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Abstract 
Soil Water Retention Characteristics (SWRC) models have been widely used 
in many applications. Presently, there are many models in the literature and 
many more still being developed so much so that it is confusing which model 
to prefer. The current choice of the appropriate model to use has not been 
well guided by any incisive research on the predictive performance of these 
models. Consequently, SWRC model applications have been largely moved by 
convenience. This study used a global dataset to evaluate 12 commonly used 
SWRC models. The measured data onto which the models were evaluated 
was grouped into different soil depths and different regions of the world. The 
evaluation used correlation, Nash-Sutcliffe efficiency, and residual standard 
error statistics to choose the best overall performing model and models for 
each category. It gives an indication of the type of SWRC models to use in 
different regions of the world and depths of sampling. The suitability of the 
models to regions showed that the Fredlund and Xing model had the best 
performance in subsoils in Africa; Omuto in Southern Asia; and van Ge-
nuchten in subsoils of the other regions. It is recommended that many more 
models be tested using the procedures in this study so that benchmarks can 
be established on SWRC model selection suitable for various regions. 
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1. Introduction 

Water is held in the soil by gravity, matric suction, and osmotic forces. The 
models describing different levels of these forces and the corresponding amount 
of water held in the soil are known as soil water retention characteristics 
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(SWRC) models. There are two major categories of these models in the litera-
ture: pedotransfer functions (PTFs) which relate easily measurable soil proper-
ties to SWRC [1] and mathematical functions that can be fitted to experimental 
SWRC [2]. Predictive models under these two categories have been widely used 
in the literature in areas such as irrigation water management, crop-yield esti-
mation, global circulation modeling, land degradation assessment, geotechnical 
engineering, etc. [3] [4] [5] [6] [7]. The major difference between these two 
model categories is that the mathematical functions contain fitting parameters 
which can be related to soil physical properties while PTFs do not necessarily 
have this relationship. Consequently, the mathematical functions have been used 
as a fundamental input in the various applications using SWRC. PTFs have been 
used largely as an alternate method to derive the parameters of the mathematical 
functions. This explains why there is still an active research to produce better 
user-friendly and accurate mathematical models for SWRC than the existing 
models [8] [9] [10]. 

There are many documented mathematical models for SWRC. Reviews of li-
terature on these models show that the popular ones are those that contain 
three-, four- and five-parameters [11] [12]. For example, a review by Leong and 
Rahardjo [11] showed that the popular models are Brooks-Corey, Farrel-Larson, 
Fredlund-Xing, Gardner, McKee-Bumb, van Genuchten, and Williams SWRC 
models. Another review by Bullied et al. [13] portrayed Campbell, Russo and 
Tani models as popular in addition to some of the models contained in the re-
view by Leong and Rhardjo [11]. Another aspect of these reviews shows that the 
popular models mostly have high success rates in areas where they were devel-
oped. It is important to note that they were developed and tested in different re-
gions of the world. Consequently, some of them have been successful in those 
areas, others have been modified to extend their applications in independent 
areas, while some have been used in different places without regard to whether 
they are successful or not. Still, many more are being developed in an attempt to 
improve on the existing models. However, there is no exhaustive study to com-
pare their performance in different regions of the world. There is a need to de-
termine the relative performance of these models in order to guide their applica-
tion or encourage further development of new models. 

Since the advent of digital soil mapping (DSM) and digital soil assessment 
(DSA) paradigms, there has been an upsurge of development of soil inference 
models and the need to increase accurate application of soil mapping products 
[14]. Soil hydraulic parameters and hydrologic functions cannot be left behind 
in this regard. There is a need to improve accuracy of their assessment and ap-
plication within the realms of DSM and DSA. This present study contributed 
towards this goal by testing the performance of commonly used SWRC models 
on a global dataset. The focus on the use of a global dataset was to establish re-
gions where these models can register the best performance and consequently 
inform users of these models where they can guarantee a high level of certainty. 
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2. Materials and Methods 
2.1. SWRC Models Analyzed  

The SWRC models analyzed in this study and their curve-fitting parameters are 
given in Table 1. The models were also placed into three groups: five-parameter, 
four-parameter, and three-parameter SWRC models. This grouping was neces-
sary because models with many parameters may tend to perform better than 
those with few parameters and lead to biased performance comparison. 

The five-parameter models were those proposed by Fredlund and Xing [2], 
Omuto [15] and van Genutchen [16]. The van Genuchten [16] model is that in 
which n and m parameters are independent. The four-parameter models were 
those proposed by Kosugi [8], Dexter et al. [9], van Genuchten [16] (in which 
the parameter m = 1 − 1/n), Gardner [17], Brooks and Corey [18], and Russo 
[19]. The three-parameter models were those proposed by Campbell [20], Tani 
[21], and McKee and Bumb [22]. 

2.2. Input Data 

The global data used for analysis of the SWRC models was downloaded on 6th May 
2013. The data contained soil water content (θ in cm3∙cm−3) at various levels 
 

Table 1. SWRC models tested. 

Model name Abbreviation Equation Fitting parameters 

Five parameter models 

Van Genuchten VG1 ( ) ( ) ( )1
mn

r s rh hθ θ θ θ α = + − +   θr, θs, α, n, m 

Fredlund-Xing FX ( ) ( ) ( )ln 2.7183
mn

r s rh hθ θ θ θ α  = + − +    θr, θs, α, n, m 

Omuto Omuto ( ) ( ) ( )1 1 2 2exp expr s sh h hθ θ θ α θ α= + ∗ − + ∗ −  θr, θs1, θs2, α1, α2 

Four-parameter models 

Gardner Gard ( ) ( ) 1 n
r s rh hθ θ θ θ α= + − +    θr, θs, α, n 

Brooks-Corey BC ( ) ( ) ( )n

r s rh hθ θ θ θ α= + −  θr, θs, α, n 

Kosugi Kosugi 

( ) ( ) ( )lnr s rh Q h nθ θ θ θ α= + −    ,  

Q is complimentary normal distribution function define as 

( ) ( )( )( )21 exp 0.5 2 d
h

Q h h h
∞

= − − π∫  
θr, θs, α, n 

Double exponential Dexpo ( ) ( ) ( )1 1 2 2exp exps sh h hθ θ α θ α= ∗ − + ∗ −  θs1, θs2, α1, α2 

Van Genuchten VG2 ( ) ( ) ( )
1 1

1
nn

r s rh hθ θ θ θ α
−

 = + − +   θr, θs, α, n 

Russo Ruso ( ) ( ) ( )( ) ( )( )
( )2 2

1 0.5 exp 0.5
nn

r s rh h hθ θ θ θ α α
+

 = + − + ∗ ∗ − ∗   θr, θs, α, n 

Three-parameter models 

McKee-Bumb MB ( ) ( ) ( )expr s rh hθ θ θ θ α= + − ∗ −  θr, θs, α 

Campbell Camp ( ) ( )n

sh hθ θ α= ∗  θs, α, n 

Tani Tani ( ) ( ) ( ) ( )1 expr s rh h hθ θ θ θ α α= + − ∗ + ∗ −    θr, θs, α 
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of suction potential (h in cm). Only samples with at least eight (8) levels of suc-
tion potential and water contents were considered. The samples were grouped 
into topsoil (at depths between 0 cm and 50 cm from the soil surface) and sub-
soil (at depths greater than 50 cm from the soil surface). This grouping of sam-
ples into various depths was mainly to provide suitability of the models to vari-
ous uses like irrigation modeling, watershed management and geotechnical in-
vestigations since soil depths are considered. These two groups were further split 
into samples from Central America, South America, Africa, Europe, Middle 
East, North Asia, and South Asia (Figure 1). 

Data description and associated measurement methods have been given in 
Batjes [23]. There were at least nine (9) samples with complete SWRC data (i.e. 
with eight suction potential levels) for topsoil and at least six (6) samples with 
complete SWRC data for subsoils in each region. Preliminary analysis of the data 
showed that the samples had at least one measurement around saturation (i.e. 
when the suction potential is very low), at least one inflection point, and at least 
one measurement around the dry end (i.e. when the suction potential is very 
high). In addition, the majority of the samples had an inflection point around 
−1.0 m suction potential. 

2.3. Data Analysis 

The models in Table 1 were fitted to measured SWRC data using nonlinear 
curve fitting method. The analysis of these models in predicting measured 
SWRC for various regions and depths were analyzed using the following popular 
statistics: 

1) Residual standard error, RSE 

( ) ( )2

1
ˆ 2

n

i i
i

y y n
=

− −∑                      (1) 

2) Nash-Sutcliffe model efficiency, EF 

( ) ( )2 2

1 1
ˆ1

n n

i i i i
i i

y y y y
= =

 − − −  
∑ ∑                (2) 

3) Correlation, r2 
 

 
Figure 1. Spatial distribution of samples for tested SWRC data. 
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( )( ) ( ) ( )( ) ( ) ( )( )
2

2 22 2

1
ˆ ˆ ˆ ˆ

n

i i i i i i i
i

n y y y y n y y n y y
=

   − − − −     
∑ ∑ ∑ ∑ ∑ ∑ ∑  (3) 

where yi is the measured soil water contents, ˆiy  are the fitted soil water con-
tent, iy  is the mean measured soil water contents, and n are the number of da-
ta points (i.e. soil moisture levels for each soil sample). In analysis, values of EF 
and r2 close to unity and low RSE are preferred for a good model. 

3. SWRC Models Suitability in Various Regions and Depths 

The suitability of SWRC models in various regions was done by comparing their 
performance with data from different regions of the world and depths of soil 
sample below the soil surface. Using correlation statistics, the performance of the 
five-parameter models using the subsoils data showed that the Fredlund and 
Xing model had the best performance (R2 = 0.9964) in Africa; Omuto in South-
ern Asia (R2 = 0.9987) and van Genuchten in Central America, South America, 
Europe and Northern Asiaregions (Table 2). In the four-parameter category, The 
van Genuchten, four-parameter model, did well among the other four-parameter 
models in subsoil Africa, America, Europe, Asia, M. East regions with R2 of 
0.9931, 0.9973, 0.9922, 0.9935, 0.9899, 0.9903 and 0.9977 respectively. 

Using topsoil samples, in the five-parameter category, Omutomodel per-
formed well in North and South Asiaregions with R2 of 0.9991 and 0.9986 re-
spectively, Fredlund and Xing model did well in Africa and south America re-
gions with R2 of 0.9960 and 0.9976 respectively. The five-parameter van Ge-
nuchtenmodel performed well in Central America and Europe with R2 of 0.9948 
and 0.9971 while the four-parameter van Genuchtenmodel was found to per-
form well in all the other regions except in Central America and Europe on the 
topsoil samples. The three-parameter exponential model proposed by McKee 
and Bumb outperformed the other models in the three-parameter category in all 
regions and soil depths. This performance pattern was also portrayed by the 
other statistical indices (i.e. RSE and EF).  

The group-results shown in Table 2 may be used to guide models selection in 
case available SWRC data has limited suction potential levels. For example in 
Africa, if SWRC data has four measured suction potential levels then the expo-
nential model by McBee and Bumb would give reliable results; in the case of 
SWRC data having five measured suction levels then the four-parameter van 
Genuchten model should be preferred; and in the case of SWRC data having at 
least six measured suction potential levels then Fredlund and Xing model should 
be preferred. It should be noted that, in order to guarantee best predictive results 
with these models, the minimum data-points for the SWRC data should contain 
at least three important points: at least a point around the saturation, at least a 
point at any of the inflection points (e.g. at air-entry potential), and a point 
around the dry end. These are anchoring points which are important in SWRC 
model fitting. 
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Table 2. Summary statistics of SWRC models performance. 

 
Five parameter models Four parameter models Three parameter models 

 
Overall statistics  

Model VG1 FX Omuto VG2 Gard D.expo Ruso BC Kosugi MB Tani Campbel 

RSE 0.0106 0.0166 0.0099 0.0123 0.0134 0.0200 0.0287 0.0535 0.0375 0.0241 0.0292 0.1112 

r2 0.9956 0.9891 0.9958 0.9940 0.9929 0.9844 0.9677 0.8869 0.9448 0.9785 0.9688 0.4899 

EF 0.9955 0.9891 0.9958 0.9940 0.9929 0.9844 0.9675 0.8868 0.9448 0.9785 0.9688 0.4736 

Correlation (r2) for Subsoil 

Model VG1 FX Omuto VG2 Gard D.expo Ruso BC Kosugi MB Tani Campbel 

Africa 0.9932 0.9964 0.9947 0.9931 0.9896 0.9824 0.9719 0.8678 0.9649 0.9764 0.9722 0.3736 

C. America 0.9982 0.9564 0.9955 0.9973 0.9952 0.9776 
 

0.9005 0.9998 0.9110 0.8610 0.2614 

S. America 0.9945 0.9923 0.9936 0.9922 0.9921 0.9847 0.9523 0.8397 0.8296 0.9800 0.9761 0.3031 

Europe 0.9954 0.9573 0.9948 0.9935 0.9929 0.9806 0.9548 0.7879 0.9330 0.9732 0.9553 0.0015 

N. Asia 0.9926 0.9910 0.9923 0.9899 0.9898 0.9825 0.9868 0.9134 0.9598 0.9749 0.9604 0.9515 

S. Asia 0.9953 0.9896 0.9987 0.9903 0.9884 0.9585 0.7872 0.8745 0.8340 0.9396 0.8990 0.3563 

M. East 0.9989 0.9979 0.9978 0.9977 0.9927 0.9779 0.9615 0.8075 0.8090 0.9481 0.9067 0.5617 

Correlation (r2) for Topsoil 

Model VG1 FX Omuto VG2 Gard D.expo Ruso BC Kosugi MB Tani Campbel 

Africa 0.9955 0.9960 0.9929 0.9919 0.9908 0.9844 0.9711 0.8580 0.9369 0.9706 0.9596 0.6117 

C. America 0.9948 0.9920 0.9835 0.9888 0.9924 0.9342 0.8353 0.9454 0.9760 0.9722 0.9487 0.7219 

S. America 0.9973 0.9976 0.9950 0.9935 0.9857 0.9801 0.9463 0.8166 0.8975 0.9624 0.9395 0.8226 

Europe 0.9971 0.8734 0.9961 0.9942 0.9955 0.9644 0.8693 0.7890 0.8711 0.9579 0.9275 0.4374 

N. Asia 0.9972 0.9969 0.9991 0.9968 0.9947 0.9863 0.9688 0.8927 0.8708 0.9736 0.9550 0.5899 

S. Asia 0.9943 0.9875 0.9986 0.9883 0.9872 0.9486 0.7800 0.8362 0.8344 0.9307 0.8754 0.7562 

M. East 0.9962 0.9941 0.9977 0.9731 0.9716 0.9571 0.8018 0.8613 0.8434 0.9210 0.8915 0.7763 

Best performing model in the category. 

4. Conclusion 

This study used a global measured dataset of SWRC to evaluate popular models 
for fitting SWRC. The analysis serves as a guide for selecting the models to be 
preferred for fitting SWRC models to use in different regions of the world and 
depths of sampling. Van Genuchten model (both the four and five parameter 
models) had the best performance in most of the regions and soil depth. This 
was notable in Africa, Central America, South America, Europe and Northern 
Asia regions. The three-parameter McKee and Bumb model also performed well 
in all regions and soil depths. Owing to the good performance of exponen-
tial-based models, the analysis also floated a suggestion for future models to de-
velop models based on exponential pore-size distribution. It is recommended 
that many more models be tested using the procedures used in this study so that 
benchmarks can be established on SWRC model selection for different applica-
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