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Abstract 
Modeling and forecasting of the groundwater water table are a major component of effective 
planning and management of water resources. One way to predict the groundwater level is analy-
sis using a non-deterministic model. This study assessed the performance of such models in pre-
dicting the groundwater level at Kashan aquifer. Data from 36 piezometer wells in Kashan aquifer 
for 1999 to 2010 were used. The desired statistical interval was divided into two parts and statis-
tics for 1990 to 2004 were used for modeling and statistics from 2005 to 2010 were used for vale-
diction of the model. The Akaike criterion and correlation coefficients were used to determine the 
accuracy of the prediction models. The results indicated that the AR(2) model more accurately 
predicted ground water level in the plains; using this model, the groundwater water table was 
predicted for up to 60 mo. 

 
Keywords 
Non-Deterministic Models, Akaike Criterion, Ground Water Level, Kashan Aquifer 

 
 

1. Introduction 
The conventional method for predicting hydrological variables is to use time series analysis. The first attempts 
to study time series, particularly in the nineteenth century, recognized the benefits of economic measures [1]. 
This was developed by Yule (1927), who examined different time series to detect random processes. Since then, 
types of time series have expanded. Hydrological time series consists of a time-dependent hydrological variable, 
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such as the flow rate of a river. The purpose of hydrological studies is to quantitatively describe the statistical 
population; the process of creating this statistical population was based on a limited number of samples [2]. 
Random time series have been applied to solving hydrological issues by Brass and Rodriguez (1985) [3]; Berkol 
and Davis (1987) [4], and Lin and Lee (1994) [5]. Mathematical modeling of time series can produce hydro-
logical synthetic data, predict hydrological events, identify trends and shifts in data, complete a missing data, 
and generate data. The output of artificial series from river flows for drought and flood studies have been used to 
optimize utilization of reservoir systems and design the capacity for water supply systems [2] [6], among other 
uses. One basic hypothesis for modeling time series is that time series is stationary. A time series with its own 
statistical parameters (e.g., mean and variance) is considered stationary when its expected value is time-inde- 
pendent. The expected value is the average value which would be expected if the processes were repeated an in-
finite number of times. More formally, the expected value is a weighted average of all possible values. Many hy- 
drological time series are non-stationary for reasons such as climate change, drought, and statistical parameters 
such as mean and standard deviation. To increase knowledge about methods of statistical determination, it could 
be useful to remove stationary and non-stationary time series [7]. Factors that may cause non-static time series 
include periodic or seasonal trends and shifts [8]. Static tests can detect the impact of each factor on a stationary 
time series; however, non-stationary examinations of time series can aid understanding of the physical mecha-
nisms, which indicate the impotence of static tests on hydrological time series analysis (Wang et al., 2005) [9].  

Stationary time series analysis methods generally fall into two categories. The first category consists of me- 
thods based on the analysis if there is a statistical difference in segments of a time series. In the second category, 
the static test is based on the statistical properties of the whole time series [10]. Numerous studies have been 
done in the field of hydrology based on time series, such as Javidi and Sharifi (2009), who used time series to 
predict the mean annual flow rate of a river. Evaluation of time series models using the Akaike information cri-
terion (AIC) and residual variance has concluded that the autoregressive (2) (AR (2)) model is more appropriate 
for data production, thus, it was chosen as the final model [11]. Khalili et al. (2010) investigated the trends and 
stationary analysis of river flow in Urumia province for Shahr Chay River using KPSS and ADF methods. Their 
results showed that the annual flow rate series was static at a significance level of 5% [7]. Golmohammadi and 
Safavi (2010) used univariate hydrological time series and a fuzzy system based on adaptive neural networks to 
predict the flow rate of Zayandehrood, the largest river in the central plateau of Iran. The results indicated the 
efficiency of these systems in the forecast [12]. Nakhaei and Mirarabi (2010) used the Box-Jenkins model to 
predict floods using series data to determine the flow rate for Sumar in Kermanshah province of Iran. Box-Jen- 
kins applies the autoregressive moving average (ARMA or ARIMA) models to finding the best fit of a time se-
ries to past values in order to make forecasts. They used trial-and-error criteria of residual and selected the best 
model among the models examined (ARMA (1, 1, 0) (2, 2, 1) (1, 2)) to predict river flow rate for the next 24 
months [13]. Ahan (2000) predicted water table fluctuations using ARIMA models. According to the data, he 
used the quadratic difference method to remove the trend in time series [14]. Saeidian and Ebadi (2004) deter-
mined the time series model for the flow rate of Talkhehrood river in northwestern Iran. They fitted time series 
patterns for over 53 years of flow rate data to the AIC test and determined that the best model was the AR(2) 
[15]. Jalali (2002) provided decision support systems (DSS) for repositories of time series models to forecast the 
input of monthly flow rate for Jiroft Damin Kerman Province using a single-univariate ARIMA model to cali-
brate the input flow rate [16]. Alonekyenak (2007) examined the performance of artificial neural network mod-
els and the ARMA model to predict the level of water for a time period of more than 1 mo [17]. Amabyl et al. 
(2008) fitted time series models to simulate data obtained from the SWAT model and historical data. They 
found that the groundwater table data performed well in time series models [18]. The present study used the re-
sults of previous research and the ability of time series techniques for time series analysis to determine the opti-
mal model and used it to predict the water table of an aquifer and determine the accuracy of predictions. 

2. Methods 
2.1. Study Area Choice 
The study area (longitude: 51˚32' to 51˚03'E, latitude: 33˚27' to 34˚13'N) is located in Kashan plain, Esfahan 
province, Iran (Figure 1). 

This area is bordered to the north and northwest by Qom province, to the southwest by the Mutah mountain  
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Figure 1. Position of study area and exploitation of Piezometric wells.                                           
 
range to the south by the Natanz plains and to the east by the Salt Lake range. It has an area of approximately 
7083 km2, of which 3040 km2 consists of highlands and 4043 km2 consists of submontane regions to the north 
and northeast. The area under study is the Kashan aquifer located in the Kashan plain, which is 1570.23 km2 in 
size (Figure 1). The annual evaporation range is 2100 to 3000 mm and the average of annual humidity is about 
42 percent. Maximumtemperaturesin the summer, the warmest month (July) to 48˚C and a minimum tempera-
ture of −5˚C inthewintertocome. Annual rainfall is varied in salt lake with 75 mm at the east to 300 mm in the 
southwest mountains. The Kashan aquifer in unconfined aquifer and because of largely discharge from this aq-
uifer for agriculture, industry and drinking, The Kashan aquifer experiences an average annual loss of about 0.57 
m and a critical negative budget (about −32 million m3 annual discharge). 

In this study, water table data from the aquifer for 1990 to 2004 was used to predict the ground water for the 
year’s 2005 to 2010 using time series and R software environment. The first step for the time series was to chart 
analysis of the time series data to determine the presence or absence of trends in the data. The second step was 
to determine trends in the time series and removal it for create stationary data. After examining the static data, 
the appropriate model was fitted to the data to determine the best model for prediction. If the data showed sea-
sonal trends, data differencing was performed to bring the mean to zero and remove the seasonal trends. The 
third step was to investigate the normality of the predicted data for model selection. The Kolmogorov-Smirnov 
test was chosen to evaluate data normality. The models examined in this study were AR, MA, ARMA, ARIMA 
and SARIMA. It was not necessary to obtain a fitted linear equation or remove trends, because the models per-
formed this. ARIMA and SARIMA used data differencing, so the seasonal data mode was also eliminated. This 
study first plotted the time series diagram for seasonal and residual (random) trends (Figure 2). Since an ex-
amination of time series data could be modeled on random data, random data was obtained from a time series 
for modeling. 
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               Figure 2. Time series diagram with random, seasonal and trend components.           

2.2. Auto-Regressive Model 
Researchers such as Slutsky (1937), Walker (1931), Yaglom (1955), and Yule (1927) first formulated the con-
cept of Auto-Regressive (AR) and moving average (MA) [1]. These models are stochastic conventional models 
and as their name implies, imposes regression on its sentences; however regression is performed for past values 
of zt. This model is applicable for stationary and non-stationary time series and the basic structure is suggested 
in Equation (1): 

1 1 2 2t t t p t p tz z z z aφ φ φ− − −= + + + +                                 (1) 

In the above equation, 1φ , 2φ , pφ  and ... are coefficients and parameters of the AR model and at is random. 
The remaining time-independent (noise) obeys a normal distribution with a mean of zero. In this model, if 

0
j

j
φ

∞

=
∑  converges, the process will stationary [19]. 

2.3. Moving Average Model 
The general form of the moving average (MA) model with q rank can be expressed as Equation (2): 

1 1 2 2t t t q t q tz a a a aθ θ θ− − −= + + + +                                  (2) 

where 1θ , 2θ , qθ  are the coefficients and parameters of the MA model [11]. 

2.4. General Structure of ARMA Model 
The ARMA (p,q) model was created by combining the AR (p) model and the MA (q) model. The general struc-
ture of ARMA can be expressed as Equation (3):  

1 1 2 2 1 1 2 2t t t p t p t t t q t qz z z z a a a aφ φ φ θ θ θ− − − − − −= + + + + − − −                         (3) 

where the parameters are the same as for the AR and MA models [11]. Most of the time series are non-statio- 
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nary in reality; therefore, we can model time series with the static subtraction operation and then an AR or MA 
model or a complex pattern can be fitted to the differencing series. The result for the non-differential series is a 
comprehensive model (ARMIA) [20]. 

2.5. Box-Jenkins Seasonal Pattern ARIMA Model 
Non-seasonal time series models in the interconnected autoregressive model are moving averages and are dis-
played as ARIMA (p,d,q). In this model, p represents the autoregressive model, q represents the moving average 
model, and d represents data differencing. For a stationary time series, d = 0 and the ARIMA model converts to 
ARMA. The general multiplicative seasonal pattern can be expressed as Equation (4): 

( ) ( ) ( ) ( )12 12
p p t q Q tB B W B B aφ θΦ = Θ                                       (4) 

where B is the shift operator, and pφ , pΦ , qθ , QΘ  are the polynomials of p, p, q, respectively, and at is used 
instead of zt (Box-Jenkins) and is a purely random process with a mean of zero and 2

aσ  variance. Variables of 
the initial set to eliminate trends and seasonality can be expressed as Equation (5):     

12
d D

t tW X= ∇ ∇                                        (5) 

In the ARIMA model, where data differencing occurs d represents non-seasonal differencing. With non-sea- 
sonal differencing (D), the ARIMA model is converted to a SARIMA model. The ARIMA time series is the 
most complete is commonly used. A more detailed discussion about its usage can be found in Box and Jenkins 
(1976) [19]. Studies by Vangyr and Zoor (1997), Knotters and Vanvalsom (1997) [20], and Ahan (2000) [14] 
suggest that the Box-Jenkins model for time series is an appropriate model for investigating the behavior of 
groundwater. 

2.6. Determining the Best Model 
The properties of the autocorrelation coefficients and partial autocorrelation are other criteria that determine the 
best model for the time series using AIC. The test is used for comparison of different ARMA (p,q) models and is 
calculated as Equation (6): 

( ) ( ) ( )2, ln ,AIC p q N p qεσ= +                                     (6) 

erehw N is the amount of time series data and 2
εσ  is the variance of error (residuals). The model with lower 

AIC is the more appropriate model [21] [22]. In addition to testing for AIC, the length of the forecast for the sta-
tistical mean and correlation test are used. The results are shown in Table 1. After choosing the appropriate 
model, the predicted data are normalized and examined using the Kolmogorov-Smirnov model. The data used in 
this study were monthly; delays for these models were for 12 mo. 

3. Results & Discussion 
The results of determining a trend in the data and deterministic and random terms (Figure 2) to determine auto-
correlation and partial autocorrelation functions before removal and data differencing (Figure 3). The results for 
different models are shown in Table 1. Models that fit the time series to forecast groundwater level changes are 
shown in Figure 4. Figure 5 valuates the correlation between the observed and predicted values by the selected 
models. Figure 5 shows autocorrelation and partial autocorrelation functions for predicted data by the selected 
models. 

In this study, 5 models using 11 time series structures were examined. For each parameter, AIC and correlation 
coefficients for the coming months were obtained (Table 1). 

R software was used to predict the depth of groundwater from 2005 to 2010 using monthly underground water 
depth data from 1999 to 2004. The important point in is to survey stationary time series of hydrological before 
modeling of time series, as a result, the static analysis of hydrologic series can be effective in the recognition and 
interpretation of hydrological processes and its relation to trend and climate change. As we know, the time series 
data have 4 components (trend component, a seasonal component, jump (maybe there isn’t) and a random com-
ponent) (Figure 3). For analyze of the time series data, it is important that deterministic components from the 
time series be removed. So, after the 3 deterministic components removed, the randomness component used for  
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Figure 3. (a) Auto-correlation and (b) partial auto-correlation functions of the monthly groundwater level time series 
before removal of trends and data differencing.                                                           

 

 
Figure 4. (a) Models prediction versus observed and final model correlation (b).                                    
 
Table 1. AIC coefficient, parameters and different models used to choose the final model.                             

R2 AIC S𝛉𝛉1 S∅1 D d 𝚯𝚯2 𝚯𝚯1 ∅2 ∅1 Parameters Model Models 

0.8992 522.17 *** *** ** ** *** *** *** 0.4476 AR (1) 

0.9005 522.44 *** *** ** ** *** *** −0.1036 0.3905 AR (2) 

0.9025 524.62 *** *** ** ** *** 0.4164 *** *** MA (1) 

0.8997 521.66 *** *** ** ** 0.1998 0.4931 *** *** MA (2) 

0.9001 522.93 *** *** ** ** *** 0.1633 *** 0.3174 ARMA (1, 1) 

0.8998 523.57 *** *** ** ** 0.2409 0.5787 *** −0.0905 ARMA (1, 2) 

0.909 502.31 *** *** ** ** *** −1.000 −0.5591 1.3529 ARMA (2, 1) 

0.9007 524.84 *** *** ** ** 0.4290 0.5767 −0.2121 −0.1001 ARMA (2, 2) 

0.8999 524.92 *** *** ** 1 *** −0.8453 *** 0.3330 ARIMA (1, 1, 2) 

0.8884 566.39 *** *** ** 2 *** −1.000 *** −0.2038 ARIMA (1, 2, 1) 

0.8832 553.86 −0.9335 −0.0628 1 1 *** *** *** −0.2196 SARIMA (1, 1, 0) (1, 1, 1) [12] 

0.8832 520.43 −0.9994 −0.0038 2 1 *** −1.000 *** 0.4294 SARIMA (1, 1, 1) (2, 2, 1) [12] 
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modeling. In this study, 5 models with 11 different structures are examined. According to Figure 3, obtained be-
fore removing deterministic components of the data; it was found that the groundwater depth data has a seasonal 
trend and it was used to eliminate the trend and create the stationary series used various models. As seen from 
Figure 4(a), Figure 4(b), the autocorrelation function is exponentially reduced and also, partial autocorrelation 
function is not significant after a lag. According to the interpretation of these two functions can say at first sight 
that by using these data the AR model is an appropriate model to predict, but for a more accurate prediction, the 
Akaike criterion and the correlation coefficient were used to select the final model. The results of various models 
survey based on test and the Akaike criterion (AIC), which is one of the common methods to compare different 
models especially ARMA time series, also based on amount of model parameters and correlation coefficients 
were determined. Between mentioned models, appropriate model is firstly that an amount of the absolute value 
does not to exceed of 1 and the second it has lowest Akaike criteria (Table 1). 

Thus, among 11 studying structure based on Akaike criterion and model parameters, the model ARMA (2,1) 
due to violation of model parameters of 1 were deleted between studying model. Among the remain models; 
SARIMA model (1, 1, 1) (1, 1, 1) [12] had the lowest Akaike criterion but to examine the results of Akaike crite-
rion for this model (as mentioned in above, Akaike criterion is to test the ARMA models) correlation test was 
used. As shown in Table 1, based on Akaike test SARIMA (1, 1, 0) (1, 1, 1) [12] model has less Akaike statistic 
value but based on the results of the correlation test had less accuracy of predictions in compared other models. 
For this reason, another model which had less Akaike and in terms of the correlation coefficient had meaningful 
predictions was selected. Therefore AR (2) model was selected as the final model, to predict changes in water ta-
ble levels of Kashan plain for 60 months ahead .The Kolmogorov-Smirnov test was used to examine the normal-
ity of the predicated data. The significance was greater than 0.5 (sig = 1), allowed acceptance of the null hypothe-
sis, meaning the normality of predicted data. Figure 5 shows that the autocorrelation function and partial auto-
correlation with 10 time lags after removing the trend data were significant. From the results of studies by 
Karamooz and Iraqi (2005) [8], Hashemi and Jahanshahi (2005) [22], Javidi and Sharifi (2009) [11], and Nakhaei 
and Mirarabi (2010) [13] and the results of this study, it can be concluded that the model selected to predicted the 
function is important and the output is very good. AIC results for all models except the Box-Jenkins model, gave 
appropriate statistics. It is better use the correlation coefficient to test the models for accuracy of their predictions 
for the time interval. According to the non-deterministic and randomness nature of hydrological issues, time se-
ries are an appropriate technique to forecast hydrological phenomena. According to the results of this research on 
time series models, for cases were sufficient data is not available, to generate data and predict changes in hydro-
logical variables, time series models can be used. These models can be used to optimize models, for accurate pre-
dictions and proper planning, and to obtain reliable management for any area. 

4. Conclusion 
In this study, the prediction models that were developed with standard logistic regression analysis in groundwater 
 

 
Figure 5. ACF and PACF after removing data.                                                        
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level data were compared. According to the non-deterministic and random nature of the hydrological issues, time 
series is one of the appropriate methods to forecast hydrological phenomena. 
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