
Modern Economy, 2015, 6, 563-577 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/me 
http://dx.doi.org/10.4236/me.2015.65055  

How to cite this paper: Karam, E. and Planchet, F. (2015) Combining Internal Data with Scenario Analysis. Modern Economy, 
6, 563-577. http://dx.doi.org/10.4236/me.2015.65055 

 
 

Combining Internal Data with Scenario 
Analysis 
Elias Karam, Frédéric Planchet  
Laboratoire SAF EA2429, ISFA, Université Claude Bernard Lyon 1, Université Lyon, Lyon, France  
Email: ek.eliaskaram@gmail.com, frederic.planchet@univ-lyon1.fr  
 
Received 8 April 2015; accepted 18 May 2015; published 22 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A Bayesian inference approach offers a methodical concept that combines internal data with ex-
perts’ opinions. Joining these two elements with precision is certainly one of the challenges in op-
erational risk. In this paper, we are interested in applying a Bayesian inference technique in a ro-
bust manner to be able to estimate a capital requirement that best approaches the reality. In addi-
tion, we illustrate the importance of a consistent scenario analysis in showing that the expert opi-
nion coherence leads to a robust estimation of risk. 
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1. Introduction 
Under the new regulations of Basel II and Solvency II, to be able to estimate their aggregate operational risk 
capital charge, many financial institutions have adopted a Loss Distribution Approach (LDA), consisting of a 
frequency and a severity distribution, based on its own internal losses. Yet, basing our models on historical 
losses only might not be the perfect robust approach since no future attention is being taken into consideration 
which can generate a biased capital charge, defined as the 0.01% quantile of the loss distribution, facing reality. 
On the other hand, adding scenario analysis given by the experts provide to some extent a future vision. 

The main idea in this article is the following: A Bayesian inference approach offers a methodical concept that 
combines internal data with scenario analysis. We are searching first to integrate the information generated by 
the experts with our internal database; by working with conjugate family distributions, we determine a prior 
estimate. This estimate is then modified by integrating internal observations and experts’ opinion leading to a 
posterior estimate; risk measures are then calculated from this posterior knowledge. See [1] for more on the 
subject. 
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On the second half, we use Jeffreys non-informative prior and apply Monte Carlo Markov Chain with Metro- 
polis Hastings algorithm, thus removing the conjugate family restrictions and developing, as the article shows, a 
generalized application to set up a capital evaluation. For a good introduction to non-informative prior distribu- 
tions and MCMC see [2]. 

Combining these different information sources for model estimation is certainly one of the main challenges in 
operational risk. 

Modelling frequency and severity losses for estimating annual loss distribution, is known actuarial technique 
used to model, as well, solvency requirements in the insurance industry, see for e.g. [3] [4]. More literature on 
Operational Risk and Bayesian Inference techniques could be found in [5]-[8]. 

2. Combining Two Data Sources: The Conjugate Prior  
In our study, our data related to retail banking business line and external fraud event type is of size 279, collect- 
ed in $over 4 years. The data fits the Poission(5.8) as a frequency distribution, and ( )6.7, 1.67µ σ= =  as the 
severity distribution. 

Applying Monte Carlo simulation [9], with 5.8IDλ = , 6.7IDµ = , and 1.67IDσ = , we obtained a Value-at- 
Risk of 1162215.00IDVaR =  at 99.9%, using internal losses only. 

On the other hand, working with the scenario analysis, our experts gave us their assumptions for the 
frequency parameter λ . As for the severity, our experts represent a histogram reflecting the probability that a 
loss is in an interval of losses (see Table 1 below). 

If we consider our severity distribution being Lognormal with paramters µ  and 2σ , the objective is to find 
the parameters ( ),exp expµ σ  that adjust our histogram in a way to approach as much as possible the theoretical 
lognormal distribution. For this we can use chi-squared statistic that allows us to find ( ),µ σ  that minimize the 
chi-squared distance:  

( )2

1
,

n
i i

i i

E O
T

E=

−
= ∑  

where iE  and iO  are respectively the empirical and theoretical probability. 
Our experts provided 2λ = , and by applying chi-squared, we obtained our lognormal parameters: 

( )7.8, 1.99µ σ= =  with the ( )99.9% 6592086.00VaR = . 
The high spread between the two VaR values, can cause a problem in allocating a non-biased capital require- 

ment. In the next sections, we will apply the Bayesian inference techniques, thus joining our internal observa- 
tions with the experts opinion. 

2.1. Modelling Frequency Distribution  
We are going to work with the Poisson and Lognormal distributions since they are the most used distributions in 
Operational Risk [10]. 

Consider the annual number of events N for a risk in a bank modelled as a random variable from the Poisson 
distribution ( )λ , where Λ  is considered as a random variable with the prior distribution ( ),Gamma a b . So  

 
Table 1. Scenario analysis.                                                                                 

Losses Interval in $ Expert Opinion 

[ [0,5000  65% 

[ [5000,20000  19% 

[ [20000,50000  10% 

[ [50000,100000  3.5% 

[ [100000,250000  1.5% 

[ [250000,400000  0.7% 

400000≥  0.3% 
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we have: ( ) e
!

n

N n
n

λ λ−= = , and λ  has a prior density:  

( ) ( )
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e ,   0, 0, 0
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bb a b
a b
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−
 
 
 Π Λ = = > > >
Γ

 

As for the likelihood function, given the assumption that 1 2, , , Tn n n  are independent, for N n= :  

( )
1
e ,

!

inT

i i

h n
n

λ λλ −

=

=∏  

where n is the number of historical losses and in  is the number of losses in month i. 

Thus, the posterior density would be: ( ) ( ) ( )
( )

h n
N n

h n
λ λ

λ
Π

Π = = , but since ( )h n  plays the role of a nor- 

malizing constant, ( )N nλΠ =  could be rewritten as: 

( ) ( ) ( ) ( )
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Which is ( ),T TGamma a b , i.e. the same as the prior distribution with 1
T

T iia n a
=

= +∑  and 
( )1T

bb
Tb

=
+

 

So we have:  

( ) ( )( ) ( ) ( )1 1 , with
1T T

nN n a b N ab N
n

b

λ ω ω ω ω ω= = = + − = + − Λ =
+

   

To apply this, and since the only unknown parameter is λ  that is estimated by our experts with, ( ) 2λ = . 
The experts may estimate the expected number of events, but cannot be certain of the estimate. Our experts 

specify [ ]λ  and an uncertainty that the “true” λ  for next month is within the interval [ ] [ ]0 0, 0.5,8a b =  
with a probability 0.7p =  that ( )0 0a b pλ≤ ≤ = , then we obtain the below equations:  

[ ] 2a bλ = × =                                            (1) 

( ) ( ) ( ) ( ) ( ) ( )0

0
0 0 , 0 , 0, d 0.7

b G G
a b a ba

a b a b F b F aλ π λ λ≤ ≤ = = − =∫                       (2) 

where ( ) ( ), .G
a bF  is the ( ),Gamma a b  cumulative distribution function. 

Solving the above equations would give us the prior distribution parameters ( )0.79, 2.52Gamma a bλ = = , 
and by using the formulas stated, we obtain: 279.8Ta =  and 0.02Tb =  as our posterior parameters distri- 
bution. At the end, we calculate a ( )99.9% 1117821.00VaR =  using Monte Carlo simulation: 

• Using the estimated Posterior ( ),T TGamma a b  distribution, generate a value for λ ;  
• Generate n number of monthly loss regarding the frequency of loss distribution ( )Poisson λ   
• Generate n losses ( ), 1, ,iX i n=   regarding the loss severity distribution ( )2,µ σ ;  

• Repeat steps b and c for 12N = . Summing all the generated iX  to obtain S which is the annual loss;  
• Repeat steps a to d many times (in our case 105) to obtain the annual aggregate loss distribution.  
• The VaR is calculated taking the 99.9th percentile of the aggregate loss distribution.  
We notice that the Value-at-Risk is close to the VaR generated by the internal losses alone, since the only 

thing took as unknown was λ , both parameters µ  and σ  are equal to ( ),ID IDµ σ . 

2.2. Modelling Severity Distribution: ( ), µ σ  with Unknown µ   
Assume that the loss severity for a risk is modelled as a random variable from a lognormal distribution 
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( ),µ σ  and we consider ( )2
0 0,µ µ σ→   as a prior distribution. 

So we have,  

( ) ( )2
0

2
00

1 exp .
22π

µ µ
µ

σσ

 − Π = − 
  

 

Taking lnY X= , we calculate the posterior distribution as previously by:  

( ) ( ) ( )
( )

( )2 2
0
2 20

( )

2 2
2

0 0
10

e e, ,
2π2π

iy

n

i
h Y

µ µ µ
σ σ

µ µ σ µ µ σ
σσ

− −− −

=

Π ∝ Π ∝ ∏  

since we are using a conjugate prior distribution, we know that the posterior distribution will follow a Normal 
distribution with parameters ( )2

1 1, ,µ σ  where:  

( )
( )1

2
122

0 0, e
µ µ

σµ µ σ
−

−

Π ∝  

By identification we obtain: 

2 2 2
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Assuming that the loss severity for a risk is modelled as a random variable from a lognormal distribution 

( )
21

2 22
0 0

1, , , e ,
2

X X
µ σ

µ σ µ σ µ σ σ
+  → Ω =   = → +    

   and we consider ( )2
0 0,µ µ σ→   as a 

prior distribution. 
Since the only thing unknown is µ , we already have 1.67σ =  and 5.8λ = , and the experts gave us:  

[ ]
2 2

0 0
1 1
2 2e 15825 $

µ σ σ+ +
Ω = =                                 (3) 

( )
2 2

0 0

0 0

1 1ln 250000 ln1
2 21 250000 99%
σ µ σ µ

σ σ

   − − − −   
≤ Ω ≤ = Φ −Φ =   

      
   

              (4) 

where Φ  is the cumulative distribution function of the standard normal distribution. 
Solving these two equations, we find that the prior distribution of µ  is: ( )2

0 08.15, 0.25 .µ µ σ→ = =  

Hence using the formulas stated above where, 0 0 1
1

0

6.72
1

n
ii y

n
µ ω

µ
ω

=
+

= =
+
∑ , 

2
2 0
1

0

0.0096
1 n
σ

σ
ω

= =
+

, and 

2
0

0 2 0.0898
σ

ω
σ

= = , with 279n =  is the total number of historical losses. 

We find out that the posterior distribution: ( )1 16.72, 0.1µ µ σ→ = = . 
At the end, using the posterior µ  distribution and Monte Carlo method, we calculate the 99.9% Value-at- 

Risk: ( )99.9% 1188079.00VaR = . 
The same analysis goes here as well, since the only unknown parameter is µ , ( ) ( ), ,ID IDλ σ λ σ= , the VaR 

calculated will be closer to our Internal Data Value-at-Risk.  
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2.3. Modelling Frequency and Severity Distributions  
In the two previous subsections, we illustrated the case of modelling frequency and severity distributions with 
unknown λ  that follows a ( ),Gamma a b  distribution and µ  that follows a ( )2

0 0,µ σ  respectively. 
Joining these two distributions is relatively simple since we have the hypothesis of independence between 

frequency and severity, which allows us to estimate independently the two posterior distributions and estimate 
the parameters. 

As so, we have already demonstrated the fact that our posterior density ( )N nλΠ =  follows the  

( ),T TGamma a b  distribution, with 1
T

T iia n a
=

= +∑  and 
( )1T

bb
nb

=
+

 and, ( ) ( )2 2
0 0 1 1, ,µ µ σ µ σΠ →  ,  

with 
2

0 0 21 0
1 1

0 0

, 
1 1

n
ii y

n n
µ ω σ

µ σ
ω ω

=
+

= =
+ +
∑ , with 

2
0

0 2

σ
ω

σ
= . 

Since we have the hypothesis of independence between frequency and severity, which allows us to estimate 
independently the two posterior distributions, which have been already calculated for the parameter λ  we took 
the gamma distribution and for the µ  parameter, the posterior distribution was normal with: 

( )279.8,0.02Gammaλ →  

( )6.72,0.1µ →   

By simulating those two laws using Monte Carlo simulation (cf. Section 2.1), we obtain a Value-at Risk of 
1199000.00 using the estimated posterior Gamma and Normal distributions. 

The result is interesting, since with two unknown parameters λ  and µ , the VaR is still closer to IDVaR . 
This states that the parameter σ  is the key parameter in this application, as we are going to see throughout this 
article. 

The general case where all parameters are unknown will not be treated in this section since it is more complex 
to tackle it with the use of conjugate prior distributions. 

2.4. Sensitivity Analysis 
Working with this method, is generally simple since conjugate prior is involved, yet one of the main questions is 
how to ensure that experts opinion are consistent, relevant, and capture well the situation, which might in a way, 
cause a model error. In this work we did not take into consideration this aspect and the experts opinion were 
treated as correct. To improve our results, we can do a sensitivity test regarding our prior parameters. On the 
other hand, we only have the mean of the number of losses, given by our expert. So it appears difficult to obtain 
the distribution of λ  with this only information. So in a way, we are immensely relying on our prior para- 
meters which in reality don’t give us a banking sense and are not easily comprehensive. 

We are going to test out prior parameters given by the experts and highlight the direct consequence on our 
Capital Required. To start with the first case, where we are working with unknown λ ; our experts gave us a 
value of 0 0.5a =  and 0 8b =  as seen in section 2.1, so taking into consideration a step of 0.035 for an interval 
[ ]0.1,1.5  and 0.1 for [6] [10], respectively, we obtain the following VaR results (check Figure 1). 

As for the cases of unknown µ  and unknown σ , we took an interval for [ ]0 6,10µ ∈  and [ ]0 0.3, 4.1σ ∈  
with a step of 0.1 (see Figure 2). 

The following figures show the stability of our Value-at-Risk calculations regardless of all changes in our 
prior parameters ( )0 0 0 0, , ,a b µ σ . Relying on the choice of our intervals, we notice that the boundaries of our 
VaR are in an acceptable range.  

3. MCMC-Metropolis Hastings Algorithm 
In this section, we will use a noninformative prior and more particularly the Jeffreys prior [11], that attempts to 
represent a near-total absence of prior knowledge that is proportional to the square root of the determinant of the 
Fisher information:  

( ) ( ) ,Iπ ω ω∝  
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Figure 1. Sensitivity for a0 and b0 respectively.                                

 

   
Figure 2. Sensitivity for μ0 and σ0 respectively.                                  

 

where ( ) ( )2

2

ln
.

X
I

ω
ω

ω

 ∂
= −   ∂ 




 

Then we are going to apply an MCMC model to obtain a distribution for the parameters and generate our 
capital required at 99.9%. This will allow us to compare both methods’ results and develop a generalized 
application to set up our capital allocation, since no restrictions is made regarding the distributions. As for the 
parameter σ , it will no longer be fixed as in the previous sections. For more details on the Jeffreys prior and 
MCMC-Metropolis Hastings algorithm check [12].  

3.1. MCMC with Poisson(λ) Distribution 

Assuming that the parameter λ  is the only thing unknown, the Jeffreys prior distribution is: ( ) λπ λ
λ

∝  (see 

Appendix 5.1), thus finding the posterior distribution ( ),SA IDf n nλ  with the use of experts Scenario Analysis 
and Internal Data would be:  

( ) ( )


( ) ( )
Jeffreys prior

Likelihood functions

, , , .SA ID SA IDf n n n nλ π λ λ λ∝


   

So by applying Metropolis Hastings algorithm, (check Appendix 5.2.1 for full support on detailed algorithm), 
with the objective density:  

( )
1 1

1 1

1 e e,
! !

1 e e

1 e e

SA ID

SA ID

n nSA ID

SA k kID

k kn n

SA ID
k k

n n
k k

k k

k k
n n

f n n
k k

λ λ

λ λ

λ λ

λ λλ
λ

λ λ
λ

λ λ
λ

− −

= =

− −

= =

∑ ∑

∝

∝

∝

∏ ∏

∏ ∏  

and with a uniform proposal density: ( ),SA IDU λ λ  , we obtain the parameter λ  distribution see Figure 3. 
We have removed the first 3000 iterations so that the chain is stationary (burn-in iterations effect), [13]. We  
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Figure 3. MCMC for the parameter λ.                                     

 
obtain a 99.9% Value-at-Risk of 1000527.00 

The result is close to the VaR considered with the use of conjugate family.  

3.2. MCMC with ( ), µ σ  Distribution with Unknown µ  
Assuming that the parameters λ  and µ  are the only things unknown, we will treat them independently and 

since the Poisson(λ) case has already been treated, the Jeffreys prior distribution for µ  is: ( ) 1 1π µ
σ

∝ ∝   

(see Appendix 5.1), thus finding the posterior distribution ( ),f x yµ  with the use of experts Scenario Analysis 
and Internal Data would be:  

( ) ( )


( ) ( )
Jeffreys prior

1 2 1 2

Likelihood functions

, , , , , , , , , .
SA IDn SA n IDf x y x x x y y yµ π µ µ σ µ σ∝  



   

So by applying Metropolis Hastings algorithm, (check Appendix 5.2 for full support on detailed algorithm), 
with the objective density:  

( ) ( ) ( )

( ) ( )

2 2

2 22 21 1

2 2

2 2

ln ln1 1, exp exp
2 22 2π

ln ln
exp exp

2 2

n nSA ID
i i

i iSA IDi SA i ID

i i

i iSA ID

x y
f x y

x y

x y

µ µ
µ

σ σπσ σ

µ µ
σ σ

= =

   − −   ∝ − −   
      

   − −   ∝ − −   
      

∏ ∏

∑ ∑

 

and with a uniform proposal density: ( )0,12U , we obtain the parameter µ  distribution see Figure 4. 
We obtain a Value-at-Risk of 1167060.00.  
Comparing this to the same case generated with conjugate prior, we can check the closeness of both values.  
In the next subsection, we will tackle the general case, where all parameters are unknown, this case was not 

treated with conjugate prior distributions since it would be more complicated.  

3.3. MCMC: The General Case 
We are going to assume the general case, where all the parameters are unknown λ , µ  and σ , we will treat 
them independently and since the Poisson(λ) case has already been employed, the Jeffreys prior distribution for  

( ),ω µ σ=  is: ( ) 3

1π ω
σ

∝  (cf. Appendix 5.1), thus finding the posterior distribution ( ),f x yω  with the use 

of experts Scenario Analysis and Internal Data would be:  

( ) ( )


( ) ( )
Jeffreys prior

1 2 1 2

Likelihood functions

, , , , , , , , , .
SA IDn nf x y x x x y y yω π ω µ σ µ σ∝  



   



E. Karam, F. Planchet 
 

 
570 

 
Figure 4. MCMC for the parameter μ.                                    

 
So by applying Metropolis Hastings algorithm, (check Appendix 5.2.3 for full support on detailed algorithm), 

with the objective density:  

( ) ( ) ( )

( ) ( )

2 2

3 2 22 21 1

2 2

3 2 2

ln ln1 1 1, exp exp
2 22π 2π

ln ln1 1 1exp exp
2 2

SA ID
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i ii i

i i
n n

i i

x y
f x y

x y

x y

µ µ
ω

σ σ σσ σ

µ µ
σ σ σσσ

= =

   − −   ∝ − −   
      

   − −   ∝ − −   
      

∏ ∏

∑ ∑
 

and with a uniform proposal density: ( )0,12U  and ( )0,7U  for µ  and σ  respectively, we obtain the 
parameters µ  and σ  distributions, illustrated in Figure 5. 

We have removed as well, the first 3000 iterations so that the chain is stationary (burn-in iteration effect). We 
obtain a Value-at-Risk of 3061151.00. 

The general case clearly generates a good combination between internal data and experts’ opinion with a 
capital requirement of 3,061,151$.  

3.4. Confidence Interval Calculation 
To recapitulate on all the calculations, Table 2 summarizes all Value-at-Risk generated. As for the calculation 
of the confidence interval, since we are working with order statistics, the interval ( ),l ux x  would cover our 
quantile px  with a 95% probability that depends on the lower bound l, upper bound u, number of steps n and 
confidence level p. 

In our calculations, we took 510n = , 99.9%p =  and our integers ( ),l u , were constructed using the normal 
approximation ( )( ), 1np np p−  to the binomial distribution ( ),n p , (since n is large). Then a simple linear 
interpolation has been made to obtain the values of ( ),l ux x , (see [14], pp. 183-186), for more details and 
demonstrations. 

Table 2 clearly shows the helpful use of the Bayesian inference techniques. The results of both methods are 
close and comparable; though conjugate prior is simple but the distributions are restricted to the conjugate 
family, yet with the Jeffreys non-informative prior and MCMC-Metropolis Hastings algorithm, we will have a 
wider options and generate a good combination between internal data and experts’ opinion. 

In addition, we are going to use the Monte Carlo confidence intervals approach [15] in order to compare it 
with the previous approach and ensure the similarities. 

Consider a parameter X with its consistent estimator Y, with cumulative distribution function ( )F y x  
generated by some process which can be simulated. Number of simulations n and y values are independently 
generated and then ordered from largest to smallest. An approximate ( )100 1 2α−  confidence level for X is  
given by ( ),j ky y  where j and k represent respectfully the lower and upper bound of the interval and they are 

set as: ( )1j n α= +  and ( )( )1 1k n α= + − . Usually j and k will not be integer; therefore we can simply round  
it to the nearest integer values or even use linear interpolation.  
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Figure 5. MCMC for the parameters μ and σ.                                                            

 
Table 2. Value at risk and confidence intervals for all cases treated.                                               

Case Confidence interval VaR (99.9%) Length 

Aggregate $1040697.00 $1230492.00 $1162215.00 15.42% 

Scenario analysis $6094853.00 $7171522.00 $6592086.00 15.01% 

Bayesian unknowm λ $1053861.00 $1184129.00 $1117821.00 11.00% 

Bayesian unknown µ $1097195.00 $1268136.00 $1188079.00 13.48% 

Bayesian unknowm λ and µ $1141767.00 $1318781.00 $1199000.00 13.42% 

MCMC λ $944793.10 $1101274.00 $1000527.00 14.21% 

MCMC λ, µ $1098930.00 $1244564.00 $1167060.00 11.70% 

MCMC λ, µ, σ $2839706.00 $3310579.00 $3061151.00 14.22% 

 
We seek to calculate ( ),j ky y , this may be found, using a conventional ( )100 1 2 %α−  confidence level, by 

solving: ( ) 1jF Y X y α= = −  and ( )kF Y X y α= = . 

The actual confidence level has a beta distribution with parameters k j−  and 1n k j− + + , this is 
concluded when percentiles of the distribution ( )F Y X y=  are estimated by simulation. 

Respecting that B has a beta distribution, ( )
1

k jE B
n
−

=
+

 and ( ) ( )( )
( ) ( )2

1

1 2

k j n k j
Var B

n n

− − + +
=

+ +
 

In our case, by using the confidence level of 99.9% and by applying the previous calculations we have obtain- 
ed an approximation 95% interval for actual confidence level with 510n = , 99.9%p = , 50j = , 99951k = ,  

0.05%α = , 2.5%ζ = , ( )Var Bσ =  and by moving 1.96 standard errors in either direction from the 

estimate we obtain our confidence interval: ( ) ( ) [ ]1 1, 99.88%,99.92%p pζ σ ζ σ− − −Φ +Φ =  , which is very  

close to the previous interval calculation in Table 2. 
Furthermore, Figure 6 and Figure 7 illustrate the calculation of our Value-at-Risk for different confidence 

level. It clearly shows the presence of the general case, between both Internal and Scenario Analysis curves. On 
the other hand, the conjugate prior Figure 7, regarding all 3 unknown variables, point out the closeness of the 
curves which add to our previous analysis that σ  is our key parameter. 

We have to note as well, that the concept of Scenario Analysis with the expert opinion should deserve more 
clarification. Roughly speaking, when we refer to experts judgments, we express the idea that banks’ experts and 
experienced managers have some reliable intuitions on the riskiness of their business and that these intuitions 
are not entirely reflected in the bank’s historical, internal data. In our case, experts’ intuitions were directly 
plugged into severity and frequency estimations through building a loss histogram.   
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(a) 

 
(b) 

Figure 6. Different VaR calculation for all MCMC cases, internal data and scenario analysis.                
 

 
Figure 7. Different VaR calculation for all conjugate prior cases.                                      
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3.5. Bayesian Approach Reviewed 
In this part, we are going to replace the experts opinions, by assuming that the experts’ parameters are set using 
the Basel II standardized approach calculation. Hence, the experts opinion is questionable in the meaning of 
when it’s used, we shift into the Markovian process which can cause problems. 

3.6. Standardized Approach Reviewed 
In the Standardized Approach (SA), banks’ activities are divided into 8 business lines [16] [17]: corporate 
finance, trading & sales, retail banking, commercial banking, payment & settlements, agency services, asset 
management, and retail brokerage. Within each business line, there is a specified general indicator that reflects 
the size of the banks’ activities in that area. The capital charge for each business line is calculated by multiply- 
ing gross income by a factor β  assigned to a particular business line (Table 3). 

The total capital charge is calculated as a three year average over all positive gross income (GI) as follows:  
3 8

1 1
max ,0

3

i
j

i j
SA

GI
K

β
= =

 
 
 =

∑ ∑
 

Hence, the application of the Standardized Approach generates a capital requirement of 2760780.SAK =  

Numerical Results for Expert Opinion Treated as SA 
Setting the parameters to give us the same Standardized approach capital requirement and treating them as the 
expert parameters gave us: 6.8λ = , 7.3µ =  and 1.72σ = . 

We note that the Standardized approach from Basel II is the one to rely on when it comes to calculate the VaR 
with it’s confidence interval. It is interesting to compare both results in Table 2 and Table 4 where we notice  

 
Table 3. Business lines and the beta factors.                                                                   

Business line (j) Beta factors ( )jβ  

1j = , corporate finance 18% 

2j = , trading & sales 18% 

3j = , retail banking 12% 

4j = , commercial banking 15% 

5j = , payment & settlement 18% 

6j = , agency services 15% 

7j = , asset management 12% 

8j = , retail brokerage 12% 

 
Table 4. Value at risk and confidence intervals for all cases treated.                                                 

Case Confidence interval VaR (99.9%) Length 
Aggregate $1040697.00 $1230492.00 $1162215.00 15% 

Scenario analysis $2570297.00 $2876469.00 $2759640.00 12% 
Bayesian unknowm λ $1084427.00 $1257414.00 $1172801.00 16% 
Bayesian unknown µ $1045412.00 $1183887.00 $1118045.00 13% 

Bayesian unknowm λ and µ $1114267.00 $1249999.00 $1175326.00 12% 
MCMC λ $1025132.00 $1188600.00 $1083511.00 16% 

MCMC λ, µ $1169519.00 $1347836.00 $1253938.00 15% 
MCMC λ, µ, σ $1678124.00 $1912897.00 $1769198.00 14% 
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that the VaR results in the cases of bayesian unknown λ , unknown µ  and unknown λ , µ  are very close to 
the result in the Aggregate case. As for the MCMC approach where experts opinion are respected, in the case of 
unknown λ , µ  and σ  the results are close to the Scenario Analysis VaR. We conclude that, the expert 
opinion used parameters can be uncertain and cause an issue because it can lead to a disruption in the Markovian 
process. Combining these different data sources, highlights the importance of experts opinion coherence which 
generate an estimation risk that affects our capital required calculation.  

4. Conclusions 
Using the information given by the experts, we were able to determine all the parameters of our prior distri- 
bution, leading to the posterior distributions with the use of internal data, which allowed us to compute our own 
capital requirement. This approach offers a major simplicity in its application through the employment of the 
conjugate distributions. Therefore, allowing us to obtain explicit formulas to calculate our posterior parameters. 
Yet, the appliance of this approach could not be perfected since it's restricted to the conjugate family. 

On the other hand, Jeffreys prior with MCMC-Metropolis Hastings algorithm provided us with wider options 
and generated a satisfactory result regarding all three unknown variables λ , µ  and σ , with the only dif- 
ference of using complex methods. Taking σ  unknown as well, was very essential in reflecting the credibility 
of estimating our capital requirement. 

Yet, treating the experts outputs, the same as Basel’s operational risk Standardized approach, illustrated the 
necessity of calling attention to the judgments given. In our application, judgments were needed to make sensi- 
ble choices but these choices will influence the results. Understanding this influence, should be an important 
aspect of capital calculations, since it created an estimation risk that has highly influenced our capital require- 
ment [18], for the judgment under uncertainty. Moreover, we did not take into consideration external data, 
which might be interesting to elaborate and apply in practice, more on this subject could be found in [19].  
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5. Appendix 
5.1. Jeffreys Prior Distribution 
Jeffreys prior attempts to represent a near-total absence of prior knowledge that is proportional to the square root 
of the determinant of the Fisher information:  

( ) ( ) ,Iπ ω ω∝  

where ( ) ( )2

2

ln
.

X
I

ω
ω

ω

 ∂
= −   ∂ 




 

5.1.1. Jeffreys Prior for Poisson(λ) and Lognormal(µ, σ) Distributions 

Let ( )N λ→  , the poisson density function is: ( ) ( ) e
!

k

f k N k
k

λλλ
−

= = =  with,  

( )2

2 2

ln f k kλ

λ λ

∂
= −

∂
 

and consequently, ( ) .λπ λ
λ

∝  

Let ( )2,X µ σ→  , with ( ) ( )2

22

ln1 exp .
22π

X

x
f x

x

µ
σσ

 − = − 
  

 

Hence, by letting ( ),ω µ σ=  and calculating the corresponding partial derivatives to ( )ln Xf x  we obtain:  

( )
2

4

0
0 1 2

I
σ

ω
σ

− 
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 

 

As a consequence, ( ) 2

1 1π µ
σ

∝ ∝  and ( ) 36

1 1

2
π ω

σσ
= ∝   

5.2. MCMC Metropolis-Hastings Algorithm 
5.2.1. Applying MCMC with Metropolis Hastings Algorithm for λ 

• Initialize 0 2
ID SAλ λ

λ
+

=  

• Update from iλ  to 1iλ +  ( )1, ,i n=   by 

- Generating ( ),SA IDUλ λ λ→  

- Define 
( )
( )

,
min ,1

,
SA ID

i SA ID

f n n
f n n

λ
ζ

λ

 
=  

 
 

  

- Generate ( )0,1Rnd U→   
- If Rnd ζ≤ , 1iλ λ+ = , else 1i iλ λ+ =   
• Remove the first 3000  iterations, so that the chain is stationary (burn-in effect).  

5.2.2. Applying MCMC with Metropolis-Hastings Algorithm for µ 
• Initialize 0 IDµ µ=  
• Update from iµ  to 1iµ +  ( )1, ,i n=   by 
- Generating ( )0,12Uµ →  

- Define 
( )
( )

,
min ,1

,i

f x y
f x y

µ
ζ

µ

 
=  

 
 
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- Generate ( )0,1Rnd U→   
- If Rnd ζ≤ , 1iµ µ+ = , else 1i iµ µ+ =   
• Remove the first 3000 iterations, so that the chain is stationary (burn-in effect).  

5.2.3. Applying MCMC with Metropolis-Hastings Algorithm for ω = (µ,σ) 
• Initialize 0 IDµ µ=  and 0 IDσ σ=  
• Update from iµ  to 1iµ +  and iσ  to 1iσ + , ( )1, ,i n=   by 
- Generating ( )0,12Uµ →  and ( )0,7Uσ →  

- Define 
( )
( )

, ,
min ,1

, ,i i

f x y
f x y

µ σ
ζ

µ σ

 
=  

 
 

  

- Generate ( )0,1Rnd U→   
- If Rnd ζ≤ , 1iµ µ+ =  and 1iσ σ+ =  else 1i iµ µ+ =  and 1i iσ σ+ =   
• Remove the first 3000 iterations from both distributions, so that the chains is stationary (burn-in effect). 
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