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Abstract 
The paper simulates the price-arbitrage process at the market for homogene-
ous good and tries to show the convergence into a single price from different 
cross-linked markets of this homogeneous good. It examines the problem by 
random generation of values in the simulation environment offered by the 
Matlab program. It is emphasized here the approach in which the agent’s 
alertness is crucial to the market. The emphasis is not on the price that 
equilibrates supply and demand, since there is not a single price for a homo-
geneous commodity. A homogeneous good is negotiated with different prices 
in different parts of a market. The paper explains the process in which the 
agent’s alertness leads to a uniform price in terms of a simulation model, in 
the belief that that technique leads to a better understanding of the precise 
nature of the market process and the agent’s alertness role in equilibration. 
The paper also discusses the effects of the heterogeneous agents and market 
barriers in the market convergence process. The innovative feature of the pa-
per is the simulation experiment. 
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1. Introduction 

Two main pointes make us believe that the paper has the potential to contribute 
to the literature. First, numerical simulations seem to be a fruitful way to study 
market process and price convergence, in particular. Second, the inclusion of 
alertness itself as a determinant of the probability of discovery of new markets is 
an interesting and novel assumption.  

Forty-eight years ago, Littlechild and Owen [1] developed an algebraic model 
to describe the market process. They claimed to be the mathematical formalization 
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of the Austrian school’s view of the market process. However, such a model dis-
torts the fundamental meaning of the Austrian dynamics approach on market. It 
does not faithfully follow Ludwig von Mises’s approach to the market process, it 
is not faithful to the concept of equilibrium of this school (logical equilibrium 
and not mathematical one), it does not describe the price mechanism as Aus-
trian economists do, does not effectively address the role of the entrepreneurial 
activity on the functioning of the markets.1 In short, though pioneering, it had 
been a failed attempt to give Austrian insights a mathematical treatment.2 

Nevertheless, the structure of the model developed in the pioneer paper allows 
an interesting computational approach to the process of price arbitrage in the 
markets for a homogeneous good. In particular, it is important to show the pos-
sibility of converging to a single price for the good in question when the markets 
are initially isolated from one another and are gradually linked by the agents’ 
own arbitration process, as they discover these markets and those are integrated 
with each other. 

The idea that arbitrage would bring about a single price for homogeneous 
good is very old in economic thought.3 The intuition, widely disseminated in the 
profession, is that the quotations of homogeneous goods converge quickly at a 
single price by the agents’ action in the market. However, in the last century the 
scientific community has more technically examined the problem of uniform 
price formation in the markets and concluded that the process would not be so 
simple and immediate. In fact, a gigantic literature on learning (in particular 
prices) is accumulating, including decision errors and limited rationality. In ad-
dition, the growing treatment of the problem by computational methods and 
numerical simulation procedures is noted.4 

In this spirit, we propose an interesting and original treatment of the basic 
problem of simultaneous price convergence of a homogeneous good practiced in 
different markets by means of random generation of values of the variables in 
the simulation environment offered by the Matlab program.5 The hypotheses of 
the new treatment are simple and follow in general the model of Littlechild and 
Owen, although with no pretense of being an Austrian representation of the 
market process. The point of advancement in relation to the pioneer model is 
the possibility of a probabilistic treatment of the process of discovery of new 

 

 

1Lundholm [2] believes that the theoretical model in question uses only the initial ideas of Kirzner, 
an Austrian school economist, as Kirzner [3] does, and it does not quite describe the author’s in-
sights after 1982 when he incorporates more fundamentally the role of uncertainty. According to the 
critic, the model, in fact, is not tied to the more recent Austrian description of the market process in 
which agents discover individual buyers and sellers, not markets. See Kirzner [4]. 
2According to the Google Scholar indicator, the paper was cited 41 times since, scientific perfor-
mance short of a successful study. Moreover, it is noted that it was published in a highly regarded 
journal (Journal of Economic Theory). Although there is much more mathematics today in Austrian 
models than in the past, the paper in question did not have the repercussion that was imagined. 
3It was present in the classical economists, and Alfred Marshall reiterated it. 
4In general, these studies are based on a modeling structure with game theory. Keyhani [5] offers an 
interesting survey of numerical simulation procedures investigating price convergence. 
5Computer simulations allow us to go beyond analytical treatment and to study systems that cannot 
be easily modeled with equations. 
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markets, or of new prices, through computational simulation exercises. Purely 
algebraic treatment and the corresponding price convergence theorems in dif-
ferent markets for a homogeneous good are not successful in incorporating into 
the equations the process of market discovery itself and their integration 
through arbitrage. In fact, such a process is only presupposed, and not demon-
strated or evaluated as to its effectiveness; the speed of integration given the 
mechanism of discovery etc. The use of simulation, instead of mathematical 
analysis, allows a detailed study, though artificial data, of the dynamics of con-
vergence taking into account the discoveries by the agents of new prices. 

It is, therefore, a study on the role of knowledge and discovery in the process 
of price convergence in the markets; a relevant study even if, over time, the sin-
gle convergence price is not necessarily the intertemporal equilibrium price. The 
single price obtained by the arbitrage of the markets, accompanied by increasing 
discoveries by the agents, would not be a final state for the price practiced in the 
linked markets (effectively arbitrated by a common set of agents). The study of 
uniform price formation, however, facilitates the investigation of the equilibrium 
price by allowing a single price to be assigned subsequently to each homogene-
ous good. In this setting, one can study the possibility that the traditional condi-
tions of general equilibrium be met. 

The central contribution of the essay lies in the use of computational simula-
tions to model the discovery of new markets through a probabilistic process that 
controls the agent’s chance to discover a market, starting from its base, the place 
where he previously knows and arbitrates, by a distribution of probabilities 
whose variance depends on a particular propensity of the agent in question, his 
alertness.6 

Although there is an enormous amount of studies dealing with the process of 
convergence of markets by discovery of new prices, we did not find any numeri-
cal simulation study with the use of a simple Matlab program and able to study 
the effectiveness of the convergence process and its sensitivity to the basic para-
meters of the model. When the problem of incomplete information in which 
economic agents operate is recognized, the traditional approach focuses more on 
the restrictive role of imperfect information and the costs of obtaining informa-
tion. The genuinely Austrian approach incorporates a radical ignorance of the 
agents, which is not quantifiable, which is unknown to the analyst, and therefore 
very difficult to model. More than just assuming that agents are unaware of in-
formation sets, Austrians are concerned with studying the process by which in-
formation is revealed to agents and how they learning to interpret it. From this 
point of view, the discovery of information involves surprise and could not be 
priced. Economists at the Austrian school investigate to what extent and under 

 

 

6The term refers to the concept widely used by Kirzner ([3], [6]), which in this author is much richer 
and full of implications. It concerns the entrepreneur’s role in discovering opportunities and how 
this leads to market equilibrium. In this explanation, entrepreneurial activity is crucial for the mar-
ket process to equilibrium. The concept of alertness in Kirzner also incorporates speculative and in-
novative activities. 
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what conditions such a discovery would lead the market toward equilibrium. In 
the real and complex economy, they ask whether there is a tendency to approach, 
rather than distancing, the equilibrium trajectory. 

The proposed simulation model sheds new light on the process in which equi-
librium is reached, with reference to a formal model that follows many aspects of 
pioneering treatment, however, with no pretense of formalizing the richness of 
the Austrian approach. It is only a model of numerical simulation of the process 
of convergence of prices in the markets. The emphasis is only on the arbitration 
process. At every moment, the price adjustment in each market obeys the law of 
supply and demand, and the interest is only in how different prices converge 
with the gradual integration of the markets by the agents’ arbitrage. Therefore, 
the emphasis of the study falls not on the concept of equilibrium itself, but on 
the mechanism of equilibration. A homogeneous good is transacted at different 
prices in different parts of a market because the market participant does not 
know all of it (knows only parts of it or submarkets). It is imagined here that, 
with the discovery of the agents, given the alertness of each one, a uniform price 
is arrived at. Given the price differences between the new market and the known 
markets, transfers of goods take place immediately. There is no lag between 
buying and selling in the model, within which prices could change. This price 
can, after being reached, be examined regarding its dynamic stability by a gener-
al equilibrium model, which does not belong to the scope of this study. It is then 
a question of providing a description of the process of price convergence in 
terms of a simulation exercise based on a mathematical model similar to that of 
Littlechild and Owen, but introducing an explicit and detailed hypothesis about 
the process of discovering new markets, treatable only through computer simu-
lations, not mathematical analysis. It is believed that the present simulation ex-
ercise leads to a better understanding of the nature of price convergence in the 
markets and the role of agent discovery in this process. 

In this sense, consideration is given to obtaining homogeneous prices for the 
performance of the computational model by drawing random variables when 
running the program in Matlab and obtaining artificial data. The paper also 
examines the speed of the convergence process, and how long it lasts, which de-
pends on arbitrary parameters. At the end, some analysis of parameter variation 
is done and entry barriers are added. To do so, the paper is structured into five 
sections, in addition to this introduction. Section 2 presents the algebraic refer-
ence model in a synthetic way. Section 3 shows the extensions of the basic model 
and explains the numerical simulation technique. Section 4 presents the numer-
ical simulation results for different sets of parameters. The penultimate section 
discusses the effects of the hypothesis of heterogeneous agents and market bar-
riers in the process of market convergence before the brief concluding section of 
the essay. 

2. Basic Structure of the Convergence 

Here are seven basic hypotheses of the model:  
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1) It is assumed that a homogeneous commodity is transacted in a given set of 
markets (each segment is called a “submarket”) over a period. The homogeneous 
commodity hypothesis is just to simplify the model. By submarkets are meant 
isolated markets from other markets, in the sense that agents acting on it do not 
act on others.  

2) Agents are price takers. That is, it is a model of perfect competition, or al-
most perfect, because the information is not complete.  

3) The excess demand curves that form in each segment of the submarket are 
constant over time and are linear in relation to prices. The way prices respond to 
such excesses is always the same, given by a simple linear equation. 

4) There is a single price in each submarket at every instant of time, which is 
determined only by the net quantity of commodities offered on it. Although 
prices vary with time, each time it is unique to each submarket. 

5) The products are transferred between submarkets by the arbitrators. Each 
agent knows the existence of only a single set of submarkets. That is, it is an im-
perfect knowledge model in which learning involves research on the part of the 
agent. 

6) Two processes occur simultaneously: arbitrage among known submarkets 
and new submarkets are known. At the same time, agents arbitrate submarkets 
and are alert to the discovery of new submarkets. 

7) For each agent, the increase in the amount he transfers between submarkets 
is directly proportional to the price differences between two submarkets he arbi-
trates. The transfer rate, regulated by a constant of proportionality, varies ac-
cording to the agent and denotes different impatience, precaution, flexibility and 
cost of adjustment. The constant is fixed per agent, and does not vary from one 
submarket to another.  

The model does not consider production. There is a prevailing starting price 
in each submarket and, from this, price movements occur through the arbitrage 
action. In the supply, goods are transferred from the submarkets that practice 
lower prices to those with higher prices. Individual demand also responds to 
prices. The difference between these two forces generates, at each instant, an 
excess supply or net supply of goods by all agents in each submarket, which de-
pends on the agents’ responses to price differences between them (transfer rates). 
In each sub-market, the supply varies with the price differences formed at each 
moment, considering the transfer rates, and a predetermined total amount of 
transacted goods is assumed so that the sum of the net offers is null, for all 
sub-markets. 

In the original model of Littlechild and Owen, the probability of the agent 
discovering a new submarket is given by a constant invariant in time that reflects 
differences in the individual alertness. It is assumed that this probability is pro-
portional to the price difference between the prices practiced in potentially arbi-
trated submarkets and relevant prices in the price range among previously 
known submarkets, but the constant of proportionality is greater the higher the 
alertness of the agent. In the simulation model of this essay, the alertness level of 
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the agent is otherwise: it has a probability distribution governed by a normal 
curve, in which the variance depends on the degree of alertness of the agent in 
question.7 Drawings are made by the computer obeying the specified distribu-
tion that allows identifying the submarkets reached (and linked), as will be de-
tailed later.8 

It works with the hypothesis of division, such that different agents know dif-
ferent markets. At first, each agent knows only the price in their original market, 
not in all the markets in which they could operate. The discovery of prices in-
volves some kind of cost, at least an expenditure with displacement. The agent 
must go to different sales stations (submarkets) and investigate the prices, for 
the same homogeneous good, practiced in these places. The greater the alertness, 
the greater the range of searched places. Hopefully, in some of them arbitrage 
possibilities will arise, which will be explored. 

The model investigates theoretically how the arbitration process leads to a 
uniform price. To do this, it begins by defining two concepts:  

1) Two directly linked submarkets occur when at least one agent knows both. 
2) In indirectly linked submarkets, there is an intermediate chain of submar-
kets, which starts and ends in two of them, and each point of the chain is di-
rectly linked to the next. 

Working with the same assumptions and concepts, but without detailing the 
discovery process, Littlechild and Owen [1] demonstrate mathematically that if 
two submarkets are linked (directly or indirectly) all prices will tend to converge 
at a uniform equilibrium price. The series of discoveries will lead to a link of all 
submarkets or to non-linked submarkets, whose prices will equal the uniform 
equilibrium price among the linked submarkets. A submarket may remain un-
known to an agent if its prices converge quickly on the prices in submarkets al-
ready discovered, thereby reducing its chance of being discovered, even if it 
maintains a degree of attraction. The proof of these authors is purely mathemat-
ical, in the form of theorems. 

The submarket set is represented by { }1, 2, ,M m=   and the set of traders 
by { }1, 2, ,N n=  . Trader j knows the existence of a fixed subset of submarkets 

jM M⊆ . He can arbitrate in any submarket k such that jk M∈ . jM  can 
change with time. If the submarkets k and k ′  are such that , jk k M′∈ , they are 
directly linked. They are indirectly linked if there is a submarket chain 

0 1, , , qk k k  in which 0k k=  and qk k ′=  such that 1lk −  and lk  are di-
rectly connected to 1, 2, ,l q=  . Directly or indirectly linked submarkets are 
said to be linked. A set of submarkets is said to be linked if each pair within it is 
of linked submarkets. Let ( )kx t  be the quantity of goods offered in excess by 

 

 

7There is nothing particularly special about normal function other than the fact that it is a symmetric 
distribution function and concentrated at the central points. Any other distribution function with 
this characteristic would also serve our purposes. 
8The alertness basically affects the discovery of new submarkets. The transfer rates could also be af-
fected by it, however, for simplicity, alertness is considered to affect only the probability of finding 
out. That is, in the simulations one can change the alertness and the transfer rate independently of 
each other in order to monitor the effects of each one on the numerical results. 

 

DOI: 10.4236/me.2018.911118 1873 Modern Economy 
 

https://doi.org/10.4236/me.2018.911118


R. L. C. Feijó, F. Barbieri 
 

all agents in the submarket k, coming from all other submarkets (net supply). 
For all submarkets, net transfers cancel out because there is no good coming 
from outside of the total set of submarkets: ( ) 0k

k x t =∑ . The price ( )kp t  is 
the equilibrium price in the submarket k. In the model, it depends on ( )kx t  by 
a linear equation of type ( ) ( )k k

k kp t a b x t= − , with 0ka >  and 0kb > . 

Therefore, ( ) ( )
k

kk

k k

p t a x t
b b

= −  and obviously  

( ) ( )
k

kk
k k k

k k

p t a x t
b b

= −∑ ∑ ∑ . As ( ) 0k
k x t =∑ , the first member of the equa-

tion is a constant, and therefore, a certain weighted average price, defined by 

( ) 1k

k k
k k

p t
p

b b
= ∑ ∑ , is also constant. Littlechild and Owen demonstrate that,  

for taking prices agents, p  is the uniform price that will prevail among all 
submarkets. Alternatively, in more detail: all the prices of a linked set of markets 
tend to the uniform price, taking into account the trend of equilibrium among 
them.9 In this model, it defines a rate of adjustment of transfers among submar-
kets, for transfers from all submarkets k ′  linked to k and to all agents j, as 

( ) ( )
j

k k k
jj k Mx t p pσ ′

′∈
= −∑ ∑ , ik M∈ , the set of linked submarkets to the 

agent j. In which 0jσ >  conditions the impact of price differences among 
submarkets k and k ′  on the flow of goods between them. 

3. The Numerical Simulation 

The dynamic behavior of the markets, their process and the process of price 
convergence between submarkets are analyzed through numerical simulation 
exercises implemented in the Matlab language and run on a computer with cer-
tain characteristics.10 The simulation is done through an extensive program.11 In 
this section, we present the ideas of the numerical simulation model through a 
purely algebraic exposition, without excess of matrix algebra. It is noted, howev-
er, that Matlab programs use matrix calculus. The basic structure of the model of 
the previous section, common to the Littlechild and Owen essay, is basically 
maintained, but with some changes. The main change is the introduction of an 
explicit process in which jM , the set of linked submarkets, changes with time. 
The discovery process is very difficult to deal with in a purely mathematical ap-
proach. Computational simulation facilitates the study of this. It is necessary to 
discuss the code that gave rise to the Matlab program. The algorithm underlying 
the program must be explicit as to its idea, the structure of the model that 

 

 

9The proof of the theorem depended on the hypothesis that the submarkets in question were linked. 
In one of the four lemmas related to the demonstration, it is also shown that the difference between 
the lowest and the highest price tends to zero. In addition, all the prices in the different submarkets 
approximate an average value (the weighted average price commented above). Cf. Littlechild and 
Owen [1]. 
10Desktop with processor Intel i7-3770, 3.4 GHz CPU, 8 GB RAM, 64 bit operating system. Matlab 
version: R2013a. 
11The interested reader may have access to the Matlab program used in the simulation on a special 
webpage. 
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supports it, also because there are technical innovations that need to be made 
explicit. In this section, we want to present the code explicitly and clearly. 

In the simulation, the model of determination of the trajectory of prices in the 
market process ( ( )kp t ) works with the two basic equations presented in the 
previous section: 

( ) ( )k k
k kp t a b x t= −                      (3.1) 

In which ( )kx t  is the excess supply or net supply of goods by all agents in 
the market k. Net supply, in turn, depends on the price differences between re-
lated markets, and is governed by the dynamic supply equation, seen earlier:  

( ) ( ),
j

k k k
j

k
jk M jx t p p k Mσ ′

′∈
= − ∈∑ ∑             (3.2) 

The factor k
jσ  is the coefficient of flexibility that conditions transfer rates 

among submarkets (transfer coefficient). The dynamics of the transfer of goods 
from one submarket to another (of the known ones) depends fundamentally on 
the price differences between them. The prices are given to the agents and they 
adjust the transfers according to the observed differences. The transfers them-
selves adjust the prices according to the adjustment trajectory given by equation 
(3.1). The net supply, then formed, determines the price kp  in t, distinguishing 
it from what would be the same price at an instant just before. The price at t 
( ( )kp t ) feedbacks Equation (3.2) by giving new net supplies, and so on. There is, 
therefore, a dynamic process not explicitly stated in detail in equations. In fact, 
we have here a recursive process that will be computationally accompanied.12 

In numerical simulation, unlike the purely mathematical model, the mechan-
ics of the discovery process of new sub-markets are made explicit.13 In Littlechild 
and Owen, the attraction of submarket k to agent j at time t is given by 

{ }max 0, ,k
j

k
kj jp q q pρ ′′ ′= − − . Where jq′  and jq′′  represent the smaller and 

larger prices that agent j knows at t. kp  is the price charged in the sub-market 
in question. The possibility of finding the submarket k within a given time in-
terval (of a certain duration) is proportional to kjρ  and the proportionality 
constant jτ  is called the alertness coefficient. That is, the authors propose that 
the discovery of new submarkets by the agent in question depends on the price 
difference between those and the prices already known by him, and a coefficient 
proportional to the alertness. 

This does not seem to be an adequate way of formalizing the process of dis-
covery brought about by the alertness. The discovery presupposes finding 
something that already exists, which is available but is not known. Discovery is 
not the occurrence of “happy accidents”, but the result of the agent’s alertness 

 

 

12A numerical simulation study is better suited than purely algebraic to follow the process in which 
the variables feedback, because the simulations are done in a programming environment that does it 
step by step, as the values are generated and recalculated. 
13In this regard, Littlechild and Owen [1] propose that the discovery process be modeled as a Markov 
chain: “It seems natural to model this discovery process as a markov process, in which the transition 
probabilities for each trades depend upon (1) the “attractiveness” for him of the markets which re-
mains to be discovered, and (2) his own entrepreneurial ability.” (p. 366) However, the authors do 
not explain this model.  

 

DOI: 10.4236/me.2018.911118 1875 Modern Economy 
 

https://doi.org/10.4236/me.2018.911118


R. L. C. Feijó, F. Barbieri 
 

that forces him to seek out opportunities, to explore the environment in search 
of new information already available, but that was not to his knowledge. When 
Littlechild and Owen claim that the discovery of new markets depends on the 
price differences expressed in kjρ  they disregard what leads agents to discover 
markets with greater or lesser price variations from previously known prices. 
The criticized model says that once this or that price variation has been found, 
the agent reacts to it according to his alertness. However, what makes the agent 
find a more favorable kjρ  to the link of new markets is the state of alert itself. 
That is, the alertness affects the probability of discovery of new submarkets al-
ready existing and does not only concern the reaction to given price differences. 
It is proposed here to simulate an environment of search for opportunities by 
identifying probability distributions and computer-based draws. 

In this new model, the possibility of discovery no longer depends on kjρ , de-
pends on a probability distribution given by a certain curve employed in a ran-
dom draw. The more distant kp  is from jq′  and jq′′ , in fact, the greater the 
attraction of the submarket (the greater the flow would be established between 
them, given the transfer coefficient), but the less likely it would be to be discov-
ered. Unlike the reference model, each round of the program assumes here that 
the agent only knows a single price (that of the round in question) associated 
with its base submarket, of origin ( j jq q′ = ′ ). The standard deviation jτ  of the 
distribution function governing the discovery of new submarkets is the alertness 
coefficient itself. 

In this sense, it works here with the following models: m submarkets are in-
formed by the program user ( 1, ,k m=  ). He also reports the number n of 
agents in each submarket (for simplicity, the same for all of them) ( 1, ,j n=  ), 
which has this submarket as a base. The user indicates a value for τ , the deter-
ministic factor of the alertness (the same for all agents). The effective final value 
of the alertness coefficient for agent j of submarket k is k k

j jτ τξ= . Where 
( )~ 0,1k

j unifξ  for each j and k. The initial prices for the submarket k are drawn: 

100k kp ε=                       (3.3) 

where ( )~ 0,1k unifε  for each k. 
The program sorts the submarkets incrementally, according to the magnitude 

of the initial prices. If k k′ >  then k k
i ip p′ > . The user informs the number of 

loops in which the arbitration process occurs and the minimum margin of con-
vergence aimed at taking the module of the differences among the prices prac-
ticed in the submarkets. He/she also informs the deterministic coefficient of the 
price equation. The transfer coefficients are drawn: k

jσ , where ( )~ 0,1k
j unifσ  

for each j and k. 
The model identifies the research effort (alertness) of agent j that operates 

from the submarket k from which it always departs (its base).14 To do so, a 

 

 

14The hypothesis that agent ( ),j k  always departs from market k, where he is, implies that he does 
not memorize the markets that were linked in the previous round. Unlike the reference model, in the 
simulations there is a forgetting of submarkets with each round. Such a hypothesis is necessary be-
cause prices in each one change constantly with the arbitration process itself.  
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frequency distribution k
jy  centered on kp  is assembled:  

k k k k
j j jy pτ η= +                       (3.4) 

where ( )~ 0,1k
j Nη  for each j and k. 

The coefficient k
jτ  determines the standard deviation of this distribution and 

is proportional to the alertness of the agent ( ),j k . The number of submarkets 
discovered by agent j ( 1, ,j n=  ) operating from submarket k ( 1, ,k m=  ) is 
checked.15 It begins with 1k =  and repeats for 2, ,k m=  . A matriz n × m 
matrix of zeros is generated for each k. For each agent j of the submarket k in 
question (these are represented in the respective columns of the zeros matrix), it 
goes through all other submarkets k ′  and it finds in each case: if 0k

iy >  (only 
draws with positive result in y are considered), if k k′ ≠  (the submarket does 
not compare with itself) and if: 

k k k k
jp p y p′ − ≤ −                    (3.5) 

the position ( ),i k ′  of the zeros matrix associated with 𝑘𝑘 assumes unit value. 
This indicates that agent j directly links the submarkets in question. By going 
through all the agents in k, it has a matrix indication ( kZ ) of all the submarkets 
that were directly linked by agents acting from the submarket k. The same is 
done for 1, , 1, 1, ,k k k m′′ = − +  . 

The modeling of the discovery process of new submarkets by the agent j in 
question is explained by the graph of Graph 1. On the horizontal axis, 17 sub-
markets are numbered from 1 to 17. The vertical axis indicates the frequencies 
associated with normal functions centered on submarket 8. These distribution 
functions follow the process described in Equation (3.4). Based on them, the 
computer makes a lottery. In the figure, a frequency is set ( )0.02f = , 
representing a certain draw made by the machine. For this frequency, there is a 
high probability that the price drawn is smaller (or greater) than the average 
price 8p , associated with submarket 8, at a distance ( k k

jy p− ) greater than the 
distance of prices measured by the price practiced in the last submarket k ′  
considered linked to the submarket 8 in question.16 This probability is greater 
the higher the value of 8

jτ . The figure shows 8 submarkets linked, by lot indica-
tion, to submarket 8 (4 on each side) for 8 2jτ = , and 10 connected submarkets 
(5 on each side) for 8 3jτ = , j j′ ≠ . 

Then, it constructs the matrix kV , with the price differences between two 
submarkets, by the following procedure: it generates the n dimensional vector 
with unit inputs (vector ones (n, 1)); it generated the matrix with n rows, each 
one identical to the vector P (1 × m) (with entries , 1, ,jp j m=  ): 

( ),1Q ones n P=                         (3.6) 

For each 1, ,k m=  , one finds 1, , 1, 1, ,k k k m′ = − +   and defines: 

 

 

15The precise identification of the agent depends on j and k. There are n agents operating in each 
submarket ( 1, ,j n=  ) and k submarkets ( 1, ,k m=  ), so there would be n m×  agents in total. 
16Of course, the two distances associated with the two distribution tails must be considered.  
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Graph 1. Discovery of submarkets by a lottery process according to a normal 
function. The vertical axis indicates frequency. Decimal separations with commas. 

 

1, ,
k

jk jk j n
V Q Q′ =

 = − 


                   (3.7) 

where , ,j k k ′  indicates line j and columns k and k ′ . 
Finally, it constructs the matrix kW  with the price differences between two 

linked submarkets obtained from the matrix kZ : 
k k kW Z V=  for 1, ,k m=                (3.8) 

Similarly to Equation (3.2) proposed by Littlechild and Owen, the total varia-
tion of supply (of demand, if negative) in each submarket, with agents starting 
from submarket k, is given by: 

1, ,

k k k
j j n

X Wσ
=

 =  


                    (3.9) 

where k
jσ  is the drafted transfer coefficients. 

The total variation of the supply (of the demand, if negative), with agents 
starting from all the submarkets, is obtained as follows: 

1, , 1, , 1, ,

k k k
jk m k m j n

X X Wσ
= = =

 = =  ∑ ∑
 



          (3.10) 

Now it begins of the price formation equation. In the new version of Equation 
(3.1), the parameter kb  would depend on a deterministic factor and another 
random factor. The program user informs the deterministic factor d. The ran-
dom factor is given by the expression: ( )~ 0,1kr unif  for each 1, ,k m=  . 
Therefore: 

k
kb d r= ⋅                          (3.11) 

The prices practiced in the different submarkets evolve according to the vari-
ous iterations. The final price in the submarkets, after the first iteration in the 
loop, is given by: 

( ):,k k
f kp p b X j⋅= −                     (3.12) 
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where ( ):,X j  denotes the k-th column of X. For 1, ,k m=  .17 
For each new iteration in t, ( ) ( )1k k

i fp t p t= − , new transfers are generated 
and the system compares the price distance in t, among the different submarkets, 
with the minimum allowable M margin (margin of convergence reported by the 
user): 

( ) ( )k k
f fp t p t M′ − <                 (3.13) 

to each 1, , 1, 1, ,k k k m′ = − +   

4. Results of the Numerical Simulation 

Each simulation involves running the program only once for a set of parameters 
entered by the user. The program performs several iterations until the reported 
convergence condition is reached. The first simulation was done for 10 submar-
kets in which initial prices were drawn by the computer based on Equation (3.3). 
Prices are placed in increasing order and are associated with sub-markets from 1 
to m. The user informs the number n of agents that will act in each submarket 
(total number of agents n m× ), the number N of iterations in the program loop 
(the number of times the arbitrage occurs), the convergence margin M of the 
prices of different submarkets (maximum permissible final discrepancy), the de-
terministic factor τ of the alertness coefficient, the deterministic factor d of Equ-
ation (11) used as a parameter of the price equation. The values initially reported 
are m = 10, n = 20, N = 100, M = 1, τ = 5, d = 0.1. Flexibility coefficients k

jσ  
are generated by programs based on a uniform distribution function of 0 to 1 
and used in estimating the total supply variation (demand, if negative) in each 
submarket. Therefore, initially in the face of Equation (3.11), the parameter kb  
is drawn for each k. Table 1 shows, for a simulation, the output on the Matlab 
screen with these coefficients for n m×  agents, as well as the parameters kb  
for the price equation determined by the deterministic value d informed and by 
the draw in the uniform distribution. These values will remain the same 
throughout any simulation for a given d. 

Then, it estimates the Equation (3.4) of the research effort of each agent 
translated by a normal distribution function around the initial price of the sub-
market in question. The program through two loops going through all the sub-
markets and all the agents makes such an estimate. In each case, the draw of a 
specific point is made throughout the distribution function that governs the 
price search effort. Table 2 shows the exit of the prices drawn, in the hundredth 
iteration, around each of the initial prices of the different submarkets. The sys-
tem reveals, as a result of the draws in question, the submarkets discovered by 
each of the agents operating in the m submarkets. Such an estimate is made 
based on Equation (3.5) which translates into a specific programming sequence. 

The system generates the kZ  matrix of zeros and 1, which translates linked 

 

 

17From Equation (3.1), it follows that, at each iteration, ( )k k k k
f i k i fp p b x x− = −  and therefore 

( )k k k k
f i k f ip p b x x= − − . 
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or discovered markets by agents from all other submarkets. Next, the matrix 
with the price differences between the submarkets now connected and the sub-
markets of origin is produced. The next step in the simulation is to estimate the 
supply variation (demand) in each submarket. This is done with agents starting 
at the same time from all the submarkets in question. Equation (3.12) is used to 
estimate the final price in the submarkets after each iteration. From one iteration 
to another, the system automatically proceeds in the simulation exercise up to 
the number of them informed. At the end of the hundredth iteration, Table 3 
shows the Matlab output with the variation of the supply (demand) in each 
submarket, for this iteration, by line and by agents starting from different sub-
markets, and the total variation of the supply in each submarket.18 

 
Table 1. Determining factor of the price function (d), flexibility coefficients drawn ( k

jσ ), and parameters drawn for the price equ-

ation ( kb ).  

Command Window 
       

Enter the coefficient of the price function (coefb): 0.1 
  

Flexibility coefficients: 
       

0.7335 0.3863 0.3565 0.3630 0.1203 0.2723 0.6235 0.7443 0.6065 0.4486 

0.3050 0.4064 0.1628 0.4236 0.2208 0.8772 0.5033 0.3084 0.6005 0.1200 

0.3115 0.2975 0.4059 0.1499 0.9641 0.9668 0.6292 0.9751 0.8981 0.1587 

0.0064 0.1605 0.9644 0.7089 0.4309 0.9028 0.8656 0.0051 0.8080 0.4875 

0.9661 0.3053 0.4073 0.8878 0.5027 0.7696 0.8460 0.2745 0.1200 0.4939 

0.0721 0.8305 0.0418 0.2667 0.5176 0.4907 0.3461 0.7053 0.7204 0.1250 

0.2444 0.3857 0.4326 0.4285 0.6502 0.5790 0.8241 0.1643 0.5385 0.1408 

0.6067 0.1276 0.1450 0.1566 0.6992 0.3490 0.6325 0.4607 0.6848 0.5976 

0.9593 0.1626 0.7057 0.9105 0.7786 0.8800 0.9464 0.6434 0.3790 0.4196 

0.1420 0.4706 0.1593 0.9439 0.5305 0.4050 0.8367 0.5592 0.5325 0.6135 

0.3343 0.5243 0.7518 0.8097 0.5875 0.9905 0.7250 0.2032 0.2839 0.3009 

0.4355 0.5585 0.0752 0.7222 0.5500 0.5676 0.3900 0.0331 0.9466 0.2268 

0.9307 0.7296 0.8149 0.5299 0.5598 0.1570 0.0372 0.2597 0.5205 0.8687 

0.8848 0.1778 0.7064 0.2766 0.1126 0.1399 0.7117 0.7188 0.3995 0.5547 

0.5314 0.2730 0.9648 0.6599 0.4132 0.3261 0.0204 0.0523 0.9130 0.6125 

0.2944 0.1950 0.1405 0.0222 0.1998 0.2253 0.4425 0.4793 0.8154 0.7119 

0.7734 0.5302 0.2461 0.7559 0.5617 0.5161 0.8715 0.6854 0.5013 0.5301 

0.6341 0.7872 0.3510 0.6971 0.8128 0.8059 0.9876 0.9042 0.1782 0.3320 

0.2175 0.8586 0.1167 0.3565 0.6019 0.5831 0.0129 0.2656 0.2500 0.9382 

0.3574 0.3067 0.2025 0.4550 0.9782 0.8248 0.7020 0.9786 0.3413 0.6306 

Parameters of the price equation. 
     

b= 
         

0.0967 0.0989 0.0415 0.0700 0.0352 0.0192 0.0619 0.0401 0.0775 0.0954 

Source: Result of the simulation in Matlab, given the program and parameters provided by the user. 

 

 

18By rows, we interpret only movements of the nth agents of each column. Where n represents the 
location of the line counting vertically from top to bottom. The hundredth iteration corresponds to 
the maximum number of turns reported in the programming loop. 
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Table 2. Prices drawn around respective initial prices. 100th iteration. 

Prices drawn around each starting price point 
     

Observation: columns = submarkets//lines = agents 
    

8.9562 14.2309 10.9892 18.0557 43.3676 43.4348 53.5571 55.5907 76.1003 94.4248 

20.0764 13.4117 16.8516 8.5792 47.9399 51.9469 48.6588 58.2611 82.6683 97.9329 

15.9174 20.4695 10.1907 12.9504 54.6789 48.6118 49.6280 57.4859 80.2394 99.2911 

20.2459 23.4496 16.9068 21.5803 48.6266 56.9500 42.7496 48.4849 64.2941 98.4178 

21.4155 14.3010 9.8855 17.1028 45.6796 55.7117 46.7486 53.1716 77.4461 92.8577 

21.8430 14.9120 16.1868 18.7540 51.3319 49.1490 48.3029 49.3155 71.4437 92.6695 

21.8542 11.7773 18.8712 19.0443 49.7780 38.1676 44.0721 48.7828 68.0812 94.1849 

11.5401 11.5408 9.8954 13.6408 56.8756 48.4937 50.9833 49.1372 64.2041 99.0884 

24.6165 18.6104 8.7036 18.5248 44.7098 47.2630 56.5068 37.7310 85.4037 100.2895 

18.5987 19.1233 10.7648 12.7935 43.1336 53.8849 52.5609 45.3918 72.0079 94.2681 

28.6056 18.9915 18.1280 6.2158 47.4831 52.1795 46.1789 55.7840 71.7928 89.9104 

10.7304 6.3721 12.3575 11.6236 43.4721 49.5738 48.2879 44.4095 74.1891 98.8453 

22.0650 17.6688 14.1423 21.3358 44.9731 46.2245 51.4606 56.7083 72.2050 99.7300 

21.3438 10.6595 19.8467 10.6366 47.8336 46.4431 56.5116 46.1849 71.8851 98.4841 

16.0873 18.3277 10.8991 20.8258 42.5873 48.0865 56.6684 53.1978 72.1600 101.1206 

17.3959 11.6630 22.0149 11.1004 46.1730 47.8540 42.5840 44.7233 72.4370 100.6406 

12.0568 16.1859 18.7431 17.4003 41.6170 40.5500 47.6658 40.4568 78.2790 96.0873 

20.4163 10.4177 18.3128 13.7214 55.9853 49.2077 53.3346 47.1258 67.9835 91.7779 

26.5303 11.3198 18.5146 13.1487 54.9889 53.3424 52.7799 44.8291 78.3463 96.5727 

18.8382 14.3279 10.9800 15.0172 41.7529 51.6825 45.1925 35.7020 63.6955 97.2520 

Source: Result of the simulation in Matlab. Prices generated in the hundredth iteration. 
 

Table 3. Results at the end of the 100th iteration. Total net supply in linked markets for each agent in different submarkets. Total 
net supply for all agents in each submarket. Vectors of initial prices and at the end of the hundredth iteration.  

Supply variation (demand if negative) in each submarket, agents departing from all submarkets: 
 

1.9754 −0.6448 −0.6411 0.5126 −0.0165 0.0717 1.7157 −0.0938 0 0 

2.1518 −1.3045 0.2928 0.5981 −0.3489 −0.9173 1.383 −0.4827 0 0 

1.3588 −1.2978 −0.3634 −0.2113 −1.5234 −1.1366 0.9078 −1.5261 0 0 

0.0173 −0.5152 −0.8634 −0.9997 −0.6808 −0.9441 2.382 −0.008 0 0 

2.6021 −0.5096 0.0524 −0.1143 −0.7943 −0.8047 1.2173 −0.4296 0 0 

0.3974 −6.2887 −0.0375 −0.376 −0.0711 0.0637 0.9512 −0.0889 0 0 

0.6898 −2.2771 −1.1095 −1.2643 −0.0893 0.1525 1.0788 −0.0207 0 0 

0 −0.753 −0.1298 −0.2006 −0.096 0.0919 1.8227 −0.0581 0 0 

2.7072 −1.2315 −0.6318 −1.2839 −1.2302 −0.9202 3.966 −1.0069 0 0 

1.4024 −1.5106 −0.1426 −1.3311 −0.8382 −0.4235 2.3023 −0.8752 0 0 

3.3021 −1.6829 1.3518 1.1431 −0.9283 −1.0358 3.0383 −0.318 0 0 
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Continued 

1.229 −0.8605 0.1351 1.0197 −0.8691 −0.5936 1.0732 −0.0518 0 0 

2.5066 −1.218 0.1049 −0.0682 −0.8844 −0.1642 0.1557 −0.4064 0 0 

8.7401 −0.5708 1.2701 0.3905 −0.1779 −0.1463 2.9824 −1.1249 0 0 

1.4995 −1.6115 −0.8638 −0.9306 −0.6528 −0.341 0.0853 −0.0818 0 0 

0 −0.3004 0.2527 0.0314 −0.0274 0.0593 1.8545 −0.0604 0 0 

2.0831 −0.8851 0.4425 1.0672 −0.8875 −0.5397 3.6523 −1.0727 0 0 

3.4972 −2.5267 0.0452 −0.0897 −1.2843 −0.8427 2.714 −1.415 0 0 

1.1994 −2.7561 −0.2993 −1.052 −0.951 −0.6098 0.0541 −0.4157 0 0 

2.5678 −0.4725 −0.1813 0.6424 −1.5457 −0.8625 1.9292 −1.5315 0 0 

Total variation of supply (demand if negative) in each submarket. All agents: 
   

39.927 −29.2172 −0.0336 −2.5169 −13.8973 −9.8428 35.2658 −11.702 0 0 

*** Initial and final price vector in iteration: 
    

100 
         

Vector of initial prices: 
       

0.1701 6.2000 16.6108 22.1575 35.1243 46.7762 47.0506 57.1393 71.8806 96.7954 

Vector of final prices: 

12.1464 14.5361 13.3160 13.3619 47.2809 47.1149 46.0506 47.2394 70.5470 96.7954 

Source: Result of the simulation in Matlab. 

 
It also shows, at the end of it, the final prices, which are compared to the pric-

es initially drawn. In this case, it is the hundredth iteration, because the loop of 
the program that commands the process of iterative approximation to the mar-
gin of convergence reported by the user was executed a hundred times, the N 
number informed. For different N informed, the number of iterations would 
have been naturally different. 

At the end, a final price vector fp  is given in the table above. It should be 
noted that, in this case, there was no convergence between prices. However, in-
stead of stating that the convergence process is not possible, the model for dif-
ferent calibration parameters is tested. If it keeps the same parameters of the 
previous simulation, it now evaluates the simulation model for different alert-
ness coefficients τ, in the values of 10, 15, 20 and 25. In each case, the same coef-
ficients of flexibility k

jσ  and the same parameters of the price equation is 
maintained, both in Table 1. The initial price vector is also the same for each 
simulation involving a specific τ. In all these simulations, it is first necessary to 
examine the degree of linkage that is obtained between the 10 submarkets in 
question. To do so, a procedure is developed that generates Table 4 where the 
number indicates quantities of agents arbitrating the respective submarkets for 
agents located in the same line (of the 20 lines generated in each submarket), in-
cluding the agent of origin, which was already in the submarket. Any number 
greater than 1 indicates, therefore, connection between submarkets. 
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Table 4. Results of linking submarkets to the end of the 100th iteration. Linked markets and “degree of connection”.  

Command Window 
             

Degree of market linkage: Markets directly linked for agents departing from the submarket: 

By agent group: 8 

2 2 3 3 3 3 3 3 1 1 See the entries in which appears the numeral 1: 
 

3 3 3 3 4 4 3 4 1 1 0 0 0 0 1 1 0 1 0 0 

2 2 4 4 4 3 2 4 1 1 0 0 0 0 1 1 1 1 0 0 

2 3 4 4 4 4 3 4 1 1 0 0 0 0 1 0 0 1 0 0 

2 2 2 2 4 4 2 4 1 1 0 0 0 0 1 1 0 1 0 0 

3 4 4 4 3 2 3 3 1 1 0 0 0 0 1 1 1 1 0 0 

2 3 3 3 3 3 2 3 1 1 0 0 0 0 1 1 1 1 0 0 

1 3 4 3 3 3 3 3 1 1 0 0 0 0 1 1 0 1 0 0 

2 4 4 4 4 4 4 4 1 1 0 0 0 0 1 1 1 1 0 0 

4 3 4 4 4 4 3 4 1 1 0 0 0 0 1 1 1 1 0 0 

4 3 3 3 4 4 4 4 1 1 0 0 0 0 1 1 0 1 0 0 

2 2 3 3 4 4 3 4 1 1 0 0 0 0 1 1 1 1 0 0 

2 2 2 2 4 4 4 4 1 1 0 0 0 0 1 1 0 1 0 0 

4 3 3 3 4 4 4 4 1 1 0 0 0 0 1 1 1 1 0 0 

2 3 4 4 4 4 4 4 1 1 0 0 0 0 1 1 1 1 0 0 

1 2 3 3 3 3 4 3 1 1 0 0 0 0 1 1 1 1 0 0 

2 2 3 3 4 4 4 4 1 1 0 0 0 0 1 1 1 1 0 0 

3 3 2 2 4 4 3 4 1 1 0 0 0 0 1 1 1 1 0 0 

3 3 3 3 4 4 4 4 1 1 0 0 0 0 1 1 1 1 0 0 

3 2 4 3 4 4 3 4 1 1 0 0 0 0 1 1 1 1 0 0 

For all agents: 
       

0 0 0 0 1 1 1 1 0 0 

49 54 65 63 75 73 65 75 20 20 Markets directly linked: 
    

          4          

Source: Result of the simulation in Matlab. Hundredth iteration. 

 
These markets are not always directly linked. Market with such link can be 

seen in the right part of the table for agents departing from submarket 8, which 
discriminates the markets that he can exploit from that point (which receive the 
number 1). For agents starting from the submarket in question, there are at most 
4 markets directly linked. Other results for linking are found for agents starting 
from other submarkets. For the given simulation, in the hundredth iteration, the 
maximum connection that was obtained was 4 markets directly linked to agents 
starting from the 1 to 8 markets. The program also accuses when no market is 
linked to another (in the case of agents that depart from markets 9 and 10).  

The table to the left of Table 4 is obtained by summing the unit inputs of 
agents, in the same lines in the table, starting from a certain submarket. The ag-
gregate number should be interpreted as the degree of connection of the sub-
markets, it indicates the number of agents located in the line of the table, which 
acts in the linking of a market with some of the others. The last line of the table 
on the left should be interpreted as the overall degree of linking of the submarket 
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in question to some of the others, considering all the agents that have in the 
submarket their base. 

Note that these tables only relate to the connections obtained in the last itera-
tion, which starts from the price vector established in the penultimate round, 
since prices are possibly other for each iteration and, therefore, the submarket 
links. Markets are linked in the round in question, then switched off, and poten-
tially tied again in the next iteration. The connection is not definitive, since the 
prices practiced in the submarkets change with each iteration and the agents de-
part again to the process of search of advantageous prices and discovery of op-
portunities of arbitration every round. 

Keeping the same basic parameters, then new simulations were done for dif-
ferent coefficients of alertness τ. We work with the values of 10, 15, 20 and 25. 
Table 5 shows the degree of linkage of the submarkets to the end of the hun-
dredth iteration for the first and last value. Simulations were also generated for 
intermediate values. 

 
Table 5. Degree of connection of the submarkets to the end of the 100th iteration. Two coefficients of alertness τ. (d = 0.1). 

Command Window (τ = 10) Command Window (τ = 25) 

Degree of market linkage: Degree of market linkage: 
    

By agent group: By agent group: 

6 7 7 7 7 7 7 7 6 1 6 8 10 7 8 8 5 9 7 8 

3 9 9 8 9 9 5 9 5 1 4 8 8 7 9 9 3 8 7 8 

4 6 6 6 7 7 6 7 6 1 4 6 6 7 6 6 6 6 8 7 

3 8 8 8 8 8 6 8 4 1 4 5 6 5 7 7 4 6 4 4 

4 8 8 8 7 7 5 7 6 1 5 7 7 7 7 7 4 7 6 7 

2 8 8 8 8 8 6 8 6 1 3 6 6 7 6 6 4 6 7 6 

2 8 9 9 9 8 6 8 4 1 5 9 8 9 8 9 4 8 6 9 

3 8 8 8 9 8 7 8 6 1 3 7 6 5 6 7 2 6 4 5 

4 8 8 8 8 8 5 8 6 1 6 8 6 7 7 7 4 6 5 5 

3 9 9 9 9 9 9 9 6 1 2 6 4 6 5 5 3 4 4 4 

5 6 6 6 7 7 6 7 7 1 4 8 7 9 7 7 3 6 6 9 

6 8 7 7 7 7 7 7 6 1 2 5 5 5 5 5 3 5 6 5 

1 5 6 6 5 6 4 6 5 1 6 8 6 7 7 9 4 5 7 7 

2 7 6 6 6 6 4 6 5 1 3 7 6 8 6 6 5 6 7 7 

3 7 7 7 7 7 7 7 6 1 2 4 6 7 6 6 3 5 6 5 

3 7 8 7 8 8 4 8 4 1 5 7 7 7 7 7 4 6 7 7 

3 8 8 8 8 8 3 8 3 1 4 8 10 5 10 10 4 7 4 7 

4 7 7 7 7 7 6 7 6 1 4 8 10 6 10 10 5 9 6 6 

3 6 6 6 6 6 6 6 4 1 4 8 5 5 5 6 3 5 4 7 

3 8 8 8 8 8 3 8 5 1 3 8 8 8 8 8 4 8 7 8 

For all agents: 
     

For all agents: 
       

67 148 149 147 150 149 112 149 106 20 79 141 137 134 140 145 77 128 118 134 

No market linked in: 
               

10 
                   

Source: Result of the simulation in Matlab. Hundredth iteration. 
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Graph 2 shows the trajectory of prices between submarkets, with the succes-
sive discovery of new markets and the arbitrage process, for the different coeffi-
cients of alertness applied to the problem under analysis, given the values 
adopted in the other parameters. In all simulations, the initial prices are the 
same, by construction, and the final submarket price vector is shown, in the dif-
ferent contexts, in 10 steps equally spaced up to the hundredth iteration. 

It should be noted that, even increasing the deterministic coefficient of alert-
ness, homogeneous prices were not obtained in all submarkets considered.  

 

 
Graph 2. Evolution of submarket prices in 10 steps. Final prices in the 100th iteration. Same initial prices in different simulations. 
Different coefficients of alertness τ (d = 0.1). (a) τ = 5; (b) τ = 10; (c) τ = 15; (d) τ = 20; (d) 25. Source: Result of the simulation in 
Matlab, given the program and parameters provided by the user. Output in EXCEL. Hundredth iteration. 
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Differently from the theoretical statements of Littlechild and Owen [1], in the 
simulation exercise there was no price convergence, only that the prices of the 
different submarkets tend to oscillate in an intermediate price range between the 
extreme values. Even increasing the value of the alertness, the system does not 
converge. However, the results of the numerical simulation may be other, and 
the system behaves dynamically in another way, when the values assigned to the 
basic parameters change in the exercise. Indeed, by making the deterministic 
product d of Equation (3.11), which regulates the price formation in Equation 
(3.12), assume a value less than 0.1, it is observed that the system has a more sta-
ble behavior, with the dynamic convergence of submarket prices to the same 
uniform value. In fact, a new set of graphs with the evolution of submarket pric-
es can be obtained by making, for example, the coefficient d assuming, by cali-
bration, the value of 0.01. 

Graph 3 remakes price trajectories in the simulations and presents its evolu-
tion in a similar way to that of the previous figure, considering now the new 
value assigned to the parameter of the price equation. The new figure shows the 
evolution of the system to the alertness τ assuming values of 5, 10, 15 and 20. 

Thus, in this case, uniform prices in the different submarkets are already 
formed with an alertness coefficient equal to 20. So the convergence process de-
pends on the level of alertness of the entrepreneurs, but also on the parameters 
of the price equation, of how the new prices respond to the excesses of net 
supply that are being formed in the submarkets per action of the arbitration 
process. Table 6 shows the degree of binding of the submarkets to 10τ =  and 
25 for the purpose of comparing the behavior of the system with the new deter-
ministic factor d of the price equation in 0.01, in relation to the linking results 
for d = 0.1 of the previous exercise. 

It should be noted that with the price equation parameter only 10% of the 
previous level, not only the convergence of submarket prices in the simulations 
is guaranteed, but also a considerably greater degree of linkage between the 
markets. By comparing Table 5 and Table 6, the highest values of connections 
cues in the case with a lower d and 25τ =  are apparent. More precisely, in this 
case the mean degree of link increases from 123.1 to 194.5. Interestingly, the 
same does not occur for τ = 10. 

Similar simulations were done for even lower values of d. Note that with the 
deterministic parameter of the price equation very low, say d = 0.001, there is no 
price convergence for an alertness of 20. In order to evaluate the effect of the 
factor d on convergence, an exercise is done with a big number of iterations (up 
to one thousand), and it evaluates the number of iterations that are necessary to 
allow the convergence of submarket prices to occur in terms of the values as-
sumed by the parameter in question. It assumes in all the exercises that the 
alertness is 20. Graph 4 shows the relationship between the parameter d of the 
price equation and the number of iterations for the convergence of submarket 
prices to occur. The economic interpretation of this graph is that when the 
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coefficient d falls in a range between 0.008 and 0.018, specific to the parameters 
informed and the simulation exercise in question, convergence occurs in a 
smaller number of iterations, that is, it is performed more efficiently. 

Note that, for 20τ = , there is no price convergence between submarkets, for 
up to 1.000 iterations, for d = 0.001, and that the convergence occurs rapidly for 
d = 0.01, according to previous simulations (Graph 4). The range of d between 
0.0075 and 0.02 is quite favorable for convergence at homogeneous prices in the 
simulations, however, such convergence does not occur easily (and may never 
occur) when d assumes values outside this range. Then the dynamic behavior of 
the prices in the simulations depends on the calibration of the model. It depends 
fundamentally on the parameter of the price equation and depends naturally on 
the alertness τ. Regarding the alertness, it sees in Table 6 how crucial to conver-
gence it is. In fact, a greater degree of alertness facilitates the process of conver-
gence. Next, it is investigated by means of new simulations, to what extent a 
greater degree of entrepreneurial alertness facilitates the convergence of prices.  

 
Table 6. Degree of connection of the submarkets to the end of the 100th iteration. Two coefficients of alertness τ (d = 0.01). 

Command Window (τ = 10) Command Window (τ = 25) 

By agent group: 
    

Degree of market linkage: 
   

4 4 4 4 5 5 5 5 5 1 By agent group: 

4 4 4 4 4 4 5 4 4 1 10 10 10 10 10 10 10 10 10 10 

5 4 4 4 5 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 3 3 3 5 5 5 5 5 1 10 10 10 10 9 10 10 10 10 10 

3 4 3 3 5 5 4 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 9 10 10 10 10 10 

3 3 4 3 5 5 5 5 5 1 10 9 9 9 9 9 9 9 9 9 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 9 10 10 10 10 10 

3 3 3 4 5 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

5 4 4 4 5 5 5 5 5 1 9 9 9 9 10 9 9 9 9 9 

4 4 4 4 4 5 4 5 5 1 9 9 9 9 9 10 9 9 9 9 

4 4 4 4 5 5 5 5 5 1 9 9 9 9 10 9 9 9 9 9 

4 4 4 4 5 5 5 5 5 1 9 9 9 10 9 9 9 9 9 9 

4 4 4 4 5 5 5 5 5 1 9 10 9 10 9 10 9 9 10 9 

4 4 4 4 5 5 4 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 9 10 10 10 10 10 

4 4 4 4 5 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

4 4 4 4 4 5 5 5 5 1 10 10 10 10 10 10 10 10 10 10 

          10 10 10 10 10 10 10 10 10 10 

For all agents: 
     

For all agents: 
       

79 77 77 77 97 99 97 99 99 20 195 195 194 196 192 196 194 194 195 194 

Source: Result of the simulation in Matlab. Hundredth iteration. 
 

DOI: 10.4236/me.2018.911118 1887 Modern Economy 
 

https://doi.org/10.4236/me.2018.911118


R. L. C. Feijó, F. Barbieri 
 

 
Graph 3. Evolution of submarket prices in 10 stages. Final prices in the 100th iteration. Same initial prices in different 
simulations. Different coefficients of alertness degree τ (d = 0.01). (a) τ = 5; (b) τ = 10; (c) τ = 15; (d) τ = 20. Source: Result of 
the simulation in Matlab, given the program and parameters provided by the user. Output in EXCEL. Hundredth iteration. 

 

 
Graph 4. Relationship between the parameter d of the submarkets price equation and the 
number of iterations of the program so that price convergence occurs in the stipulated 
margin of 1. τ = 20. Decimal separations with commas. Source: Result of the simulation in 
Matlab, given the program and parameters provided by the user. Output in EXCEL. 
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Graph 5 shows the relationship between τ and the number of iterations re-
quired for the convergence of submarket prices. In all simulations d = 0.01 was 
used. As seen previously, in the simulations, for the alertness below 20, there is 
no price convergence in the submarkets. The convergence velocity seems in-
creasing for τ increasing up to 50, with some oscillation. However, it is noted 
that a higher value of the alertness, above this level, does not have a well-defined 
relation with the speed of price convergence. In fact, by examining the behavior 
of the curve in Graph 5, it is clear that, from a certain level, a greater degree of 
entrepreneurial alertness has no systematic effect on convergence. For 
50 200τ≤ ≤ , an oscillatory pattern is observed in the relation between τ and 
convergence velocity. In the next step of the paper, it is analyzed the relationship 
between the alertness coefficient and processing time until the convergence of 
prices in the submarkets is reached. 

Therefore, it is still worth to examine the dynamic behavior of the numerical 
simulation model taking into account the processing time of the computer.19 For 
this exercise, all “pause” commands of the program in Matlab have been deleted. 
Simulations are performed for up to a thousand iterations, at the end of which 
the number of iterations for price convergence and the associated time in 
seconds are computed. For the exercise in question, a new vector of initial prices 
in the submarkets is drawn. Table 7 shows the output screen of the first simula-
tion again indicating the case of 10 submarkets, 20 agents in each. The new 
drawn transfer coefficients are shown. The simulation is done initially for de-
terministic coefficient of alertness of 15. New simulations, with the same basic 
parameters of this, will be made for different values of τ, from 20 to 100, varying 
5. 
 

 
Graph 5. Relation between the alert level (τ) and the number of iterations of 
the program in order for price convergence to occur at the stipulated margin 
of 1 (d = 0.01). Source: Result of the simulation in Matlab, given the program 
and parameters provided by the user. Output in EXCEL. 

 

 

19Processing time should be seen as a measure of the efficiency of the price convergence process. 
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Table 7. Number of submarkets (m), number of agents in each (n), deterministic factor of the price function (d), drawn flexibility 
coefficients ( k

jσ ) and drawn parameters for the price equation ( kb ). 

Command Window 
      

Enter the number of submarkets: 10 
    

Enter the initial number of agents in each submarket: 20 
   

Enter the coefficient of the price function (coefb): 0.01 
   

Flexibility coefficients: 
      

0.1209 0.5386 0.6210 0.3329 0.4145 0.1842 0.0620 0.5261 0.0513 0.0862 

0.8627 0.6952 0.5737 0.4671 0.4648 0.5972 0.2982 0.7297 0.0729 0.3664 

0.4843 0.4991 0.0521 0.6482 0.7640 0.2999 0.0464 0.7073 0.0885 0.3692 

0.8449 0.5358 0.9312 0.0252 0.8182 0.1341 0.5054 0.7814 0.7984 0.6850 

0.2094 0.4452 0.7287 0.8422 0.1002 0.2126 0.7614 0.288 0.943 0.5979 

0.5523 0.1239 0.7378 0.5590 0.1781 0.8949 0.6311 0.6925 0.6837 0.7894 

0.6299 0.4904 0.0634 0.8541 0.3596 0.0715 0.0899 0.5567 0.1321 0.3677 

0.0320 0.8530 0.8604 0.3479 0.0567 0.2425 0.0809 0.3965 0.7227 0.2060 

0.6147 0.8739 0.9344 0.4460 0.5219 0.0538 0.7772 0.0616 0.1104 0.0867 

0.3624 0.2703 0.9844 0.0542 0.3358 0.4417 0.9051 0.7802 0.1175 0.7719 

0.0495 0.2085 0.8589 0.1771 0.1757 0.0133 0.5338 0.3376 0.6407 0.2057 

0.4896 0.5650 0.7856 0.6628 0.2089 0.8972 0.1092 0.6079 0.3288 0.3883 

0.1925 0.6403 0.5134 0.3308 0.9052 0.1967 0.8258 0.7413 0.6538 0.5518 

0.1231 0.4170 0.1776 0.8985 0.6754 0.0934 0.3381 0.1048 0.7491 0.2290 

0.2055 0.2060 0.3986 0.1182 0.4685 0.3074 0.2940 0.1279 0.5832 0.6419 

0.1465 0.9479 0.1339 0.9884 0.9121 0.4561 0.7463 0.5495 0.7400 0.4845 

0.1891 0.0821 0.0309 0.5400 0.1040 0.1017 0.0103 0.4852 0.2348 0.1518 

0.0427 0.1057 0.9391 0.7069 0.7455 0.9954 0.0484 0.8905 0.7350 0.7819 

0.6352 0.1420 0.3013 0.9995 0.7363 0.3321 0.6679 0.799 0.9706 0.1006 

0.2819 0.1665 0.2955 0.2878 0.5619 0.2973 0.6035 0.7343 0.8669 0.2941 

Parameters of the price equation. 
     

b= 
         

0.0024 0.0053 0.0009 0.0041 0.001 0.0011 0.0078 0.0029 0.0060 0.0096 

Source: Result of the simulation in Matlab, given the program and parameters provided by the user. 

 
This new vector of initial prices in the submarkets is pi = (10.9755; 18.7461; 

26.6179; 43.2485; 43.2642; 65.5498; 69.4752; 75.8099; 79.7830; 93.3760) and the 
price vector at the end of the 127th interaction is pf = (47.9075; 48.0096; 47.3818; 
48.0051; 48.1018; 48.8615; 48.0196; 47.9994; 48.0165; 48.0226) for the initial case 
with 15τ = . The processing time was, in this case, 2.6051 seconds until the 
convergence of the submarkets prices. 

Graph 6 shows the relationship between the alertness (τ) and the convergence 
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process measured by both the number of iterations and the processing time. It 
should be noted, therefore, that the two indicatives are approximate. For τ be-
tween 15 and 35, there is an increase in the convergence velocity at uniform 
prices, along a convex curve, as measured by the two criteria of number of itera-
tions and time. In the different simulations, starting from 35τ = , the process of 
dynamic price convergence between submarkets stabilizes, without increasing 
speed even with increasing values for the degree of alertness. 

5. Analysis of the Process of Convergence with  
Heterogeneous Agents Regarding the  
Alertness, and Market Barriers 

In the simulations made in the previous section, a specific coefficient of flexibil-
ity ( k

jσ ) is assigned to each agent in accordance with Equation (3.2). However, 
the agents are homogeneous in relation to the alertness (although the link be-
tween markets, for each one, depends on a specific lottery). Thus, it would be 
natural to examine the behavior of the simulations for heterogeneous agents. 
Taking into account Kirzner’s theory, expectations are raised that heterogeneous 
agents with regard to alertness would facilitate the process of convergence. The 
reason for this will not be explored here, only it does to run the simulation mod-
el, with the hypothesis of very different agents regarding the reaction to the 
markets and alertness. Such changes are incorporated into the Matlab program. 
Now, instead of a single alertness for all agents, the user reports only the deter-
ministic component of that variable, or the average alertness ( mτ ). Based on this, 
the effective level of alertness specific to each agent ( jτ ), based on Equation 
(3.14), is calculated: 

( )1 0.25j m jτ τ ξ+= .                   (5.1) 

where ( )~ 0,1j Nξ  for each j. 
Before the simulation for heterogeneous agents, we observe the behavior for 

the previous case assuming now homogeneous agents also regarding the coeffi-
cient of flexibility in the arbitration Equation (3.2). Therefore, a single value for 
σ is assumed to be the mean of the coefficients obtained in the previous simula-
tion which is 0.5 (since ( )~ 0,1j

i unifσ ). For this new context, Graph 7 shows 
the relationship between the alertness and the time for price convergence in the 
submarkets in cases of homogeneous or heterogeneous agents regarding the 
transfer rate, the sensitivity to the prices practiced (maintaining homogeneity 
regarding the alertness.). The simulation is done for d = 0.01. 

Note that, unlike Kirzner’s theory of the role of agent heterogeneity, conver-
gence is more rapid for homogeneous agents in the arbitration process. Al-
though it is observed that, for the value of alertness below 25, the convergence is 
more effective in the case of heterogeneous agents of the previous simulation. 
Anyway, it is more important to analyze the agents’ heterogeneity regarding the 
alertness. Based on Equation (5.1), the Matlab program is changed and the si-
mulations are running again. 
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Graph 6. Relation between the alertness (τ), number of iterations of the program for 
convergence of prices and convergence time (in seconds). Stipulated margin of one. 
Source: Result of the simulation in Matlab, given the program and parameters provided 
by the user. Output in EXCEL. 
 

 
Graph 7. Relationship between the alertness (τ), and time for price convergence. 
Stipulated margin of one. Source: Result of the simulation in Matlab, given the program 
and parameters provided by the user. Output in EXCEL. 
 

Table 8 shows the alertness drawn when the user reports with 15 the average 
alertness mτ . In the case, the values drawn were from 5.19 to 24.87. Drawings of 
this type were made for different values of mτ  from 15 to 100, with variations 
of 5. In the simulation, the initial price vector is fixed and, according to the sin-
gle draw made for it, it was established in pi = (13.8777; 19.6625; 37.5274; 
41.9346; 61.0507; 64.0454; 77.2848; 90.9310; 91.5204; 95.3267). 
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Table 8. Specific values of alertness assigned to each of the 200 agents considered, according to the draw specified in equation 
(5.1). 

Command Window 
      

Enter the number of iterations (number of times the arbitration process occurs): 1000 
 

Enter the margin of convergence of submarket prices (maximum final discrepancy): 1 
  

Enter the deterministic factor of the alertness coefficient: 15 
   

15.0284 17.0898 18.492 10.0321 13.9909 11.8749 18.0909 8.9902 14.3004 11.2874 

16.1144 13.4088 16.7064 11.9734 24.8683 24.8683 11.0908 15.7939 13.0866 6.9032 

14.4773 14.2531 13.4279 18.3362 18.2533 16.5125 13.1367 9.1758 17.3889 14.6898 

15.1793 16.7484 15.281 13.5798 13.8978 13.5978 12.3624 7.397 16.0715 12.8548 

21.6165 16.5865 18.2034 8.3671 17.4762 20.145 18.0329 10.8026 19.6422 16.0524 

16.3332 12.2842 19.0518 15.8692 10.3514 17.0533 10.4892 14.6894 12.3294 22.0201 

16.8981 15.4795 13.7128 19.0462 13.8914 22.5962 16.4370 14.7218 18.8745 11.715 

24.2156 17.5172 13.4018 24.1168 18.3301 11.7338 12.9888 18.8866 12.8103 19.8368 

10.9065 10.2299 21.2777 13.0622 12.9287 15.2857 10.0251 22.6307 14.1276 15.8413 

20.3627 20.8497 13.6951 14.9564 15.9719 8.9856 17.9673 21.6053 12.7712 14.4711 

12.5557 14.4537 15.5957 12.9614 14.728 13.1884 11.5171 13.6494 12.6482 14.6986 

21.1028 15.6996 13.7111 17.5491 13.7693 9.1989 14.1981 15.8942 17.8812 13.6119 

12.8795 18.7845 18.9522 15.4658 17.7752 11.1024 19.6077 12.7094 6.5605 12.3533 

13.7410 19.8329 16.2889 14.9731 17.7394 19.6149 11.2769 14.9071 15.0468 10.845 

16.0870 14.369 17.7813 12.3972 16.4921 17.9446 23.4684 21.9847 14.8963 14.4771 

20.3921 16.8255 17.9788 15.6483 8.7027 13.9037 18.9975 15.7461 22.0062 10.4892 

19.0146 8.2174 19.0906 20.2511 19.4594 12.9441 13.9124 9.3986 13.5907 12.1716 

13.9324 16.8925 10.3238 19.763 15.3247 11.0543 23.1410 5.4422 5.1852 17.1578 

17.4808 9.7657 12.9019 14.0866 13.594 10.2899 20.6045 16.581 8.7222 19.2038 

21.8074 17.0158 17.2498 15.7087 19.4329 10.7264 12.4442 11.1278 17.5292 18.9962 

Source: Result of the simulation in Matlab. given the program and parameters provided by the user. 

 
Graph 8 shows the time of convergence to equilibrium, with the arbitration 

process, comparing the cases with agents of the same alertness with the other of 
heterogeneous agents in this respect (in both cases, the agents differ as regarding 
the transfer coefficient). Again, it obtains a result in which the convergence ve-
locity is higher for homogeneous agents, measured in terms of the number of 
iterations and time. Note, however, that the differences are larger for small val-
ues of mτ , from 15 to 30. 

Finally, this paper examines the effect of entry barriers in the process of price 
convergence of submarkets by arbitrage. Economic market barriers, as it knows, 
are a cost that agents are required to incur to operate in a given market, a cost 
that would not exist without the barrier. They can be thought of as artificial ob-
stacles that hamper the arbitrage of markets and make them less efficient, with 
implications for loss of welfare. There are many ways to model entry barriers 
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and various exercises have been done in that direction. It shows here the results 
of simulations with a particular strategy of artificially imposing such barriers by 
slight modifications in the program. Differences in prices between submarkets of 
origin and those in submarkets discovered by the alertness are result in complete 
transfer rates, and the respective excess of net supply formed, only when the 
price differences module between them are less than 10% of the price at the base 
submarket. For differences above this, it is imposed that only 10% of the trans-
fers are made. 

This hypothesis has greater effect in the first iterations, in which the price dif-
ferences between the submarkets are larger. Then, as prices come closer, the bar-
riers are no longer significant. However, due to the initial difficulty with the 
transfers, such barriers modify the result of the simulations. In the new exercise, 
a new set of values drawn for the flexibility coefficients is set. For d = 0.01, and 
the same basic parameters, simulations are generated for the case with barrier 
compared to the case without barrier. Differences in the degree of linkage of 
submarkets in the barrier and non-barrier cases are sensitive. In the first case, 
prices converge in a much smaller number of iterations and the final degree of 
market linkage, in the last iteration before convergence, is significantly higher. 

Finally, Graph 9 shows the relationship between the average alertness ( mτ ) 
and time for price convergence in the two cases analyzed with and without bar-
riers. Note the intuitive and expected result that the barriers impede the process 
of price convergence in the submarkets by arbitrage. The number of iterations 
and the time required for convergence in the case with barriers, as modeled, is 
much greater. However, we note the interesting result that the differences are 
greater for smaller coefficients of alertness, which involve a larger number of 
iterations and a longer processing time. 
 

 
Graph 8. Relationship between the average alertness ( mτ ), and time for price 
convergence. Stipulated margin of one. Source: Result of the simulation in Matlab, given 
the program and parameters provided by the user. Output in EXCEL. 
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Graph 9. Relationship between the average alertness ( mτ ) and time for price 
convergence. Stipulated margin of one. Source: Result of the simulation in Matlab, given 
the program and parameters provided by the user. Output in EXCEL. 

6. Conclusions 

The simulation exercises of this essay solve some shortcomings of the purely 
mathematical model of reference. Nevertheless, not all the criticisms pointed out 
in the section (2) in modeling the market process were met, concentrating more 
on offering new formalization of the discovery mechanism. The biggest advan-
tage is to analyze the market process in an iterative model. It models the discov-
ery process as attempts of uncertain outcome governed by a known probability 
distribution whose variance is determined by the entrepreneurial alertness. It 
would not be difficult to extend the simulation model to the general equilibrium 
treatment. The equilibrium stability can be monitored by observing the numeri-
cal results of the simulations in successive attempts. A production model could 
also be incorporated without much difficulty. In the simulations, non-negativity 
constraints need not be explicit because the calibration method selects the most 
appropriate parameters for economically meaningful solutions. One can easily 
do the alertness coefficient could vary with time. More sophisticated models 
when the probability of market discovery, using game theory, could be incorpo-
rated, and remain as the theme for further studies. 

The way the arbitration process was represented in the simulations is more 
Austrian than the mathematical model of reference in the literature. The discov-
ery process is now explained as governed by a probability regulated by distribu-
tion function. Price differences no longer occur only by an unexplained chance. 
The process of how agent action affects prices is accompanied step by step by an 
iterative mechanism. Simulations consider agents that act independently, but 
strategic actions could be incorporated. The greater absence of the proposed si-
mulation model, also present in algebraic treatment, remains a way of treating 
expectations, always difficult to incorporate into numerical simulation. 
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In the model presented, it is possible to follow step by step the market process 
and the conditions under which a uniform price is established. It can be moni-
tored as exogenous changes in the data affect the equilibrium point. Unlike the 
purely algebraic treatment, in the simulations, explicit calibration techniques of 
the coefficients of the model are present. A deeper analysis of welfare losses with 
the absence of entrepreneurial discovery behavior would be lacking, but the en-
try barrier model allows us to observe the difficulties of price convergence in this 
context. 

The main conclusions reached with numerical simulations are that the model 
converges well, within an adequate specification of parameters, and that, in this 
sense, the most important parameters are the alertness (τ) and the coefficient d 
of the prices function. For 0.005 0.02d≤ ≤  and 20τ ≥ , the submarket prices 
converge well to a uniform value after a number of iterations and processing 
time. The heterogeneity of the agents did not show much impact for the conver-
gence. Input barriers naturally make convergence less effective. Moreover, such 
inefficiency can be quantified here. 

The idea of using a draw ruled by a normal distribution adequately represents 
the probabilities of discoveries, the fact that nearby markets are more likely to be 
discovered. The problem lies in the assumption that, once a submarket has been 
discovered at a certain distance, given by the computer draw, all the submarkets 
closest to the initial base of the agent in question would also be revealed. Simula-
tion models do not replace the algebraic treatment, because in them the results 
are highly dependent on the specification of parameters. The economic sense of 
these parameters is not always easy to interpret. The convergence efficiency in-
dicators are specified in terms of number of iterations and time of processing. It 
would be interesting to imagine more concrete situations and think this time in 
terms of time involved in real processes such as hours and days. 
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