allowed us to get explicit solutions for some special cases. 
The two-dimensional risk models have a lot of potential applications and have 
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been, until now, intensively studied mainly in the ruin probability framework. 
The main contribution of our paper is the introduction of the dividends pay-
ments and the dynamic solvency insurance in the two-dimensional models; we 
also investigated the consequences of the proposed model under different as-
sumptions. The two-dimensional models open the doors to various future de-
velopments, among which we consider of special interest the introduction of 
various kinds of reinsurance and the research of optimal reinsurance strategies 
under different objective functions, such as the minimization of the ruin proba-
bility or the maximization of the expected utility of terminal wealth. As some 
authors have already pointed out, the two-dimensional model can be extended 
to more than two classes of insurance business; therefore, a natural development 
of our study could be the use of the dividends, the dynamic solvency insurance 
and the reinsurance in these extended models. 
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