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Abstract 

Swine wastewater (SW) and olive mill wastewater (OMW) are two problematic wastes that have become 
major causes of health and environmental concerns. The main objective of the current work was to evaluate 
the efficiency of the co-digestion strategy for treatment of SW and OMW mixtures. Mesophilic batch reac-
tors fed with mixtures of SW and OMW showed that the two adapted sludges Gadot and Prigat exhibited the 
best COD removal capacity and biogas production; therefore both were selected to seed up-flow anaerobic 
sludge blanket (UASB) continuous reactors. During 170 days of operation, both sludges Gadot and Prigat 
showed high biodegradation potential. The highest COD removal of 85-95% and biogas production of 0.55 
L·g-1 COD were obtained at a mixture consisting of 33% OMW and 67% SW. Under these conditions, an 
organic load of 28,000 mg·L-1 COD was reduced to 1,500-3,500 mg·L-1. These results strongly suggest that 
co-digestion technology using UASB reactors is a highly reliable and promising technology for wastewater 
treatment and biogas production. 

Keywords: Anaerobic Co-digestion, Olive Mill Waste Effluent, Swine Manure, Biogas, Mesophilic    
Temperature 

1. Introduction 
 
The olive oil industry represents a very important agro-
industrial sector in the economy of the Mediterranean 
region. Currently, two main milling processes are applied 
to obtain extra virgin olive oil: the traditional three-phase 
system, which is used widely in Italy, Greece, Israel and 
other Mediterranean countries, and the two-phase system, 
which is mainly used in Spain [1]. In the three-phase 
system, the wastes generated are olive mill wastewater 
(OMW) and olive mill solid wastewater, whereas with 
the two-phase system, only a semisolid by-product is 
obtained that contains both water and solid residue. The 
average amount of OMW produced during the milling 
process using the three stages process is 1.2-1.8 m3·t-1. In 
the olive-growing countries of the Mediterranean area 
approximately 30 million m3 OMW effluents are pro-
duced as by-products per year, of which about 370,000 
m3 are produced in the Middle Eastern region [2,3]. In 
these countries, OMW is a potential and active source of 
environmental pollution due to its high content of poly-
phenols, tannins, and lipids, which exhibit phytotoxic and  

antimicrobial activities [4-6], as well as a high potential 
to contaminate surface and ground water [3,6,7]. To re-
solve these problems several processes have been devel-
oped such as incineration, concentration by evaporation, 
chemical and electrochemical treatments [8-12], anaero-
bic treatment [13-15] or a combination of these strategies 
[16]. However, except for anaerobic treatment, these 
processes provide incomplete treatment. 

Anaerobic treatment of wastes has drawn considerable 
attention because of the conversion of organic molecules 
into methane, an economically valuable biogas that can 
be used to generate heat and electricity [17]. The high 
organic load of OMW makes anaerobic treatment a very 
attractive treatment option for such waste. However, ob-
taining high anaerobic treatment efficiency of OMW has 
been hampered by (a) very high organic loading (bio-
logical oxygen demand (BOD) and chemical oxygen 
demand (COD) concentrations could reach 100 and 200 
g·L-1, respectively) [6,18], (b) high acidity, (c) low ni-
trogen content, and (d) the presence of compounds diffi-
cult to biodegrade, including phenolic compounds, lipids 
and long chain fatty acids [2,19], most of which are in- 
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hibitory for the sludge bacteria (primarily methanogens) 
responsible for the biodegradation process [2,6,20,21]. In 
order to overcome these problems, several pre- and 
post-treatment processes have been proposed. These 
processes include dilution [2,22], application of two dif-
ferent and serially connected types of anaerobic digesters, 
removal of phenolic compounds using sand filtration and 
powdered activated carbon [3], the electro-Fenton method 
[12], coagulation-flocculation compounds [23], or by em-
ploying an anaerobic OMW-digesting microbial consor-
tium passively immobilized in column reactors and 
packed with granular activated carbon or silica beads 
[24], enzymatic removal [25] or microbial degradation of 
phenolic compounds by fungi [6,26-32] or algae [33]. 
Although these processes may provide a solution, their 
use is compromised by one or more of the following: 
cumbersome operation, extra expenses, lower methane 
productivity (due to a decrease of COD availability as in 
the case of dilution), production of phenolic compound 
derivatives during pretreatment that are more toxic than 
original phenolic compounds [30], and incompatibility 
between the level of the removal rate of phenolic com-
pound and the level of COD reduction efficiency (95% 
removal results only in a maximum of 85% COD reduc-
tion) [3,23]. 

Anaerobic co-digestion is a cost-effective waste treat-
ment method, in which two different types of organic 
wastes are mixed and treated together in a single facility 
[34]. The reason for using a mixture of two different 
wastes in the anaerobic co-digestion process lies in tak-
ing advantage of the abundance of a specific compound 
in one waste type to compensate for its shortage in the 
other waste type, and consequently increase biodegrad-
ability and methane production [34]. Using such ap-
proach, satisfactory results were obtained with several 
combinations of mixed agricultural wastes, for example, 
swine and poultry wastes [35] or energy crops and cow 
wastes [36]. In both cases, it was shown that co-digestion 
not only facilitated biodegradation of the organic com-
pounds but also enhanced methane production. 

The presence of major pathogens and antibiotics in 
poorly treated swine wastewater (SW) and manure [37-39] 
and their potential to contaminate both surface water and 
groundwater [40], which then can enter into the human 
food chain and water resources [41], raises considerable 
health and environmental concerns. The anaerobic co- 
digestion approach can be used as an alternative treat-
ment for solving environmental pollution problems from 
both OMW and SW. SW, with OMW as a codigestate, 
can be optimal for the co-digestion process. While OMW 
is characterized by seasonal production, high organic 
load, high concentrations of lipids and phenolic com-
pounds and high acidity, SW is characterized by year- 
round production, low organic load, but exhibits a high 
concentration of nitrogen compounds and high alkalinity 
[42-44]. Therefore, mixing OMW with SW will not only  

result in dilution of the inhibitory compounds in OMW, 
but also the adjustment of pH to a neutral value and will 
compensate for nitrogen shortage, resulting eventually in 
increased biodegradability and methane production [44]. 

The up-flow anaerobic sludge blanket (UASB) system 
is one of the reactor types with high loading capacity and 
it differs from other reactors by the simplicity of its de-
sign [45]. Only 70-80% in COD reduction rates and 65- 
75% in methane production rates has been reported for 
UASB systems treating OMW and SW mixes [44,46]. 
Optimization of the anaerobic co-digestion process for 
higher organic reduction and methane production rates is 
imperative for large-scale economic use of such tech-
nology. Therefore, the aim of this research is to increase 
the economic capacity of the anaerobic co-digestion proc-
ess of OMW and SW in a UASB system. Since the per-
formance of the UASB system is highly dependent on 
the source of the sludge, i.e., the composition of the mi-
crobial biomass responsible for biodegradation, special 
emphasis was put on selection of appropriate sludge 
source. This was done in parallel to optimization of the 
co-digestion process for higher reduction efficiency of 
the organic load while maintaining high biogas produc-
tion capacity. 
 
2. Materials and Methods 
 
2.1. Analytical Methods 
 
Volatile solids, total solids and BOD and COD, were 
determined using Standard Methods [47]. Prior COD 
analysis, each batch or UASB sample was centrifuged at 
5000 rpm for 10 min. Total nitrogen and phosphate were 
determined using the Kjeldahl-N method (steam distilla-
tion) [47]. 
 
2.2. Batch Experiments 
 
SW and OMW were collected from nearby farms in the 
Galilee region, Israel. OMW came from a three-phase 
continuous olive oil extraction process and SW was ob-
tained from a pig farm. Preliminary results showed that 
an OMW: SW ratio of 1:1 (50% of each wastewater), but 
not 1:2 (33% OMW and 67% SW), inhibited the biodeg-
radation process. Therefore, the latter ratio was used for 
all subsequent batch experiments. In order to study the 
effect of the organic load of the OMW: SW mixture and 
the retention time on the performance of the batch reac-
tors, eight different concentrations (ranging from 1050 to 
20100 mg·L-1) of the mixture were prepared by dilution 
with water (see results). To identify sludge types which 
are mostly adapted to co-digestion, and to be subse-
quently used in the UASB experiments, five different 
sludge sources (Sakhnin Municipal Wastewater Plant, 

Copyright © 2010 SciRes.                                                                               JWARP 



H. AZAIZEH  ET  AL. 
 
316 

Haifa Municipal Wastewater Plant, Olive Mill Wastewater  
Plant, Gadot Chemical Wastewater Plant, and Prigat Soft 
Drink Wastewater Plant) were used for inoculation of 
each OMW:SW concentration as follows: sterile serum 
flasks were filled with 250 mL of a given COD and in-
oculated with 25 g sludge of a different source. After 
mixing, the pH in each flask was adjusted to neutral pH. 
The flasks were incubated in a water bath at 38 ± 2℃ for 
11 days. Samples were taken several times during the 
incubation period (depending on the removal capacity of 
the sludge) to determine the COD level. In parallel, the 
emitted biogas was collected continuously in cylinders 
filled with water standing upside down in a water bath to 
determine the level of biogas production. For comparison, 
another similar set of COD concentration was prepared, 
in which SW was used as the sole wastewater, inoculated 
with the different sludge types as mentioned and tested 
for biodegradation and biogas production. Since none of 
the sludge types were able to biodegrade high COD con-
centrations prepared only with OMW, such experiments 
were excluded from the study. 
 
2.3. UASB Experiments 
 
The UASB used in this study, made of Plexiglas, was 
built with a double jacket. The internal diameter, external 
diameter and the height of the UASB system were 5.5 
cm, 12 cm, and 223 cm, respectively. It had an active 
volume of 8.1 liters. The temperature in the UASB was 
controlled by circulating hot water from an electrically 
controlled heat exchanger through the external jacket of 
the reactors. Two UASB reactors, one seeded with Gadot 
sludge and the other with Prigat sludge, were operated 
simultaneously to test their potential in COD removal 
and biogas production over time. The UASB reactors 
were fed in the first 60 days of operation with 6 L·d-1 
mixtures of OMW and SW, and thereafter the feed was 
raised up to 10 L·d-1. Each UASB reactor was seeded 
either with 500 mL of granular Prigat sludge or Gadot 
sludge, which were found to yield the best results in the 
previous batch experiments. The COD of the OMW was 
ca 140 g·L-1 and for SW ranged between 14-25 g·L-1. A 
starting OMW: SW ratio of 1:2 (corresponding to 5,000 
mg·L-1 COD) was prepared from these wastes and pumped 
into the bottom of each reactor simultaneously using a 
peristaltic pump. The pH of the effluent mixture was 
around 7.0 and the average temperature was kept at 36℃ 
in both reactors. The corresponding organic load rate 
(OLR) was calculated per day during the 170 days of 
operation. In the first 60 days, the feed was fixed at 6 L·d-1 
(with 5,000 mg·L-1 COD initially and increased gradually 
up to 28,000 mg·L-1), and thereafter it was increased to 
10 L·d-1 (COD of 25,000-28,000 mg·L-1). Influent and 
effluent samples were collected periodically from each 
UASB and analyzed for COD content, as described ear-
lier, in order to calculate the COD removal capacity of 

each UASB. 
 
3. Results and Discussion 
 
3.1. Batch Experiments 
 
3.1.1. Effect of the Retention Time and Organic Load 

on the Performance of the Batch Reactors 
Seeded with Different Sludge Types 

Various dilutions of a stock mixture of OMW: SW at a 
ratio of 1:2 were prepared and inoculated with five dif-
ferent sludge types. The quantity of biomass (sludge) 
was maintained constant during the experiments. The 
biodegradation process was allowed to occur for 11 sub-
sequent days. The organic load in the bioreactors seeded 
with Haifa sludge was reduced slightly but steadily dur-
ing the whole 11 days, particularly at an initial COD 
above 7,550 mg·mL-1, suggesting that a retention time of 
11 days does not sustain the full degradation potential of 
this sludge (data not shown). The same result was also 
obtained for the Sakhnin sludge (data not shown). In 
contrast, the organic load in the bioreactors seeded with 
Gadot (Figure 1), Prigat (Figure 2), and OMW (data not 
shown) was sharply reduced within 2-4 days (depending 
on the initial COD), and then the COD removal rate re-
mained constant during the subsequent days. This indi-
cates that a retention time of 2-4 days was sufficient to 
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Figure 1. Reduction of COD over time in batch experiments 
using Gadot sludge. 
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Figure 2. Reduction of COD over time in batch experiments 
using Prigat sludge. 
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achieve maximum degradation potential of these two slu- 
dges. 
 
3.1.2. Effect of the Organic Load on the Co-digestion 

of OMW and SW using Different Sludge Types 
The COD removal rate and accumulated biogas calcu-
lated and collected on day 11 were used to evaluate the 
co-digestion potential of each sludge type. In the biore-
actor seeded either with Haifa sludge (Figure 3) or 
Sakhnin sludge (data not shown), increasing the organic 
load (initial COD) up to 9,740 mg·mL-1 and 12,560 
mg·mL-1, respectively, resulted in increased biogas pro-
duction and COD removal rate. However, increasing the 

COD level above these values resulted in a substantial 
reduction in biogas accumulation and COD removal rate. 
This effect could be attributed to the inhibition of the 
co-digestion process caused by the polyphenols and tan-
nins present in OMW, which are apparently toxic to the 
sludge bacteria at these high concentrations of COD. 
Interestingly, the behavior of bioreactors seeded with 
OMW, Gadot and Prigat sludges was completely differ-
ent. In the bioreactors seeded with either Gadot or Prigat 
sludges, increasing the initial COD resulted in increased 
amounts of accumulated biogas, even at high COD levels 
reaching 17,250 mg·mL-1 (Figures 4 and 5). Moreover, 
the COD removal rate of these sludge types, particularly 
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Figure 3. The effect of COD concentration on the COD reduction rate and accumulation of biogas in batch experiments using 
Haifa sludge. 
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Figure 4. The effect of COD concentration on the COD reduction rate and accumulation of biogas in batch experiments using 
Gadot sludge. 
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Figure 5. The effect of COD concentration on the COD reduction rate and the accumulation of biogas in batch experiments 
using Prigat sludge. 
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the OMW (data not shown) and Prigat (Figure 5), re-
mained almost constant irrespective of the initial COD 
value. In addition, both the accumulated biogas and the 
COD removal rates of the three sludge types were sub-
stantially higher than those obtained with the Haifa and 
Sakhnin sludge types at any COD value tested. Only at 
concentrations higher than 17,250 mg·mL-1, the toxic 
effect of polyphenols in OMW, where the co-digestion 
potential of these sludge bacteria was affected. (Figures 
4 and 5). These results clearly indicate that OMW, Prigat 
and Gadot sludge types obtained from agricultural waste 
plants are more compatible for the co-digestion process 
of the OMW:SW mixtures, probably due to the higher 
tolerance of the sludge bacteria to the phenol toxic com-
pounds present in OMW. Although no nitrogen com-
pounds were added to the batch experiments, high COD 
removal rates (70-80% at high COD value) were ob-
tained when Gadot or Prigat sludges were used. In ac-
cordance with this finding, other researchers have re-
ported that co-digestion of OMW with manure in batch 
reactors circumvents the need for an external nitrogen 
source [44,48,49]. As expected of the high BOD/COD 
value of OMW (140,000 and 27,500 mg·L-1, respectively) 
compared to the low BOD/COD value of SW (22,440 
and 17,450 mg·L-1, respectively), the degradation ability 
of the sludge bacteria for SW when SW was the sole 
wastewater source, was very high (85-95% COD remo- 
val rate) for all sludge types tested, even at COD con-
centrations reaching 17,000-18,000 mg·mL-1. In contrast, 
COD concentrations as low as 10,000-12,000 mg·mL-1 
hindered completely the degradation ability of the bacte-
ria in all sludge types (data not shown). This clearly indi- 
cates that the negative effect of OMW:SW mixture on 
co-digestion is exerted by toxic compounds primarily 
from OMW, such as the phenolic compounds. The batch 
experiments presented here clearly show that the co-dig- 
estion rate and the accumulated amounts of the biogas 
are dependent on the initial COD and on the type of the 
seeded sludge. Since the Gadot and Prigat sludges exhib-
ited the highest COD removal capacity (70-80% at high 
COD value), both were selected for further experimenta-
tion as the seeded sludges for the UASB reactors. 
 
3.2. UASB Experiments 
 
The calculated OLR of each UASB reactor was on aver-
age 38 g/(L·d) (COD) in the first 60 days and 110 g/(L·d) 
(COD) thereafter. Both reactors were started on a ratio of 
OMW and SW of 1:2, respectively, and on day 70 the 
ratio was changed to 1:1.5 for few days (Figures 6 and 
7). Such a change caused an immediate drop in the COD 
removal capacity into ca 70%, therefore the ratio was 
switched back in both UASB into 1:2 ratio. This indi-
cates that the toxic organic compounds present in OMW 
begin to affect co-digestion capacity of these sludges at a 

ratio of 1:1.5 and lower. This is a similar inhibition effect 
was noticed when the COD level was raised more than 
17,250 mg·L-1 in the batch experiments (Figures 4 and 
5). However, such detrimental effect was only transient, 
suggesting that the effect of the inhibitory compounds is 
reversible and that the co-digestion process operating in 
the conditions described is stable enough to contain mi-
nor inhibitory changes. During 170 days of operation, the 
COD removal capacity of both UASBs was in the range 
of 85-95% (Figures 6 and 7). This is the first published 
result in which a co-digestion process of OMW with SW 
results in such extremely high levels of COD removal. 

In the last decade, most of the research on OMW 
treatment has been focused on the use and development 
of coagulation-flocculation treatments, anaerobic meth-
ods and bioreactors such as UASB reactors that can effi-
ciently remove the high organic load and phenolic com-
pounds [6,19,50,51]. Co-digestion of OMW and manure 
in UASB reactors successfully removed 65%-75% of the 
initial COD load [44,48,49]. In one study [44], it was 
shown that the high content of ammonia in swine manure, 
together with the contents of other nutrients, made the 
co-digestion process possible without the external addi-
tion of alkalinity and extra nitrogen. Anaerobic digestion 
of OMW mixed with swine effluents was carried out 
using up-flow anaerobic filter type reactor, which re-
sulted in the conversion of 70-80% of the initial COD 
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Figure 6. The COD reduction rate over time of OMW: SW 
co-digestion in UASB system seeded with Prigat sludge. 
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Figure 7. The COD reduction rate over time of OMW: SW 
co-digestion in UASB system seeded with Gadot sludge. 
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(20-60 kg·m-3), and produced 1-3 m3·m-3·d-1 of biogas 
and a stabilized effluent with neutral/basic pH [46]. 
These two F1 and F2 digesters were run for 439 and 473 
experimental days, respectively [46]. Our data show that 
using a UASB reactor seeded with unique sludges, such 
as Prigat or Gadot, higher COD removal capacities of 
85-95% can be achieved and were rung for 170 days. 

A mathematical model was developed to describe an-
aerobic co-digestion of manure with OMW effluents [49]. 
Simulation data indicated that lack of ammonia, needed 
as a nitrogen source for bacterial growth and as an im-
portant pH buffer, could be responsible for the problems 
encountered when anaerobic degradation of OMW alone 
was attempted. It was shown that the amount of nitrogen 
needed to obtain a stable degradation of OMW can be 
provided by manure during co-digestion of OMW and 
animal manure [49]. 

Anaerobic co-digestion of OMW with SW has other 
advantages over anaerobic digestion of OMW alone, par- 
ticularly in introducing bacteria capable of phenol bio-
degradation through the addition of SW. An anaerobic 
consortium of bacteria containing sulfate-reducing bacte-
ria and acetate-utilizing methanogenic bacteria were iso-
lated from swine manure [52]. This consortium used 
phenol as its sole source of carbon and converted it to 
methane and CO2. The metabolic activities of both sul-
fate-reducing bacteria and the methanogenic bacteria 
were essential for complete degradation of [52]. Hence, 
co-digestion may also provide a simple means for reduc-
ing the level of phenolic compounds in OMW wastewa-
ter. The microbial communities in Prigat and Gadot 
sludges involved in the processes of biodegradation and 
biogas production are now under investigation in our lab. 
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