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ABSTRACT 

Identification results of water quality model parameter directly affect the accuracy of water quality numerical simula- 
tion. To overcome the difficulty of parameter identification caused by the measurement’s uncertainty, a new method 
which is the coupling of Finite Difference Method and Markov Chain Monte Carlo is developed to identify the parame- 
ters of water quality model in this paper. Taking a certain long distance open channel as an example, the effects to the 
results of parameters identification with different noise are discussed under steady and un-steady non-uniform flow sce- 
narios. And also this proposed method is compared with finite difference method and Nelder Mead Simplex. The results 
show that it can give better results by the new method. It has good noise resistance and provides a new way to identify 
water quality model parameters. 
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1. Introduction 

In order to allocate water resources rationally, many 
Long Distance Water Transfer Projects (LDWTPs) have 
been built or are being constructed in China. But there 
are numerous controls and cross buildings along the pro- 
cess in LDWTP, so it is highly possible that sudden wa- 
ter pollution incident happens [1]. Once these incidents 
occur, it is necessary to reveal the rule of pollutants 
transport and diffusion based on water quality parame- 
ters quickly, and then put forward emergency disposal 
counter measures, otherwise it will cause inestimable 
consequences [2]. Therefore, it is crucial to identify wa- 
ter quality model’s parameters. Many approaches have 
been proposed to identify the parameters of water qual- 
ity model, such as theoretical formula method, empirical 
formula method and tracer test method, etc. [3]. The 
tracer test method belongs to the category of inverse 
problems which include methods such as moments, fit- 
ting, optimization and the uncertainty analysis [4]. With 
the development of computer technology, identification  

method based on Optimization has been widely used, 
such as Simplex method [5], Particle Swarm Optimiza- 
tion [6] et al. But there are many strict limit conditions 
and the non-identificability will increase with the in- 
crease of parameters’ number when using these methods. 
In addition, LDWTP is complex and giant system, in 
which there are full of uncertain factors, and it don’t 
exist analytical expressions of pollutant concentration. 
Therefore, it is necessary to find a better identification 
method to research the rule of pollutants transport and 
diffusion in LDWTP. 

Therefore, a new method which named FDM-MCMC 
is proposed based on Finite Difference Method (FDM) and  
Markov Chain Monte Carlo (MCMC) in this paper to iden- 
tify the water quality model parameters. And in order to 
verify this proposed algorithm’s accuracy, efficiency and 
anti-noise capability, the results of parameters identifica- 
tion with different scenarios are analyzed by numerical si- 
mulation. Finally this proposed method is compared with 
Finite Difference Method and Nelder Mead Simplex 
(FDM-NMS). *Corresponding author. 
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2. Materials and Methods 

2.1. Description of the Problem 

LDWTP is a series system consists of many canal pools 
which are divided by gates, as shown in Figure 1 [7]. If 
pollutants in canals are attenuated by the first order ki- 
netics, the law of pollutants’ transportation and diffusion 
is described by:  

     ,x

AC QC C AE F x
t x x x

           
t     (1) 

where A is cross section area, C is the concentration of 
pollutant, Q is cross section flow, t is the time, x is the 
longitudinal coordinate, Ex is the longitudinal dispersion 
coefficient, F(x, t) is the source term. 1( , )    F x t S   

, S1 is internal source (sink), K is reaction rate, 
Wc is the exogenous input terms. 

cW KAC

According to Figure 1, LDWTP is a complicated non- 
linear system and the concentration of pollutant can be 
expressed as:  

   , ,C x t C x t e             (2) 

where θ is a set of parameters set, which is difficult to be 
measured. And the concentration of pollutants is on the 
section of canal pool (see Figure 2).  

According to Figure 2, Equation (1) can be trans- 
formed into (3) [5]:  

       

       

   

1 1 1

1

1

1 11 1 1 1
1

1

1 1
1 1

1
1 2 1

2

1

2

k k k k

i i i i

i

k kk k k i i
c x ii i

i i

k k
k i i

x i
i i i

AC AC QC QC

t x

C C
S W AKC AE

x x

C C
AE

x x x

  





    



 
 


  

 


 

 
    

  


 
   

  

(3) 

where  is the pollutant concentration of the ith ca- 

nal pool at k + 1 moment, so Equation (3) can be ex- 
pressed as: 

1k
iC 

 1 1 1, 2, ,i i i i i i ia C b C c C d i N            (4) 

where ai, bi, ci are coefficients; di is a constant. Equation  

(4) is a linear implicit difference equation which is made 
up of N equations and it can be solved by combining with 
the upstream and downstream boundary conditions. 

Therefore, the identification problem of water quality 
model parameters in LDWTP can be solved by a limited 
concentration measurement data. However, since the un- 
certainty of the model structure and the observation data, 
the FDM-MCMC method is developed to solve this pro- 
blem.  

2.2. Methods 

Uncertainty identification method based on the Bayesian 
theorem can avoid the decision risk caused by the distor- 
tion of the “optimal” parameters in a certain extent [8]. 
So according to Bayesian theorem, it can be stated as fol- 
lows: 

           | |p y p p y p y p p y |        (5) 

where θ is the unknown parameter; y is the observed data; 
p(y|θ) is the likelihood function; p(θ|y) is the parameter’s 
posterior probability density function; p(θ) is the para- 
meter’s joint priori probability density function. 

Assuming i  is the measurement error, ei is the pre- 
diction error, and these errors are independent and obey 
Laplace distribution. So the problem of model parame- 
ters can be transformed to solve the parameters’ posterior 
probability density function: 
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   (6) 

where M is the number of observation data, σd,i, σf,i are 
the standard deviation of εi and ei, respectively. 

Therefore, the estimated values of the unknown pa- 
rameters can be obtained by Equation (6) and MCMC 
method which is based on sampling random method. 
Since Metropolis-Hastings is a sampling method in a ge- 
neration-rejection sample forms, a new identification me- 
thod based on Bayesian-Markov Chain Monte Carlo to  

 

 

Figure 1. Sketch of the controlled canal system.  
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Figure 2. The finite difference format to the wind of water 
quality model equation. 
 
identify the parameters in this paper [9]. The detailed sol- 
ving steps are as follows: 

1) The study area is divided into N canal pools by spa- 
tial discretization and each canal pool section has only a 
little change over time and space;  

2) Determining sample space and p(θ(i)) of the un- 
known parameters;  

3) Generating initial values θ(i)(1), θ(i)(2),···, θ(i)(S); 
4)Obtaining the conditional probability density by set- 

ting the Proposal distribution q(θ(i)(S), θ(*)(S)), generating 
θ(*)(S), and calculating the θ(i)(S) and θ(*)(S) correspond- 
ing to the pollutant density; 

5) Finding the likelihood function which can reflect 
the relationship between the model parameters and meas- 
urement data, and then calculating the posterior probabil- 
ity density function; 

6) Getting the accept probability A(θ(i), θ(*)) at which 
Markov Chain moves from θ(i) to θ(*) as following [9]: 
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7) Generating a random number which belongs to 0 - 1 
and obeys uniform distribution. If R < A (θ(i), θ(*)), then 
setting θ(i+1) = θ(*), otherwise, θ(i+1) = θ(i); 

8) Repeating steps from 1) to 7) until it reaches a pre- 
determined iterations.  

3. Results 

For LDWTP, the “twin” experimental is an effective 
means to identify parameters of water quality model [10]. 
However, the longitudinal dispersion coefficient is be- 
coming more and more important in the sudden water 
pollution accident [11]. Therefore, an open channel with 
3km length is taken as an example in this paper. Assum- 
ing the inflow water concentration in the upstream (x = 0) 
is 1.0 mg/L and free outflow in downstream. The flow 

field distribution is u = 0.5 + 0.001x and the channel can 
be dispersed into N = 6 canal pools according to the 
channel’s geometry features whose true values of longi- 
tudinal dispersion coefficient (Ex)i (i = 1,···, N) are 50, 70, 
90, 110, 130 and 140 m2/s. 

3.1. Steady Non-Uniform Flow  

Assuming flow Q is equivalent to 10 m³/s, and then the 
identification results are obtained as error level σ = 0.1 
by using FDM-MCMC and FDM-NMS method, respec- 
tively, as show in Table 1.  

From Table 1, while σ = 0.1 the average relative error 
obtained by FDM-MCMC and FDM-NMS method are 
respectively 4.99% and 8.25%.  

3.2. Unsteady Non-Uniform Flow  

If the flow of this open channel is a function of time, it is 
Q(t) = 10 + 0.001t, the identification results of obtained 
by FDM-MCMC and FDM-NMS under different noise 
are shown in Table 2. Here we take relative standard de- 
viation (RSD) as the accuracy of the identification val- 
ues: 

RSD 100%               (8) 

where λ is standard Deviation; μ is the mean of identifi- 
cation value. So when σ = 0.1, RSD obtained by the two 
methods are shown in Table 3. 

From Table 2, the average relative errors are respec- 
tively 3.41% and 8.26% by FDM-NMS and are respec- 
tively 2.93% and 5.14% by FDM-MCMC. From Table 3, 
the average RSD is respectively 27.30% and 52.96% by 
FDM-NMS. 

4. Discussion 

Therefore, comparing with FDM-NMS, the FDM- 
MCMC has the following advantages: 

1) Wider applicability 
In the two scenarios, When σ = 0.1, the average rela- 

tive errors are less than 6% by the FDM-MCMC. So the 
FDM-MCMC has strong applicability. It is not only ap- 
 

Table 1. Identification results by FDM-NMS method. 

N 1 2 3 4 5 6 

Value (m2/s) 50.786 48.738 89.635 128.299 119.320 149.217

A Relative error 
(%) 

1.57 16.09 0.41 16.64 8.22 6.58

Value (m2/s) 49.880 69.734 100.774 108.782 123.737 155.974

B Relative error 
(%) 

0.24 0.38 11.97 1.11 4.82 11.41

Note: “value” denotes “identification value”; “A” denotes FDM-NMS me- 
thod; “B” denotes FDM-MCMC method. 
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Table 2. Identification results by FDM-NMS method. 

σ = 0.05 σ = 0.1 

Value (m2/s) 
Relative error 

(%) 
Value (m2/s) 

Relative 
error (%)

N 

A B A B A B A B

1 49.710 50.109 0.22 0.58 49.710 49.815 0.58 0.37

2 69.934 69.649 0.50 0.09 72.479 69.654 3.54 0.49

3 93.245 93.557 3.95 3.58 95.515 99.364 6.13 10.40

4 112.977 110.355 0.32 2.70 110.229 105.666 0.21 3.94

5 132.976 122.762 5.57 2.29 137.794 127.255 5.99 2.11

6 124.288 149.846 7.03 11.2 186.376 158.931 33.13 13.52

Note: “A” and “B” have the same meaning as in Table 1. 
 
Table 3. RSD of identification value by the two methods %. 

N 1 2 3 4 5 6 

FDM-NMS 8.61 18.62 14.16 20.55 9.99 62.19

FDM-MCMC 17.81 21.52 23.39 35.16 33.32 30.77

 
plicable to the constant flow, but also applicable to the 
unsteady flow. 

2) Higher accuracy 
The average errors by FDM-MCMC are less than by 

FDM-NMS method, which are respectably 3.26% and 
3.12%. So the precision of identification results by FDM- 
MCMC are higher than by FDM-NMS in the same cir- 
cumstances. 

3) Stronger anti-noise ability 
The average relative errors obtained by FDM-NMS 

and FDM-MCMC method are both less than the corre- 
sponding measurement errors. But the average relative 
standard deviation obtained by FDM-MCMC is less 
25.96% than by FDM-NMS.  

In summary, the FDM-MCMC has wide applicability, 
high identification accuracy and anti-noise ability. It can 
be better to identify the parameters of water quality mo- 
del in LDWTP. 

5. Conclusion 

With the improvement of water quality model function, 
the identification difficulty is becoming more and more. 
Therefore, the Finite Difference Method is adopted to 
solve water quality model in LDWTP, then based on the 
Bayesian inference the unknown parameters’ posterior 
probability density function is identified, and further the 
corresponding statistics are obtained by sampling with 
MCMC to identify water quality model parameters in 
LDWTP. According to the numerical results, it improves 
significantly not only on the global convergence and 

convergence rate, but also the identification accuracy is 
relatively higher by the FDM-MCMC in solving water 
quality model parameter identification problem with high- 
er nonlinear degree. Because the FDM-MCMC has the 
characteristic of strong targeted to improve, it is applica- 
ble to other nonlinear identification problem. In addition, 
it will cause large amount of calculation for the large re- 
quired sample number. So as to reduce the computational 
complexity greatly, combing with other inversion meth- 
ods and making it possible to apply in real-time identifi- 
cation mode would be the future research direction. 
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