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ABSTRACT 

This paper presents the improvement of the fuzzy inference model primarily developed for predicting rainfall with data 
from United States Department of Agriculture (USDA) Soil Climate Analysis Network (SCAN) Station at the Alabama 
Agricultural and Mechanical University (AAMU) Campus for the year 2004. The primary model was developed with 
Fuzzy variables selected based on the degree of association of different factors with various combinations causing rain-
fall. An increase in wind speed (WS) and a decrease in temperature (TP) when compared between the ith and (i−1)th 
day were found to have a positive relation with rainfall. Results of the model showed better performance after introduc-
ing the threshold values of 1) relative humidity (RH) of the ith day; 2) humidity increase (HI) when compared between 
the ith and (i−1)th day; and 3) product (P) of increase in wind speed (WS) and decrease in temperature (TP) when com-
pared between the ith and (i−1)th day. In case of the improved model, errors between actual and calculated amount of 
rainfall (RF) were 1.20%, 2.19%, and 9.60% when using USDA-SCAN data from AAMU campus for years 2003, 2004 
and 2005, respectively. The improved model was tested at William A. Thomas Agricultural Research Station (WTARS) 
and Bragg farm in Alabama to check the applicability of the model. The errors between the actual and calculated 
amount of rainfall (RF) were 3.20%, 5.90%, and 1.66% using USDA-SCAN data from WATARS for years 2003, 2004, 
and 2005, respectively. Similarly, errors were 10.37%, 11.69%, and 25.52% when using SCAN data from Bragg farm 
for years 2004, 2005, and 2006, respectively. The primary model yielded the value of error equals 12.35% using 
USDA- SCAN data from AAMU campus for 2004. The present model performance was proven to be better than the 
primary model. 
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1. Introduction 

Application of fuzzy set theory has rapidly increased 
with establishing its utility in numerous areas of the sci- 
entific world. Any system consisting of vague and am- 
biguous input variables may contribute to an ultimate 
effect. In fuzzy logic approach, it is possible to express 
crisp intervals in terms of linguistic subsets by fuzzy ex- 
pressions like low, medium, high, good, moderate, poor 
etc. Each of these expressions represents the sub-range of 
the entire variability of the variables concerned [1-7]. 
Weather prediction has been done using conventional 
probability theory. Here, fuzzy set theory, as an alternate 
method has recently been applied to develop a model for 
predicting rainfall as it is concerned with ambiguities and 
vagueness. The fuzzy logic possibility and its degree of 

effect due to the ambiguous input variables are consid-  
ered by some as being generated in the human mind and 
is often referred to as expert knowledge. This expert 
knowledge is the accumulation of knowledge and ideas 
as a result of the expert’s experience in a particular sys- 
tem; hence, decision-making processes may be consid-
ered as fuzzy expressions perceived by the expert [8]. 
Expert knowledge is expressed as a vague or ambiguous 
expression and not in form of any quantified value. Ba- 
sed on the generated idea that the possibility and degree 
of effect from vague and ambiguous inputs exists, then 
the knowledge based rules can be expressed in the form 
of statements, called fuzzy statements or production rules. 
These statements consist of antecedent (conditional part) 
and consequent (inference or effect due to the vague and 
ambiguous conditional variables) part. In predicting wea- 
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ther condition, there are factors in the antecedent and 
consequent parts are vague and ambiguous in nature. 
Their effect is generated in the mind of the expert with 
more or less accuracy. The decision-makers use their know- 
ledge with logic and then generate algorithms in their 
mind [9,10].  

Application of the concept of fuzzy set theory in soil, 
crops, water management remain in its infant stages due 
to the lack of awareness of potential of fuzzy set theory 
in the field of the above mentioned areas. Weather fore- 
casting is one of the most imperative and demanding 
operational responsibilities carried out by meteorological 
services all over the world. It is a complicated procedure 
that includes numerous specialized fields of knowledge 
and skill. The task is intricate because in the field of 
agro-meteorology decisions are heavily intertwined in 
the visage of uncertainty associated with the weather 
systems. 

The primary fuzzy inference model was developed 
successfully for predicting rainfall using the antecedent 
variables of increase in wind speed and decrease in tem-
perature, hereafter termed WS and TP, respectively, 
when compared between the ith and (i−1)th day. Im- 
provement of the primary model was necessary to en- 
hance its performance in the sense of preciseness and to 
improve the match between actual and calculated values 
of rainfall, hereafter termed RF. 

2. Fuzzy Systems and Rules 

In our everyday life, we encounter numerous problems 
that do not have any ready answer except making a deci-
sion based on our past experiences [1]. These inferred 
decisions are assessed and validated with actual situations 
by either observations or measurements. 

Fuzzy inference is the actual process of mapping with 
a given set of input and output through a set of fuzzy 
rules. Figure 1 shows the general structure of a fuzzy 
system. Steps for successful application of modeling 
through a general fuzzy system are as follows: 

1) Fuzzification of the input and output variables by 
considering appropriate linguistic subsets (NL, NS, ZE, 
PS, and PL the meanings have been described in a tabu-
lar form in Figure 2).  

2) Construction of appropriate production rules that 
are comprised of antecedent and consequent parts of IF. 
Then algorithms with logic based on past experiences of 
the decision makers. 

3) The implication part of a fuzzy system is defined as 
the shaping of the consequent part based on the premise 
(antecedent) part and the inputs are fuzzy subsets [1]. 

4) This is necessary to defuzzify the output results to 
obtain a crisp value results as these appear as fuzzy sub-
set. Defuzzification is frequently carried out by center of 
gravity method [8]. 

 

Figure 1. Basic structure of a fuzzy inference model. 
 

 

 

Figure 2. Triangular functional diagram and method for 
calculating membership function (μ) and corresponding 
fuzzy levels. 

2.1. Fuzzification 

Figure 2 shows the mathematical approach to derive the 
membership functions and fuzzy levels of a fuzzy vari-
able. For example, value of x of a fuzzy variable yields 
two membership functions (µ1) 0.3 and (µ2) 0.7 and 
fuzzy levels ZE and NS (point of intersections), respec- 
tively. Examples of production rules can be shown as 
follows: 
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 speed (WS) is strong and average temperature 
(T

(T

m

2.2. Min-Max Composition 

 variable x yields two 

IF wind
P) is lower THEN rainfall is moderate.          (1) 
IF wind speed (WS) is strong and average temperature 
P) is moderate THEN rainfall is moderate.        (2) 
In the calculation procedure, the range between the 
inimum (Min) and maximum (Max) value of any fuzzy 

variable is divided into a suitable numerical scale in as-
cending order starting from the minimum value. Figure 2 
shows the range and the fuzzy levels for any fuzzy set of 
object in a triangular functional diagram. Here, the range 
has been divided into 5 equal sub-ranges representing 
ascending ordered fuzzy levels and are abbreviated: NL, 
NS, ZE, PS, and PL. Abbreviations and meanings for 
these five fuzzy levels are shown in Figure 2. 

Figure 2 shows that one fuzzy
membership functions µ1 = 0.7 and µ2 = 0.3 and their 
fuzzy levels are NS and ZE, respectively. Hence, if there 
are two fuzzy variables in antecedent parts as in equation 
1 or 2, there will be four membership functions (µ) and 
four respective fuzzy levels obtained after fuzzification. 
Refer to Figure 3, membership functions µ1 = 0.2 and µ2 
= 0.8 and their fuzzy levels of WS are ZE and PS, re-
spectively and membership functions µ1 = 0.3 and µ2 = 
0.7 and respective fuzzy levels of TP are ZE and NS, 
respectively. These values are considered to form a table 

to yield the membership functions (µ) and their fuzzy 
levels for the inference part of production rules. Here, 
rainfall is shown in Equations (1) and (2). 

 

Fuzzy levels for the production rules are shown in 
Figure 3 as follows: 

IF WS is ZE and TP is NS THEN RF is NS.   (3) 

IF WS is PS and TP is NS THEN RF is ZE.    (4) 

IF WS is ZE and TP is ZE THEN RF is ZE.    (5) 

IF WS is PS and TP is ZE THEN RF is ZE.   (6) 

Here fuzzy level for RF are (THEN parts) NS, ZE, ZE, 
and ZE in Equations (3)-(6) are selected based on logic 
and that should give the lowest percentage of error be- 
tween calculated and predicted value of rainfall. Now 
taking the minimum values of the membership functions 
(µ) for individual equations will yield the values of 
membership functions as follows: 

IF WS is ZE(0.2) and TP is NS(0.7) THEN RF is NS (0.2). 

(7) 

IF WS is PS(0.8) and TP is NS(0.7) THEN RF is ZE (0.7). 

(8) 

IF WS is ZE(0.2) and TP is ZE(0.3) THEN RF is ZE (0.2). 

(9) 

IF WS is PS(0.8) and TP is ZE(0.3) THEN RF is ZE (0.3). 

(10) 

 

Figure 3. Method for calculating membership function (μ) and corresponding fuzzy levels by min-max composition. 
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O

le

2.3. Defuzzification 

NS(0.2) and ZE(0.7) and their fuzzy 

3. Primary Model 

as developed using data from 

l 1 to 
30

ut of Equations (7)-(10), there is only one NS fuzzy 
vel and three ZE fuzzy levels for RF. Hence, in this 

kind of situation there NS0.2 is considered without any 
option. In the remaining Equations (8)-(10), fuzzy levels 
are the same for rainfall. In this situation, the maximum 
value of membership function out of ZE(0.7), ZE(0.2), and 
ZE(0.3) is ZE(0.7). Finally, two fuzzy levels NS and ZE for 
rainfall and their membership functions NS(0.2) and ZE(0.7) 
are obtained. This above mathematical calculation pro-
cedure is called min-max composition. 

 

Figure 5. Actual and calculated amount of rainfall (RF) in 
mm during April 1 to 30, 2004 using AAMU campus data. 

e 

 31. 
ighest limit B was consid- 

er Similarly, values of RH 
le

eration 
 should 

Membership functions 
levels NS and ZE, respectively are available from the 
min-max composition and can be plotted in another tri- 
angular functional diagram for rainfall where the values 
of membership functions NS(0.2) and ZE(0.7) and their 
fuzzy levels NS and ZE are super imposed [8]. A new 
polygon is formed as shown by thick lines in Figure 4. 
Now the calculated coordinate (x-axis value) of the cen- 
ter of gravity in this polygon yields RF. This method of 
determining the predicted value of RF is termed defuzzi- 
fication. 

The primary model w
United States Development of Agriculture (USDA) Soil 
Climate Analysis Network Station at the Alabama Agri- 
cultural and Mechanical University (AAMU) Campus for 
2004. Based on the trend of that data, it was observed 
that in most cases RF was found to occur when a condi- 
tion of an increase in WS and a decrease in TP when 
compared between the ith and (i−1)th days exists.  

Result of the primary model using data from Apri
 of 2004 from AAMU campus showed that the timing 

of predicted RF occurrences undisputedly matches with 
the actual RF (Figure 5). But some discrepancies in 
matching between the amount of actual and predicted 
values are yet to be improved. The primary model was 
developed based on some assumptions on the values of 
factors as indicated in Figure 6.  
 

 
Figure 6 further shows 2 boundary values of RH. The 
west bound was denoted by A and the highest valulo

was denoted by B. These two values were different dur-
ing three seasons of a year. These three seasons are as 
follows: 

1) January 1 to April 31; 
2) May 1 to September 30; 
3) October 1 to December
Values of RH beyond the h
ed to cause an immediate RF. 
ss than the value of A was considered to never cause a 

RF occurrence. Values between A and B were considered 
to be the possible zone of RF occurrence with the addi- 
tional consideration of HI value. Region between A and 
B would cause a RF if the HI value was greater than 10 
when compared between the ith and (i−1)th day. But the 
value of HI ≤ 10 might also contribute to a RF occur- 
rence if the value of P (product of WS and TP) when 
compared between the ith and (i−1)th day was greater 
than 4 else there was no possibility of having a RF. 

4. Improvement of the Primary Model 

This model was developed with careful consid
that the individual result of calculated value of RF
match the actual value of RF. Moreover, an additional 
consideration was that the calculated amount of RF 
should not be a value of RF which is more than the actual 
value of RF with an objective to avoid the misjudgment 
of falsely predicting a flood (if the calculated value of RF 
is much higher than actual value of RF) or a misjudg-
ment on minimum available soil moisture in case of 
moderate or very low value of calculated RF. Hence, the 
calculated value of RF amount was strongly desired to 
match with the actual value of RF. Figure 5 further 
shows a good match of the calculated timing of RF with 
the actual RF occurrences, but a fairly wide discrepancy 
between the calculated and actual values of RF. More-
over, it gives an over prediction of RF which is not con-

 

Figure 4. Defuzzification by center of gravity method. 
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sidered to be on the safe side. Focusing on the real data 
and the total results, it was further observed that the 
value of calculated RF does not follow the same trend of 
decrease or increase with similar range of data of WS 
and TP when compared between the ith and (i−1)th day, 
especially when the actual value of RF is in the higher 
range. Hence, improvement of the primary model to pre- 
dict a value of RF closer to actual RF was considered an 

important objective.  
The primary model was th

 

en carefully examined for 
possible ways to get a better match between the calcu- 
lated and actual values of RF. Figure 6 shows the thresh- 
old values of the variables and how their ranges were 
considered in the primary model. Figure 7 represents the 
improved version of Figure 6 that has been considered in 
the improved model.  

 

ng rainfall (RF). 
 

Figure 6. Threshold values of additional factors for predicti

 

e improved model. Figure 7. Threshold values and ranges of the factors for predicting RF for th
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Analyzing the initial results and raw data, different as- 

sumptions and threshold values were considered on RH 
on ith day, HI when compared between the ith and (i−1)th 
day and value of (P) of WS and TP were as follows. 

4.1. Threshold Boundaries 

Two threshold limits, left bound (A) and right bound (B) 
were reselected. Values for (A) and (B) were different 
than in the primary model during January 1 to April 31 as 
shown in Figures 6 and 7. 

4.2. Assumptions on RH 

1) If the value of RH on ith day is >(B) then there is a 
RF occurrence; 

2) If the value of RH on ith day is in between (A) and 
(B) then there is a possibility of RF occurrence; and 

3) If the value of RH on ith day is <(A) and value of 
solar radiation SR is <40 then there is a RF occurrence 
else there is no RF occurrence. 

.3

a) the sum of HI between the ith and (i−1)th day and 
d 

nd (i−1)th day is ≤10 and SR 
ility of RF occurrence else 
e. 

Range of 

d 
ence 

w

rrence when there is a trend of de- 
cr

 model a preliminary 
m  fuzzifying WS and 
TP

fuzzy levels obtained from preliminary 
min-max composition were again considered along with 

the membership functions (µ) and their corresponding 
fuzzy levels of SR to do the secondary min-max compo-
sition finally to yield the predicted RF. The above case 
was considered only if the value of SR has a decreasing 
trend for two previous consecutive days. Otherwise no 
need of fuzzification of SR was considered where the 
preliminary min-max composition was done to yield the 
predicted value of RF. Figure 8 represents the model 
structure with secondary min-max composition when the 
value of solar radiation has a decreasing nature for two 
consecutive days else predicted value of RF was calcu- 
lated by defuzzification right after the preliminary min- 
max composition operation. 

4.5. Percentage of Error Calculation 

Percentage of error and the improved model performance 
was evaluated by the following equation: 

4 . Assump

1) If the HI between the ith and (i−1)th day > 10 and it 
is beyond (B) then there is a RF occurrence with a fuzzy 
level of PS only if   

tions on HI between (A) and (B) 

Humidity on the ith day > 100 an
b) value of (Humidity + 5) > 90, 
2) If HI between the ith and (i−1)th day is within the 

range of ≤10 and >10 then there is possibility of RF oc- 
currence, and 

3) If HI between the ith a
is <40 then there is a possib
there will be no RF occurrenc

4.4. Assumptions on P between the 
Threshold Values (A) and (B) 

1) If the value of P of WS and TP is ≤5 then there is no 
RF occurrence,  

2) If the product of WS and TP is >5 then there is no 
RF occurrence only if  

a) WS is not increasing and TP is not decreasing an
b) SR > 100 then there will be a light RF occurr

ith fuzzy level NL. 
Actual data showed that most of the time, there is a 

possibility of RF occu
easing the value of SR comparing the previous 1 or 2 

days. Hence, to improve the primary
in-max composition was done by
 to yield ø, representing the condition that is favorable 

for a RF occurrence. Membership functions (µ) and their 
corresponding 

1 1

abs

Error 100
ii

n n

a c
i i

RF R
 

 
 

  
 

   (11) 

i
f rainfall in mm. “n” is 

5. R

Fu
 between the ith and (i−1)th 

da - 
di

lved with the variables which are 
pe

1
ia

i

Here, 
iaRF  is the actual amount of rainfall in mm, 

cRF  is the calculated amount o

n

RF

F

total number of data. 

esults and Discussions 

5.1. Selection of Variables in the Primary Model 

zzy variables of increase in wind speed (WS) and de-
crease of temperature (TP)

y were a good choice in developing the model for pre
cting RF in the primary model. In reality, fuzzy infer- 

ence models are invo
rceived by the experts who are responsible for inferring 

the consequence part of the production rule. That means 
a fuzzy inference model reflects the scenario of thinking 
and decision-making process by an expert knowledge. 
The primary model also described a secondary method 
how the variables can be selected without even being 
perceived by an expert. The fuzzy variables were chosen 
by judging the degree of involvement or association of 
the variables of WS and TP between the ith and (i−1)th 
day against occurrence of RF. Hence, the variables WS 
and TP between the ith and (i−1)th day were used in this 
model. 

5.2. Selection of Fuzzy Levels for the Inference 
Part of Production Rule Table in the 
Primary Model 

Selection of the fuzzy levels in the inference portion of 
the production rules is a cumbersome process by trial and 
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error method. There are 5 (NL to PL) × 5 (NL to PL) = 
25 fuzzy variables for the inference part shown inside the 
Table of Figure 3. Number of fuzzy levels is doubled if 
it needs the secondary min-max composition as ex-

roach for the 

pending on the 

y variables in the antecedent part of production 
rule. The value for lowest percentage of error of the pri-

 

plained in Figure 8. The most logical app
fuzzy variables for RF was followed in the computer 
program, selecting the one that yielded the lowest per-
centage of error using Equation (11). De

scenario of the system, fuzzy levels in the inference part 
of the production rule must have either an ascending or 
descending nature, from NL to PL or PL to NL. It re-
quires a skillful and logical approach to determine the 
fuzzy variables for the consequent part with respect to 
the fuzz

mary model was 12.35 using Equation (11). 

 

Figure 8. Concept of considering solar radiation (SR) in the improved model. 
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5.3. Maximum Amount of RF 

Real data for RF showed that AAMU campus weather 
station had only 5 actual RF events exceeding 50 mm in 
2004. The maximum RF was 93 mm which is rare for 
AAMU campus location. Considering Figure 4, if RF data 
more than 50 mm is considered, the region of maximum 
RF (around PL) will be in a sparsely populated data re- 
gion for RF having more than 50 mm, when compared 
with the RF data that falls within the regions of NL, NS, 
ZE, and PS. Regions from NL to PS will have more 
densely populated data while compared to regions from 
PS to PL with cases more than 50 mm actual RF for 5 
times occurrences only in 2004. Hence, in the improved 
model, total range (refer to Figure 2 or 3) was divided 
into 4 sub-ranges to make a uniform distribution of RF 
data among fuzzy levels from NL to PL, the total range 
(refer to Figure 4) was divided into 4 sub-ranges to rep-
resent the following: 

1) first sub-range between NL and NS was taken equal 
to total range divided by 8 (50 ÷ 8 = 6.25); 

2) second sub-range between NS to ZE was taken 
equal to total range divided by 4 (50 ÷ 4 = 12.50); 

3) third sub-range between ZE to PS was taken equal 
to total range divided by 2 (50 ÷ 2 = 25.00); and 

4) fourth sub-range between ZE to PS was taken equal 
to total range divided by 1 (50 ÷ 1 = 50.00). 

Therefore, the sub-ranges were (0 to 6.25), (6.25 to 
12.50), (12.50 to 25.00), and (25.00 to 50.00) mm. 

This means, widening the bases of triangles in Figure 
4 intersect with the x-axis at 0, 6.25, 12.50, 37.50, and 
50.00. In case of the primary model values of the sub-  

ranges were (0 to 12.50), (12.50 to 25.00), (25.00 to 
37.50), and (37.50 to 50.00), respectively. The primary 
model was developed with equal intervals of the triangu- 
lar fuzzy levels where as the sub-ranges in the improved 
model were considered with multiplicative factors of the 
total range. The improved model further excluded zero 
RF. Hence, number of zero RF days was discarded in the 
calculation procedure. Figure 9 shows the predicted and 
actual values of RF during April 1 to 30, 2004. Table 1 
shows the differences in data distribution among the sub- 
ranges between the primary model and the improved 
model when AAMU data were used for the years of 2004 
and 2005. As the actual RF exceeded 50 mm only for 5 
times occurrences, very few compared with the total 
number of actual RF occurrences, and were considered to 
be beyond PL. Hence, considering the value of maximum 
RF as 50 mm was justifiable. 
 

 

Figure 9. Actual and calculated amount of rainfall RF in 
mm 2004 after primary model improvement during April 1 
to 30 using USDA scan data from AAMU campus data. 

 
Table 1. Comparison of the distribution of data caused by two different sub-range selections for the primary and improved 
models using USDA scan data from Alabama A & M University (AAMU) Campus for years 2004 and 2005. 

AAMU 2004 

Primary model Improved model 

Ranges No. of rainy days 
No. of actual 

rainy days 
(%) Ranges No. of rainy days 

No. of actual 
rainy days 

(%) 

0 to 12.50 98 73.68 0 to 6.25 76 57.14 

12.50 to 25.00 15 11.28 6.25 to 12.50 22 16.54 

25.00 to 37.50 12 9.02 12.50 to 25.00 15 11.28 

37.50 to 50.00 

133 133 

1 53 2 1.50 25.00 to 50.00 14 

AAMU 2005 

0.

Primary model Improved model 

Ranges No. of rainy days 
No. of actual 

rainy days 
(%) Ranges No. of rainy days 

No. of actual 
rainy days 

(%) 

0 to 12.50 95 76.00 0 to 6.25 76 60.80 

12.50 to 25.00 16 12.80 6.25 to 12.50 20 16.00 

25.00 to 37.50 11 8.80 12.50 to 25.00 16 12.80 

37.50 to 50.00 2 

125 

1.60 25.00 to 50.00 

125 

13 10.40 
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5.4. Selection of Other Variables and Threshold 

Values 

Based on the fundamental logic of this research that val-
ues of WS and TP between the ith and (i-1)th day may 
result in RF, their fuzzy levels, production rules, ranges 
of the variables, showed dependency on three other pos-
sible factors to match with the actual situation. They 
need to be considered with their threshold values for 
matching with the actual and calculated amount of RF. 
These factors are 1) RH, 2) HI between the ith and (i−1)th 
day, and 3) P. Figure 7 represents two boundary values 
of (A) and (B) for RH. The zone between (A) and (B) is 
the range for a possible RF and the zone beyond (B) is the 
zone for RF regardless of any other consideration. 
Whereas RH less than (A) is the zone for no RF, except 
when the value of SR is <40, in which SR has been used 
to improve the primary model performance. The same 
condition of SR is <40 was considered as contributing to 
RF occurrence for values of HI ≤ 10 when compared 
between the ith and (i−1)th day. The range between the 
values of HI < 10 and >10 may contribute to a RF occur-
rence. Values of HI > 10 will further depend on two 
other conditions to cause a RF occurrence but with a fuz- 
zy level of PS. The conditions are as follows: 

1) if (HI between the ith and (i−1)th day + Humidity 
on ith day) > 100, and  

2) if (RH on ith day + 5) > 90 then there will be a RF 
occurrence. 

Within the range of possibility of RF occurrence (when 
the values of HI between the ith and (i−1)th day is within 

e range <10 and >10), another variable of P (product of 

ther separated into two ranges. They were as follows: 
1) if the value of P is <5 then there will be no RF, an
2) if the value of P ere will be a RF oc-

currence but with fuzzy level of NL

ured at the weather station 
y rain gage. 
The improved model was tested using the USDA-SCAN 

stations data of AAMU campus, Bragg and Winfred A. 
Thomas Agricultural Research Station (WATARS) for 
different years. Table 2 shows the result of the improved 
model for WATARS. Value for amount of maximum RF 
was taken as 50 mm, as it was a reasonable figure for this 
location. Error for 2003, 2004, and 2005 were 3.20%, 
5.90%, and 1.66%, respectively.   

From the real data, it was observed that data from Jan- 
uary 1 to February 7 in 2002 were missing. Total number
of days for was 327 instead of 365. Hence, data for 2002

ua- 

ary 1 to Au- 
 26 and December 1 were unavailable. Lack of data 

and reliability of da for 2006 that gave the 
highest value of percentage of err

 
Table 2. Results of the improved model using a from WTARS. 

r 
No. of actual 

rainy day 
No. of calculated 

rainy d
t of 
) 

Calculated amount of 
) 

Error (%

th
values of the variables of WS and TP when both factors 
were compared between the ith and (i−1)th day) was fur- 

tion (11). 
Table 3 shows the test results of Bragg location for 

years 2004 to 2006. In 2003, data from Janu
d  gust

is >5 then th
. 

The model illustrated a good agreement between the 
actual and calculated amount of RF using USDA-SCAN 
data from AAMU campus for total year of 2004. It 
should be mentioned that Figure 9 shows the results of 
the same graph for a period of April 1 to 30, 2004. This 
graph depicts a good agreement between the calculated 
and actual amount of RF and their times of occurrence. 
There were some cases when the actual RF were more 
than 50 mm. Considering these cases as unusual RF 
amounts at AAMU campus and its vicinity when com-
pared with several other years, such amount of highest 
RF was truncated to 50 mm for a single day. Moreover, if 
this appears to be discriminatory there will be an oppor- 
tunity for compensation when the final step of this re- 
search is completed on the development of the model to 
represent the amount of RF on an area basis and not a 
single point basis as it is meas
b

 
 

were not considered for testing the improved model. That 
would have caused a bit higher value of error as there is 
the involvement of “n”, means number of data in Eq

ta were there 
or. 

USDA scan dat

Yea
ay 

Actual amoun
rainfall (mm rainfall (mm

) 

2003 93 84 1396 3.20  1442 

2004 80 87 1369 1450 5.90 

2005 78 73 1021 1004 1.66 

 
sul rove del using scan d ar

ear 
 of actual 

rainy day 
No. of calculated 

rainy
ount of 
mm) 

Calculated amount o
rainfall (mm) 

Error (%

Table 3. Re ts of the imp d mo USDA ata from Bragg f m. 

Y
No.

 day 
Actual am

rainfall (
f 

) 

2004 92 8 1349 10.37 2 1505 

2005 72 61 901 11.69 

6 76 43 749 25.52 

 1020 

200  1005 
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Table 4. Results of the improved model using

No. of actual No. of calculated 

 USDA data from AAMU campus. 

Actual amount of 
rainfall (mm) 

Calculated amount of 
rainfall (mm) 

Error (%) Year 
rainy day rainy day 

2003 91 91 1344 1357 1.20 

2004 90 86 

2005 80 71 

1465 1433 2.19 

1003 912 9.60 

 
Table 4 represents the results for AAMU location for 

2003 to 2005. Here also data for the whole year were 
unavailable for 2002. Hence, testing the model by using 
data for 2002 was not performed. 

6. Conclusions 

Selection of variables and the fundamental logic that the 
values of WS and TP between the ith and (i−1)th day was 
a successful attempt to determine the amount of RF and 
its time of occurrence as the consequent part of the fuzzy 
inference model. Introducing the idea of threshold values 
of a) RH of the ith day; b) HI when compared between 
the ith and (i−1)th day; and c) P was an intellect attempt 
for the primary model and other additional considerations 
in the improved model matched well between the actual 
and predicted amount of RF and also decreased the value 
of error by using Equation (11). The additional consid- 
erations were as follows: 

Introducing SR value of <40 and its effect below the 
left boundary value of RH: 

1) introducing of SR value of <40 and its effect below 
the left boundary value of HI (≤−10); 

2) introducing of idea “if (HI + RH of the ith day) > 
100 and (RH + 5) > 90” then there will be RF of fuzzy 
level PS; 

3) introducing the idea that “if (wind speed is not in-
cr
th

 secondary min- 
ax compositions approach for the condition that SR has 

a decreasing trend for 
ful attempt. Fuzzy levels and ip 
tained after max com nfere
primary model (fuzzifications done for WS and TP were 
considered t th nvironmental c ition 
to enhance  occurrence when SR value ha  de- 
creasing tre r 2 consecutive days. Values of fuzzy 

vels and membership functions were considered the 
values for one of th
rule table and represented as “

easing or temperature is not decreasing) and SR > 100” 
en there will be RF with fuzzy level NL; 
4) introducing the idea of primary and

m
2 consecutive days was a success- 

membersh
po  i

functions ob-
nce he  min- sition of part of t

as they represen e e ond
 a RF ve a
nd fo

le
e antecedent part of the production 

 ” in Figure 8 for doing 
the second max  wh
variable is SR. The above co was tak to 
account on en the SR va  has a decreasing trend 
for 2 conse s else fo ing the same procedure 
as in the primary model. V of fuzzy lev and 

the decreasing trend of SR for 2 consecu- 
tiv

his manuscript. The 
and financial support 

to the United States Department of Agriculture (USDA) 
ur erv S) for 

co sear ors also  
the late Robert Metzl for iding data related to this 
resea
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membership functions inside the production rule table 
were again considered for doing min-max composition 
with fuzzy levels and membership functions after fuzzi-
fication of SR was a successful attempt for improvement 
of the primary model. Here the membership functions 
and fuzzy levels after min-max composition for conse- 
quent part of the primary model were considered as a 
conditional step that enhanced the condition for RF oc- 
currence with 

e days. 
The above mentioned points include the values of the 

left (A) and right boundary (B), which are different than 
the primary model which in turn yields better result for 
the improved model when compared to the result of the 
primary model. 
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