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Abstract 
In this paper, we propose a method that uses the apparatus of the theory of fuzzy sets, together 
with the five-factor model of Altman to assess the creditworthiness of an enterprise. Altman’s mo- 
del is enhanced in two ways: applies integral approximation of the root mean square for the exact 
calculation of quantitative credit assessment (probability of bankruptcy), and applies the device of 
fuzzy sets for ordered sets according to the degree of confidence in the resulting probability. Some 
real examples of the methodology of applications are shown. The article is theoretical in nature, 
the findings made in the mathematical model have not been tested on a sufficiently large number 
of enterprises. 
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1. Introduction 
Presently, timely return of loans is an urgent problem for all the creditor institutions (banks). To a large extent, 
solution to this problem depends on the “quality” of a reliable assessment of the creditworthiness of companies, 
carried out by experts on the basis of their accounting statements. Despite the presence of Russian and foreign 
number of techniques and models in practice, there is no universal model. Practical application of Altman’s 
Model in the Russian condition considered in [1] [2]. 

Currently, the theory of fuzzy sets is developed in the sphere of science, which is of great practical impor-
tance. It is widely used in solving technical problems [3]. Similarly, the use of fuzzy set theory is considered in 
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the problem of economy and management of enterprises, but application of fuzziness is underutilized when ana-
lyzing and evaluating the creditworthiness of businesses [4] [5]. This paper proposes application of theory of 
fuzzy sets and standard integral approximation for the quantitative assessment of creditworthiness (probability 
of bankruptcy) of the company. Thus, the purpose of this article is the development (improvement) based on the 
Altman’s model of the theory of fuzzy sets, mathematical optimization, enabling an effective method to improve 
the credit assessment (bankruptcy), and offers a way to streamline the fuzzy sets of the calculated measure of 
preference. 

2. Statement of the Problem 
In international practice (the US economy), the greatest distribution model has a five-factor model of Altman in 
order to assess the possibility of bankruptcy, and has the form [6]: 

1 2 3 4 51.2 1.4 3.3 0.6 1.0z k k k k k= + + + + ,                            (1) 

where the coefficients ik , 1, ,5i =  , are defined: 1k —net working capital/total assets, 2k —Retained earn-
ings/total assets, 3k —profit before interest/total assets, 4k —the market value of equity/debt capital, 5k —vo- 
lume of sales/total assets. Russia has adapted the model to adjust Altman weight ratios ik  [1]. 

Altman’s model establishes the dependence of the probability function ( )p z  value of z. This probability is 
calculated as follows: 

( )

[ ]
[ ]
[ ]
[ ]

0.80,1.0 если 0 1.8
0.35,0.5 если 1.81 2.77
0.15,0.2 если 2.8 2.99
0, если 3

z
z

p z
z

zε

 ≤ ≤
 ≤ ≤=  ≤ ≤
 ≤ < ∞

,                          (2) 

when 3z ≥ , the probability of bankruptcy, p ε=  is quite small ( 0ε →  when z →∞ ) and is considered to 
be approximately equal to zero. Hereinafter we will take 0.05ε =  for the problem. Figure 1 shows the graph  
of the function ( )p z  of Altman model (1). We define two functions ( ) ( )1 min

z
f z p z

∀
= , ( ) ( )2 max

z
f z p z

∀
= .  

After this, we will solve the problem mean integrated squared approximation sets of Altman by a polynomial of 
sufficiently high n-th degree, as follows [7]: 

( ) ( )
0

n
i

n i
i

L z a z
=

= ∑                                    (3) 

On the interval [ ]4 40, , 3.5z z z∈ = . We select the degree of the polynomial discussed in [7]. The coefficients 
were determined from the minimization problem in n-dimensional space 1nR +  polynomial coefficients, 

( ){ }1
arg min

na R
a F a

+∈
=                                  (4) 

where, ( ) ( ) ( )( )
42 2

1 0

d
z

т i
i

F a L z f z z
=

= −∑ ∫ , { }T
0 1 2, , , , na a a a a=  , with additional natural restrictions [7]. 

( ) ( ) ( )
4

40

d d
0, 0, 0.

d d
n n

n z z
z z z

L z L z
L z

z z=
= =

= = =                      (5) 

3. Newton’s Method for Finding the Extrema of Functionals 
In the segment on which approximation is made, the right extreme point is selected 4 3.5z =  [7] 

The main objective is to transform the minimization problem ( )0F a  with the relevant restrictions (5) - (7), 
the task of finding the minimum without limitation function 

( ) ( ) ( )0 ,F a F a g a= +                                  (6) 

where 
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(a) Graph of polynomial L3(z) (b) Graph of polynomial L5(z) 

(c) Graph of polynomial L6(z) (d) Graph of polynomial L7(z) 
 

Figure 1. The graph of a function of fuzzy variable p(z) Altman model. The graphs of the functions ( ) ( )1 min
z

f z p z
∀

= , 

( ) ( )2 max
z

f z p z
∀

=  integrated by the method of mean-square approximation polynomials ( )nL z  with different degrees of 

the polynomial n: (a) 3; (b) 5; (c) 6; (d) 7. 
 

( ) ( ) ( ) ( )( )
4

4

22
2

1 2 3
0

d , d ,
, .

d d
n n

n z z
z z z

L a z L a z
g a k k k L a z

z z =
= =

  
 = + +       

                (7) 

Selecting large penalty coefficients 1 1000k = , 2 1000k = , 3 1000.k =  
Instead, the constrained minimization problem of (4) - (5) solves the problem of unconstrained minimization 

of the objective function (8). 

( )
1

min
na R

F a
+∈

→                                      (8) 

In order to find the minimum point of ( )F a  we use a special Newton’s algorithm which contains the itera-
tive parameter [8]. To ensure the convergence of Newton’s method we propose an iteration step parameter se-
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lection method and thereby solve the challenge of computational mathematics relevant for modification of the 
classical Newton’s method for calculating the localized extremum convex functions with a view to expanding 
the area of convergence of iteration [9]. To simplify the proofs of theorems the function assumes an increased 
supply of smoothness. As a result of the proposed modification, the iterative process based on the method of 
continuation, should lead to the localization of the desired solution in which the sufficient conditions for the 
convergence of the classical procedure is satisfied [10]. 

We assume that the function is strongly convex 1: nF G R R+⊂ →  on a convex closed set 1nG R +⊂  
normed linear space, which ensures the uniqueness of the local minimum *a G∈  [11]. We assume sufficient 
smoothness of the strongly convex function ( )F a  in problem (8). 
а) ( ) ( )3F a C R∈  

б) ( ) 1
xxF a M− ≤  

We assume that the mappings 

( ): , : , , :n n n n n n n n
xx xxxF R R F R L R R B R R R→ → × →  

are defined by the formulas 
( ) n

xxF a h R∈ , ( ) ( ),n n
xxxF h L R Rξ ∈ , nh R∈ , { }1, , nξ ξ ξ=  , n

n Rξ ∈ , ( ) ( )( ), n
xxxF h h B h h Rξ ξ= ∈   , 

( ) ( )
, 1,

i
xx

i j n

f
F a a

a =

∂ =  
∂ 

, ( ) ( ) ( ) ( ){ }1 1 2 2, , ,xxx n nF W W Wξ ξ ξ ξ=  , ( ) ( )
2

, 1,

i
k k k

k j i j n

f
W

a a
ξ ξ

=

 ∂ =  
∂ ∂  

,  

( ) ( )
3

, 1,

i
k k k

k i j i j n

f
W

a a a
ξ ξ

=

 ∂ =  
∂ ∂ ∂  

, 

where ( ) ( )xf a F a= , , ,x xx xxxF F F , ,x xxf f —first and second derivative, ( ),n nL R R —normed linear space of 
matrices, B—bilinear operator [10]. m is taken as the norm [11]: 

( ) ( ) ( )max maxx xi ii i
F a F a f a= = , 

( ) ( ) ( )
1 1

max max
n n

xi i
xx i ij jj j

F f
F a a a

a a= =

∂ ∂
= =

∂ ∂∑ ∑ , 

( ) ( )
1

max max
n

xi
xxx k i j k j

F
F a a

a a=

 ∂ =  
∂ ∂  

∑ . 

In which the formulated conditions a) - б) exist in an area *U , containing *a , from any point for which 
0 *a a U G= ∈ ⊂  classical ( )1β =  the Newton’s method for problem (8) converges to the root *a , however, 

the diameter of the area is small [8] [11]. 
Using the notion and notations, we can prove the theorem as a corollary of theorem [8] on the convergence of 

the modified (9) - (11) of Newton’s method, given by the following formulas 

( ) ( ) 0, ,xx j j x jF a a F a a G∆ = − ∈                                   (9) 

1j j j ja a aβ+ = + ∆                                                (10) 

( ) ( )
121

1,2
min 1, 2 .j xx j x jnN F a F aβ

−
−   =   

   
                         (11)

 A theorem on the convergence of Newton’s method. If the conditions а) - b) are met the process (9) - (11) 
for the problem (8) from any point in a finite number 0a G∈  of steps j = 1 leads to the initial approximation 

0la a S G∗= ∈ ⊂ , from which the process (9), (10) coincides with the classical Newton’s method and converges 
to the root *a . 
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Proof. If we follow the method of proof of the theorem [8], under the formulated assumptions a) - b), then the 
proof of the theorem reduces to reference to the fact that the task of finding an extremum with the given as-
sumptions is equivalent to the problem of finding the roots of nonlinear equations 

( ) 0f a =  

with given assumptions а) - d) [8]. 
а) ( ) ( )2f a C G∈ , 
b) ( )xxf a N≤ , 

c) ( )( )det 0xf a ≠ , г) ( ) 1
xf a M− ≤  

where ( ) ( )xf a F a= . 
a) If ( ) ( )3F a C G∈ , to ( ) ( )2f a C G∈  
b) From the functions belonging to the class of three times continuously-differentiable functions ( ) ( )3F a C G∈  

and the well-known Weierstrass theorem for continuous functions on closed bounded sets [13] [14] we have the 
estimate ( )xxxF a N≤ . 

c) If ( )F a  is strongly convex on G, then we evaluate ( )( )det 0xxF a ≠  (and ( )( )det 0xf a ≠ ) on G [15]. 

d) Since we are assuming ( ) 1
xxF a M− ≤  then, ( ) 1

xf a M− ≤ . 

All the four conditions for the function ( ) ( )xf a F a=  been satisfied, it follows that the modified Newton’s 
process (9) - (11) leads to the region *U  containing *a , from any point for which 0 *a a U G= ∈ ⊂  classical 
( )1β =  the Newton’s method will converge to a minimum function ( )F a . 

Thus the theorem is proved for sufficient conditions for the convergence of the modified method of (9), (11). 
Practical application involves the stopping of the algorithm. The search process is stopped when approx-

imately the necessary conditions for an extremum are fulfilled. 

xF ε<  

A corollary is formulated for strongly convex functions whose det 0xxF ≠ , in practice, however, this value 
can be very low, especially when used in the reduction of problems with constraints to unconstrained optimiza-
tion after applying the method of penalty functions. If any functional that does not belong to the class of strongly 
convex functions, then the condition det 0xxF ≠  cannot be guaranteed over the entire region G. Therefore, it is 
feasible to resort to regularization algorithm using small parameter 0α > . 

( ) ( )xx j j x jE F a a F aα + ∆ = −  , 

1j j j ja a aβ+ = + ∆  

where E is a unit matrix [12]. 
It follows that the solution of linear equation always exists. Moreover it is possible select the parameters (α  

and β ) and to optimize the process of searching for the extremum, or to ensure that the relaxation properties of 
the iterative process 

( ) ( )1j jF a F a+ <  

It should be noted that the formulas are difficult to use in practice, since the constants N and M usually in 
problems of practical content, are not always known. However such theorems allow you to specify on the avail-
ability principle to resolve one of the most significant shortcomings of the Newton’s method, which is to choose a 
good initial approximation and offer some ways to do this [8] [12] [13]. 

Coefficients “a” obtained for a third degree polynomial: 

{ } { }T
0 1 2 3, , , 1.095;0; 0.267;0.051a a a a a= = −  

Figure 1(а); polynomial of fifth degree: 

{ } { }T 3 3
0 1 2 3 4 5, , , , , 0.925;0;8.448 10 ; 0.038; 0.011;4.309 10a a a a a a a − −= = × − − ×  
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Figure 1(b); polynomial of sixth degree: 

{ } { }T 3 3 4 4
0 1 2 3 4 5 6, , , , , , 0.937;0;2.167 10 ; 0.052;1.798 10 ;8.006 10 ;3.132 10a a a a a a a a − − − −= = × − × × ×  

Figure 1(c); polynomial of seventh degree: 

{ }
{ }

T
0 1 2 3 4 5 6 7

3 3 4 4 4

, , , , , , ,

1;0.933;0;2.0089 10 ; 0.049;1.62 10 ;6.231 10 ;2.396 10 ;2.35 10 ,

a a a a a a a a a
− − − − −

=

= × − × × × ×
 

Figure 1(d). 
From Figure 1 we see that, the polynomials for n = 6 and n = 7 intersect all four areas. In the case of small or 

large n, there are some differences: n = 3 in the form of lack of smoothness, the curve is more similar to direct or 
monitor features functions Altman; n = 5, there are high and some different z has the same value p; n = 9 is too 
narrow zone, z change outside, of which the function values Altman’s equal to 0 or 1. 

It is noticeable that in Figure 2, the values of the optimization functions are decreasing convergent sequence 
on the degree of the polynomial, so as soon as the convergence rate becomes small, further increasing the degree 
of the polynomial becomes meaningless. The degree of the polynomial at which the rate of convergence de-
creases is many times clearly visible from the figure of convergence and the value equal 6. 

4. The Fuzzy Sets Generated by the Altman Five-Factor Model 
In model (1), parameters ki calculated by the parameter z cannot be measured accurately. Therefore, model (1) 
generates fuzzy sets, which belong to the values of the quantity p, and the values of membership functions of 
these sets coincide with the probability of bankruptcy. Altman’s model allows a first approximation, the com-
pany divided into four classes, with a probability of bankruptcy iA , 1, , 4i =  . [ ]1 0.8,1.0A = —“High proba-
bility of bankruptcy”, [ ]2 0.35,0.50A = —“average probability of bankruptcy”, [ ]3 0.15,0.20A = —“the proba-
bility of bankruptcy is not great”, [ ]4 0,A ε= —the company “small probability of bankruptcy.” In the example 
considered [ ]0,1p∈ . 

For fuzzy sets iX  given by the membership function ( ) [ ]: 0,1
iX p U Μ Rµ µ→ ∈ = ∈


, (discussed below in 
Section 4). If the value of the probability p, found Altman model (1) using L6(z) falls into one of the sets, the 
value of the membership function is equal 1µ = . This situation is shown in Figure 3. In this case, the probabil-
ity of bankruptcy is attributed to the value obtained ( )6 ip L z A= ∈ . If, ( )6 ip L z A= ∉ , then 0µ = . 

 

 
3 

0.1  
4 5 6 7 n 

0.2  

0.25  

0.15  

nF  

 
Figure 2. Graph of the value of the functional on the degree of the polynomial 
with the specified restrictions (5). 
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μ 

 
Figure 3. The values of the membership function at ip X∈ . 

 
The sets iA  are clearly specified by their distribution functions µ . 
The construction of functions L6(z) is the ability to get the p value in the areas that lie outside of sets Altman, 

however, in such cases there is a need to get the value attributed to one of the nearby sets Altman, for which 
purpose it is proposed to use the theory of fuzzy sets, building the simplest piecewise linear continuous mem-
bership function [14]. When the probability value p, was found in Altman model (1) using L6(z) it does not fall 
within one of the sets ( )6 ip L z A= ∉ , then the value of the membership function will be located using the fuzzy 
sets technique presented below (in Section 3). Currently fuzzy sets are actively used in practice in the analysis of 
risk of bankruptcy of enterprises [15]. 

4.1. Membership Function 
Membership function ( )A uµ  is a function, domain of definition which is the carrier U, ( )u U∈ , and the range 
of values Aµ  is the unit interval [ ]0;1  [15] [16]. The higher the value ( )A uµ , the higher estimated degree of 
belonging of an element of the carrier U of the fuzzy set A. In our case we choose as a carrier { },0 1U X X= ≤ ≤ , 
on which a plurality of Ai where u p= —the probability of bankruptcy, corresponding to the value z , found 
by the Equation (1). On the media define the membership functions for the values of 1p — ( )

1X pµ


, 2p —
( )

2X pµ


, 3p — ( )
3X pµ


, 2p — ( )
4X pµ


,and the first of them corresponds to a fuzzy subset 1X , the second—
2X , third— 3X , and fourth— 4X , where 1X —“the possibility of bankruptcy is high,” 2X —“average bank-

ruptcy”, 3X —“Little possibility of bankruptcy”, 4X —“the possibility of bankruptcy is small”. 
Calculating the value z model Altman (1) and calculating p according to the formula L6(z) is not always poss-

ible to carry the calculated value of p in one of the sets Ai, that is one of the cases [ ]1 0.8,1.0p A∈ = ,
[ ]2 0.35,0.50p A∈ = , [ ]3 0.15,0.20p A∈ = , [ ]4 0,0.05p A∈ = . For example, if 0.7p∈ , then p can be attri-

buted to set A1 and a set A2. 
In this context, we introduce fuzzy sets iX  which defined preference function 
( ) [ ]: 0,1

iX u U Μ Rµ µ→ ∈ = ∈


, allowing to determine the measure of fuzzy sets iX , in this case, the measure 
of fuzziness of the calculated probabilities ( )6 ip L z X= ∈  . 

The membership functions of the subsets, 1X , 2X , 3X , 4X  are of the form: 

1

10 5 , 0.5 0.8,
3

1, 0.8 1;
X

p если p

если p
µ

− ≤ <= 
 ≤ ≤



                               (6) 

2

100 20 , 0.2 0.35,
15

1, 0.35 0.5,
8 10 , 0.5 0.8;

3

X

p если p

если p
p если p

µ

− ≤ <


= ≤ <
 − ≤ ≤




                            (7) 
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3

100 5 , 0.05 0.15,
10

1, 0,15 0,2,
35 100 , 0.2 0.35,

15

X

p если p

если p
p если p

µ

− ≤ ≤


= < ≤
 − < ≤




                            (8)

 

4

1, 0 0.05,
15 100 , 0.05 0.15.

10
X

если p
p если p

µ
≤ <

= −
≤ ≤



                            (9) 

Then, we can write many of such sets using the traditional set theory notation (using the integral sign) [15] 
[16]: 

( )
11

0.5 1 0.5 0.8 0.8 1

10 5 1 ;
3X

p p p

pX p p p pµ
≤ ≤ ≤ < ≤ ≤

− = = + 
 ∫ ∫ ∫

                                 (10) 

( )
22

0.2 0.35 0.35 0.5 0.5 0.80.2 0.8

100 20 8 101 ;
15 3X

p p pp

p pX p p p p pµ
≤ < ≤ ≤ < ≤≤ ≤

− −   = = + +   
   ∫ ∫ ∫ ∫

         (11) 

( )
33

0.05 0.35 0.05 0.15 0.15 0.2 0.2 0.35

100 5 35 1001 ;
10 15X

p p p p

p pX p p p p pµ
≤ ≤ ≤ ≤ < ≤ < ≤

− −   = = + +   
   ∫ ∫ ∫ ∫

      (12) 

( )
44

0 0.15 0 0.05 0.05 0.15

15 1001 .
10X

p p p

pX p p p pµ
≤ ≤ ≤ < ≤ <

− = = +  
 ∫ ∫ ∫

                            (13) 

See Figure 4 below. If all graphs a) - г) represent on a single coordinate system, the function of the abscissa 
of the intersection points ( )

iX pµ


 и ( )
1iX pµ
+


, will equal to 1 0.1p = , 2 0.275p = , 3 0.65p =  and they meet 
the definition (14) next sets clear 0iX  (see Section 4.2). 
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0.4 0.6 0.8 1 p 

μ(p) 

0.5  

1  

(a) 

0  
0.4 0.6 0.8 1 p 

μ(p) 
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1  

0.2 0 

0  

μ(p) 

0.5  
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0  

μ(p) 
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1  

0 0.1 0.2 0.3 0.4 p 0.2 0.1 0 0.05 0.15 p 
(B) (Γ) 

(б) 

1X  
2X  

3X  4X  

 

Figure 4. Plots the membership functions of fuzzy subsets (а) 1X , (б) 2X , (в) 3X , (г) 

4X , corresponding to Altman’s sets (Figure 3). 
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4.2. Measures of Fuzzy Sets 
After calculating z, p(z), choose iX  and calculate the measure of accessories ( )

iX pµ


 that will appreciate the 
sets iX  from the point of view of fuzziness, i.e. we introduce a complete ordering of the sets according to their 
degree of fuzziness. To determine the degree of fuzziness of sets used its measure of fuzziness d , which is 
confined to measuring the differences between the Measure of fuzzy sets X  and clear set 0X  [15] [16]. The 
measure of fuzziness of a set X  is defined as the distance ( )0,d X X  from this set to the set X  closest to 
the clearly given set 0X : ( ) ( )00, , .XXd X X ρ µ µ=



  A clear subset 0X , fuzzy nearest X  to the membership 
function ( ) [ ]( )0,1iX u M Rµ µ ∈ ⊂



, called the subset 0X U∈ , the characteristic feature of which is as fol-
lows: 

0

1, 0.5,
0, 0.5,
1 0, 0.5.

X

X X

X

если
если

или если

µ
µ µ

µ

 >


= <
 =







                            (14) 

Using the obtained clear sets 0iX : 

{ }10 : 0.65 1.0X p p= < ≤ ; { }20 : 0.275 0.65X p p= < ≤ ; 

{ }30 : 0.1 0.275X p p= < ≤ , { }40 : 0.0 0.1X p p= < ≤  

is constructed, the function of decision making ( )I p . 
Precise subsets 10X , 20X , 30X , 40X , coming respectively to specify fuzzy, 1X , 2X , 3X  and 4X , will 

look like: 

( )
110

0.5 1 0.5 0.8 0.8 1

0 1 ;X
p p p

X p p p pµ
≤ ≤ ≤ < ≤ ≤

= = +∫ ∫ ∫

                             (15) 

( )
2

2 2 3 3

20
0.2 0.80.2 0.8

0 1 0 ;X
p p p p p p pp

X p p p p pµ
≤ < ≤ ≤ < ≤≤ ≤

= = + +∫ ∫ ∫ ∫

                (16) 

( )
3

1 1 2 2

30
0.05 0.35 0.05 0.35

0 1 0 ;X
p p p p p p p p

X p p p p pµ
≤ ≤ ≤ ≤ < ≤ < ≤

= = + +∫ ∫ ∫ ∫

              (17) 

( )
4

1

40
0 0.15 0 0.05 0.05

1 0 .X
p p p p

X p p p pµ
≤ ≤ ≤ < ≤ <

= = +∫ ∫ ∫                            (18) 

Precise sets 0iX  allow you to sort iX  by the degree of fuzziness to receive additional criterion of confi-
dence to get on the financial viability of the enterprise. 

In the space of Q[0, 1] is piecewise continuous functions having a finite number of discontinuities, we can 
determine the distance between the sets X  and 0X , as the RMS distance between the membership functions 
[15]-[17]. This article focuses on the class of piecewise continuous linear membership functions of fuzzy sets, 
i.e, much simpler class contained in Q[0, 1], and in the case of clear sets, membership functions available at no 
more than two finite discontinuities at the ends of the set. Therefore, we can determine the distance between the 
sets of the formula (19) 

( ) ( ) ( )0 0

1 2

0
0

, , dX XX Xd X X xρ µ µ µ µ= = −∫ 

 . 

Let us find the measures of fuzzy subsets defined above 1X , 2X , 3X , 4X , computing fuzziness measures of 
the Euclidean metric: 

( ) ( ) ( )0 101 1

1 2

1 10
0

, , d 0.158;E
X XX Xd X X xρ µ µ µ µ= = − ≈∫ 

  

( ) ( ) ( )0 202 2

1 2

2 20
0

, , d 0.194;E
X XX Xd X X xρ µ µ µ µ= = − ≈∫ 

  
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( ) ( ) ( )0 303

1 2

3 30
0

, , d 0.144;E
X X XXd X X xρ µ µ µ µ= = − ≈∫ 

  

( ) ( ) ( )4 40 404

1 2

4 40
0

, , d 0.091.E
X X XXd X X xρ µ µ µ µ= = − ≈∫ 

  

From these calculations, it follows that the subset 2X  is more fuzzy compared to the subsets 1X , 3X  and  

4X . Quite similarly: 1X —more unclear compared to 3X  and 4X ; a lot more unclear compared to 4X . 
Let X Y  means that X, no more clearly defined than Y . Then 1X , 2X , 3X  and 4X , it is possible on the 

basis of vagueness, rated as following: 2 1 3 4X X X X   

   . From the right set in a row 2 1 3 4X X X X   

    
the more reliable judgment about the probability of bankruptcy, referring to it. Therefore, from the totality of 
{ }1 2 3 4, , ,X X X X     the most clearly defined 2X  is “the possibility of bankruptcy average”, and the most clearly 
defined 4X —“the possibility of bankruptcy is small. This means that the credibility judgment about the possible 
bankruptcy of the enterprise increases from left to right in a row 2 1 3 4X X X X   

   . 

5. Conclusions 
As described above, an Altman’s model is complemented by a mathematical model procedure of continuous 
best mean-square approximation of Altman sets of polynomial degree, obtained by the method of mean inte-
grated squared approximation, and also the model introduces a procedure for calculating values of membership 
functions of fuzzy sets that allows us to specify which of the subsets is clearer or not clearly specified. Selected 
optimal degree of the polynomial provides on the one hand a sufficient minimum of the objective function and 
on the other hand, the monotonicity of the polynomial. A priori selection of optimal parameters of Newton’s op-
timization algorithm yields: parameter regularization and iterative step setting. We proved a corollary of the 
theorem on the convergence of Newton’s method, which was a generalization of the approximate numerical 
Newton method for solving systems of nonlinear equations in normed linear spaces [12] to search for the opti-
mum class of strongly convex functions by a special choice of the iteration parameters in each iteration step. 

Our proposed approach is conducive to the solution of important practical problems, and on the other hand a 
current scientific problem—the creation of an adequate system of financial and economic condition of the en-
terprise. Proposed model is characterized by informed decision-making in assessing the creditworthiness of 
businesses (enterprises) due to the use of the mathematical apparatus of the theory of fuzzy sets which allows 
one to automate the process of granting a loan, reducing operating costs and can give the advantages of lending 
organizations in the competitive struggle. 

Using the proposed model, the lender will be able to take a substantiated decision on the assessment of the 
creditworthiness of the company. The developed valuation of fuzzy sets can be applied to other models for the 
assessment of the credit worthiness of the company with necessary modifications: Davidovy, Zaisefa, Kadicova 
models. 
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