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Abstract 
 
Present study emphasizes the applicability of linear theory concept onto hilly watersheds. For this purpose, 
Z-transform technique was used to derive the instantaneous unit hydrograph (IUH) from the transfer function 
of autoregressive and moving average (ARMA) type linear difference equation. Parameters of the ARMA 
type rainfall-runoff process were estimated by least-squares method. The derived IUH from Z-transform (i.e. 
ARMA-IUH) has been used to compute the hydrologic response i.e. direct runoff hydrograph (DRH). Fur-
ther, the superiority of the proposed approach has been tested by comparing the results through the results 
obtained from the Nash-IUH. Analyzing the results obtained from ARMA-IUH and Nash-IUH for the two 
hilly watersheds of North Western Himalayas shows the applicability of the linear theory concept even in 
turbulent flow conditions which are frequently encountered in hilly terrains under similar conditions of flow. 
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1. Introduction 
 
The rainfall-runoff process is nonlinear and dynamic 
with spatially distributed inputs and outputs. Watershed 
response is inherently spatial, non-linear and time-variant. 
However, linear models are frequently used for analysis 
of watershed response to rainfall, as they are mathemati-
cally more convenient to handle than non-linear models. 
The input-output mathematical models based on linear 
theory of hydrologic systems attempt to establish a link 
between two or more observed phenomena without de-
tailed description of physical process under investigation. 
In hydrological context, the basin is regarded as the sys-
tem in which an input of effective rainfall is transformed 
into an output of discharge at the basin outlet. Spolia and 
Chander [1] presented a discretely coincident form of the 
equal-reservoir cascade model [2]. A discrete linear cas-
cade model was developed for hydrology using the cas-
cade concept of the Auto Regressive Moving Average 
(ARMA)-type difference equation and derived the unit 
impulse response function as a discrete time function for 
a family of discrete-parametric models [3–4]. Wang and 
Wu [5] showed that discrete input data could be repre-
sented by means of unit step functions. Wang et al. [6] 
developed a rainfall-runoff model for small watersheds 
and an applied discrete excess rainfall-runoff model to 

calculate the hydrograph of a watershed from the excess 
rainfall under the concept of linear system. 

Hilly terrains are generally encountered in many coun-
tries. Planning of water resources is equally important for 
such watershed. Often, very little attention has been given 
to these watersheds because of poor availability of hydro-
logical data due to inaccessible terrains. In this work, data 
of two hilly watersheds are subjected to analysis using 
Z-transform technique, with the objective to study the 
rainfall-runoff process. Normally, rainfall-runoff process 
is treated as a linear system. However, it is perfectly not 
known whether this linearity also holds good for hilly wa-
tersheds. Thus, the intention is to analyze the data and see 
the applicability of using linear system concept in the 
modeling of rainfall-runoff in hilly terrains. 

Hilly terrains normally possess larger roughness in 
comparison to the plane watersheds. This may be be-
cause of the nature of surface over which overland flow 
can take place. Piece of boulders, gravels is frequently 
encountered in the hilly regions. Also, a dense forests 
and scrubs may add to the roughness. Thus, it is equally 
important to test the linear behavior of the system even 
in conditions of terrains having normally higher rough-
ness. In hilly terrains, due to higher roughness and large 
velocities of flow, the regime of flow is generally turbu-
lent and applicability of linear system concept on hilly 
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terrains remains unexplored. 

Therefore, the present study has been carried out with 
an objective to test whether the system behaves in a lin-
ear manner even under several extreme and complex 
conditions of terrains and nature of flow. 
 
2. Derivation of IUH 
 
Since inception [7], the unit hydrograph approach has 
been very well established as a linear theory concept in 
surface water hydrology and is continuously used by the 
researchers. For more generalized form, an instantaneous 
unit hydrograph (IUH) approach has achieved consider-
able momentum [2,8–10]. Other than the conceptual mod-
els [2,10], the researchers investigated wide range of 
methodology to derive IUH [11]. Also, many transform 
techniques (viz., Harmonic series, Fourier transform, 
Laplace transform etc.) either in continuous time domain 
or discrete time domains have been successfully used in 
the derivation of IUH. The Z-transform method constitutes 
one of the transform methods that can be applied to de-
velop the response functions as a discrete time function of 
linear difference equations [10–15]. The technique works 
under the premise that the rainfall-runoff process behaves 
as a linear system for which Z-transform of the direct run-
off equals the product of the Z-transform of the transfer 
function and the effective rainfall. They have used higher 
order polynomial to analyzed the single storm event and 
derive the unit hydrograph ordinates by root selection 
from Argand diagram, which is a complicated and time 
consuming process. Therefore, in the present study ana-
lytical derivation of instantaneous unit hydrograph from 
the transfer functions of ARMA type difference equation 
using the Z-transform (ARMA-IUH) has been presented. 
The derived ARMA-IUH is then used to apply for the 
computation of direct runoff hydrographs. The relative 
performance of the proposed method has been tested by 
comparing it with the Nash-IUH model. 

Therefore, the procedure for the derivation of ARMA- 
IUH and Nash-IUH has been represented in the follow-
ing section. 
 
2.1. ARMA-IUH (p, q) Model 
 
The current outflow at the watershed outlet would gener-
ally be expected to depend on inflows (excess rainfall) and 
outflows (direct runoff) of several time units back. There-
fore, an autoregressive and moving average (ARMA) 
process of excess rainfall-direct runoff can be used to de-
termine the transfer function of the watersheds. The auto-
regressive and moving average of order (p, q) (ARMA (p, 
q)) process of rainfall excess and direct runoff can be 
given as [16]: 
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in which Q(t) is the direct runoff in m3/sec, I(t) is the 
excess rainfall intensity in m3/sec,  and are the 
discrete time invariant parameters to be estimated and p 
and q are the order of the autoregressive and moving 
average (ARMA) processes respectively. For hydrologic 
applications, values of p and q must be selected through 
model identification and are generally less than four [17]. 
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Equation (2) can be expressed in the form of transfer 
function as: 
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where, H(t) is the transfer function of ARMA(p, q) proc-
ess of excess rainfall-direct runoff of the linear system. 
 
2.1.1. Definition of Z-Transform 
The Z-transform is one of the transform methods applied 
to the solution of linear difference equations. Difference 
equations are functional equations that define sequences 
and are the discrete counterparts of the differential equa-
tions. In many systems, the outputs are measured at dis-
crete values of time, usually at nT, n = 0, 1, 2, ……., 
where T is the fixed positive number, usually referred to 
as the sampling period (it could be unity).  Consider 
such a sequence {f(nT)} = 0, 1, 2, ………, which can be 
thought of as arising from a continuous waveform sam-
pled at times nT, n = 0, 1, 2, ……. .The Z-transform of 
this sequence is defined as [18]: 
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where, = exp ( )Z i T , R is the radius of conver-

gence of the infinite series, { ( )}Z f  nT is the Z-trans- 

form of the sequence f (nT), ( 1)i   and   is the 
angular frequency. 

Here, in the manuscript the derivation of IUH was pre-
sented for the ARMA (2, 2) and ARMA (1, 1) processes 
using Z-transform technique according to the watersheds 
considered for the study. 
 
2.1.2. IUH from ARMA (1, 1) Process [ARMA-IUH 

(1, 1)] 
The transfer function of ARMA (1, 1) process of rain-
fall-runoff described by Equation (3) can be written as: 
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The Z-transform of Equation (5) is: 

1

10
1

1

1
10

1 aZ

bZb

Za

Zbb

I(Z)

Q(Z)
H(Z)








 



    (6) 

Division of Equation (6) throughout by Z gives: 
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in which Q(Z) and I(Z) are the Z-transforms of Q(t) and 
I(t) sequences and H(Z) is the Z-transform of transfer 
function. The inverse Z-transform of H(Z) gives the unit 
impulse response function as: 
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It should be noted that for t = 0, the unit impulse re-
sponse function will be zero.  Thus, substituting (t-1) in 
place of t for t = 1, 2, ….., n + 1 in the right side of the 
Equation (8), the unit impulse response function, h(t), of 
the watershed can be written as: 
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In Equation (11) which h(t) is the unit impulse re-
sponse function (ARMA-IUH) at discrete time t and t-1 
is the Dirac delta function which is defined as: 
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2.1.3. IUH from ARMA (2, 2) Process [ARMA-IUH 

(2, 2)] 
The ARMA (2, 2) process of rainfall-runoff in its trans-
fer function form described by Equation (3) can be writ-
ten as: 
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Equation (14) can be simplified as: 
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Equation (15) has been written after division by Z as: 
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The partial fraction expansion of Equation (16) is: 
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The inverse Z-transform of Equation (19) is as fol-
lows. 
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Therefore, the unit impulse response function (ARM- 
A-IUH), h (t) will be expressed as follows. 
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2.1.4. Parameter Estimation of ARMA (p, q) Process 
Methods of fitting mathematical models to numerical 
data have been presented in a number of references [17, 
19,20]. The least-square method was used to fit the 
model parameters of the ARMA (p, q) process from in-
put (excess rainfall) and output (direct runoff) data. This 
method seeks estimators which minimize the sum of the 
squared residual or errors between the observed and cal-
culated Q(t). Let the residual be e(t), then: 
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in which  and Q(t) are the observed and calculated 

value of the direct runoff data. The Equation (26) may be 
written in matrix form as follows. 
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The least-square estimate of   is the solution of 

Equation (27), that is: 
1( )T Tβ A A A Q            (32) 

 
2.2. The Nash’s IUH 
 
Nash [2,8] considered watershed as consisting of a series 
of n identical reservoirs and proposed a conceptual 
model by routing an instantaneous inflow through a se-
ries of linear reservoirs in the following form of the in-
stantaneous unit hydrograph equation. 
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In above relationship, u (0, t) is the ordinate of instanta-
neous unit hydrograph (1/hr) at time t, K is storage con-
stant (hr), t is the time in hours after the beginning of 
direct runoff (hr), Γ is the gamma function such that 

 and n is the shape parameter. Equation 

(33) in terms of time to peak (tp) can be written as fol-
lows. 
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In the above relationship, tp is the time of peak flow or-
dinate. 
 
2.2.1. Estimation of Shape Parameter n 
The shape parameter, n was estimated for the corre-
sponding values of dimensionless recession constant 
using the curve (Figure 1), the relationship between di-
mensionless recession constant and the hydrograph pa-
rameter, n. The dimensionless recession constant was 
estimated by using the following equation followed by 
plotting the recession curve of the actual direct runoff 
hydrograph on semi-logarithmic paper, with direct runoff 
hydrograph on the logarithmic scale, it was possible to fit 
a straight line to the part of the curve immediately fol-
lowing the crest segment of the hydrograph [21]. 
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where tpis the time to peak, and Q0 and Q1 is the two 
values of the discharge and t1 and t0 are the correspond-
ing two values of the time on the straight line in the 
semi-logarithmic plot. 

n

/1K tp  
Figure 1. Relationship between dimensionless recession con-
stant and hydrograph (Source: Wu et al., 1964). 

 

 

Figure 2. Drainage map of Arki watershed. 

 
3. The Hilly Watersheds 
 
Two watersheds (viz., Arki and Chaukhutia) of different 
topographic and land use conditions from North Western 
Himalayas have been picked up to test the concept of 
linearity. The Arki watershed (31° 8′ 58″ and 31° 12′ 58″ 
N latitude and 76° 56′ 50″ and 76° 59′ 50″ E longitude)  
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Figure 3. Drainage map of Chaukhutia watershed. 
 
is a sub-watershed of Satluj river catchment comprising 
an area of 24.60 sq km and lies in Solan district of Hi-
machal Pradesh (India) as shown in Figure 2. The wa-
tershed is more or less rectangular in shape and has a 
mean length of 7 km and width of 3.5 km. The maximum 
and minimum elevations of the watershed above mean 
sea level are 1828 m at the upstream end of Arki river 
and 1060 m at the gauging station near the Arki town 
respectively. The watershed lies in the upper Shivaliks 
and mid hills and has sub-temperate climate. The total 
annual rainfall recorded at different locations of the wa-
tershed varies from 800 mm to 2000 mm and about 78 
percent of the total annual rainfall occurs during the 
monsoon season (mid June to mid September). The wa-
-tershed has hilly terrain with extremely undulating and 
irregular slopes ranging from relatively flat in valleys to 
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Figure 4. Comparison of observed and computed direct 
runoff hydrographs of sample storm events of Arki wa-
tershed. 

 
quite steep slopes towards ridges with average slope of 
about 9 percent [22]. Whereas, the Chaukhutia watershed, 
a sub-watershed of Ramganga river catchment, a spring 
fed river originating from the mid-Himalayan ranges in 
Chamoli district of Uttaranchal (India) covering an area 
of 452.25 sq km and is located between 29° 46 15 to 
30° 6 N latitude and 79° 12 15 to 79° 31 E longitude 
as shown in Figure 3. The Chaukhutia watershed is also 
approximately rectangular in shape and elongated in  
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north-south direction, has a maximum length (north- 
south) of 30 km and width (west-east) of 16 km. The 
maximum and minimum elevations of the watershed are 
3114 m at the upstream end and 929 m at the gauging 
station respectively. The slopes in the valley vary from 
8-10 percent. The moderate hills lie between valley and 
steep hills with slopes varying from 10-50 percent while 
the slopes in the steep hills vary from more than 50 per-
cent to almost vertical hills. The annual average precipi-
tation in Chaukhutia watershed varies from 1084 mm to 
1679 mm at different locations with mean annual pre-
cipitation of 1384 mm. From the total annual rainfall, 
about 75 percent occurs during the monsoon season from 
southwest monsoon. The climate of the Himalayan 
sub-watersheds varies from sub-tropical to sub-temperate 
with mean annual temperature of about 22°C. The mean 
annual minimum and maximum temperatures are 18°C 
and 30°C respectively. The monthly mean daily maxi-
mum temperature is highest (40°C) in the month of April 
whereas it is lowest (23°C) in December. The monthly 
mean daily minimum temperature is lowest (2°C) in 
January and highest (20°C) in August. The three distinct 
seasons in the area are: winter (October to March), 
summer (April–mid June) and monsoon (mid June-Sep-
tember). Severe frost occurs during nights from mid- 
December to mid-February when winter rains are defi-
cient and damage fruits and vegetable crops grown in the 
watersheds. 
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Sixteen storm events that produced single peaked run-
off hydrographs for the years 1993 to 1997 for Arki wa-
tershed and twenty storm events for the years 1976 to 
1984 were analyzed to estimate the model parameters 
representing the watershed response. Almost all these 
events encountered a flow regime of turbulent flow 
around occurrence of peak flows. Direct runoff hydro-
graphs were obtained by separating base runoff from 
total runoff hydrographs using the convex method sug-
gested by Chow [23]. The volume of excess rainfall was 
determined by using the Φ-index method. The Φ-index 
method determines the horizontal line on rainfall hyeto-
graph by iterative procedure such that the total depth of 
rainfall above it equals the resulting direct runoff [24]. 
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As stated the objectives of the work is to confirm the 
applicability of the linear system concept for hilly wa-
tersheds in the runoff generation process. Towards this, 
the complexity of the system has been identified by the 
study of flow regime (i.e. laminar or turbulent flow) fol-
lowed by the application of the methodology. For the 
application of the models, the data has been randomly 
divided into the calibration events and validation events. 
The parameters were estimated on the basis of the storm 
events used in calibration. The procedural details are 
discussed in next section for the Arki watershed and 
subsequently the results are presented for Chaukhutia 
watershed. 

Figure 5. Comparison of observed and computed direct 
runoff hydrographs of sample storm events of Chaukhutia 
watershed. 
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Table 1. Comparison of observed and computed peak flows for Arki watershed. 

Computed Peak Flow 
Date of Storm 
Event 

Effective Rainfall 
(cm) 

Observed Peak Flow 
(m3/sec) ARMA-IUH Nash-IUH 

August 6,1993  0.0280  0.75  0.747  0.82  

February 2,1994  0.2422  6.04  6.461  4.08  

*February 20,1994  0.2200  5.89  5.8721  6.43  

July 8,1994  0.5677  16.88  15.13  16.61  

July 19,1994  0.4450  11.53  11.87  13.02  

*July 20,1994  0.3556  9.40  9.4845  10.40  

*August 2-3,1994  0.1536  4.35  4.085  4.49  

August 23,1994  0.0422  1.10  1.126  1.23  

September 5,1994  0.2256  6.05  6.017  6.60  

*September 8,1994  0.1403  4.12  3.746  4.10  

*June 6,1996  0.5174  12.48  13.81  15.14  

*June 17,1996  0.0564  1.37  1.504  1.65  

*June 30,1996  0.4602  11.50  12.27  13.46  

August 2-3,1996  0.0821  2.31  2.19  2.40  

September 2,1996  0.1298  3.75  3.463  3.79  

*August 12,1997  0.2267  6.35  6.048  6.63  

 
Table 2. Average estimated values of statistical measures for the models. 

Arki Watershed Chaukhutia Watershed 
Statistical Measures 

ARMA-IUH Nash-IUH ARMA-IUH Nash-IUH 

Coefficient of Efficiency (CE) 0.9723 0.9190 0.9778 0.9438 

Relative Error in Estimated Peak (EP), % 5.293 9.604 4.2771 4.6232 

 
4. Results and Discussions 
 
Eight out of sixteen storm events of Arki watershed were 
used to calibrate the model parameters. Analysis of these 
data revealed that the ARMA (2, 2) process was best 
fitted for Arki watershed. The average values of the pa-
rameters of ARMA (2, 2) process viz., a1, a2, b0, b1, and 
b2 for Arki watershed were estimated to be 1.05042, 
-0.25591, 0.117016, 0.156270 and 0.126858, respec-
tively. These parameters were then used to develop an 
IUH based on ARMA (2, 2) [i.e. ARMA–IUH (2, 2)] and 
IUH is as follows. 

11
1 )38402.0( 88239.1)66642.0( 50369.1 49571.0)( 
  tt

tth   

(36) 

In the above relationship, t is the unit time step. The 
developed ARMA-IUH has been used to compute the 
direct runoff hydrographs using the convolution tech-
nique. The comparisons of computed direct runoff hy-
drographs along with the observed hydrograph for sam-
ple storm events are shown in Figure 4. The hydrograph 
parameter i.e. peak flow rate for all the storm events used 

in the analysis are given in Table 1. Along with the vis-
ual assessment of proposed model, the following statis-
tical criteria have been employed to test the performance 
of the approach. 

1) Coefficient of efficiency (CE) [25] 
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         (37) 

where ( )Q t


is the computed discharge, is the ob-

served discharge, 

( )Q t

Q  is average value of the discharge 

during the storm. 
2) Relative error in estimated peak (EP) 

100  %
p p

p

Q Q
EP

Q


 


        (38) 

where pQ


is the computed peak discharge and is the 

observed peak discharge. 
pQ

The average estimated values of the CE and EP for 
Arki watershed is given in Table 2. 
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Table 3. Comparison of observed and computed peak flows for Chaukhutia watershed. 

Computed Peak Flow Date of Storm 
Event 

Effective Rainfall 
(cm) 

Observed Peak Flow (m3/sec)
ARMA-IUH Nash-IUH 

July 23, 1976 0.1150 55.0 58.31 58.65 

August 23, 1976 0.1166 55.0 59.12 59.46 

July 21-22, 1977 0.2690 135.0 136.39 137.19 
*July 22-23, 1977 0.2591 140.0 131.38 132.14 

August 11, 1977 0.1914 100.0 97.05 97.61 

August 18-19, 1978 0.2816 150.0 142.78 143.62 
*September 2, 1978 0.2573 129.0 130.46 131.22 
*June 21-22, 1979 0.1456 72.0 73.832 74.26 

July 21-22, 1979 0.1428 74.0 72.41 72.83 

August 31, 1980 0.2134 102.0 108.20 108.83 

August 2-3, 1981 0.2643 124.0 134.01 134.79 
*July 23, 1982 0.1650 80.0 83.66 84.15 

July 31, 1982 0.5034 250.0 255.25 256.73 
*July 17, 1983 0.2109 105.0 106.94 107.56 

August 21-22, 1983 0.1856 95.0 94.11 94.66 
*September 2, 1983 0.1890 90.0 95.83 96.40 

*September 5-6, 1983 0.1882 85.0 95.43 95.98 

June 8, 1984 0.2174 106.0 110.23 110.87 

June 25, 1984 0.2190 106.0 111.04 111.69 
*July 15, 1984 0.2384 120.0 120.88 121.58 

* Validation events 

 
Similarly, the rainfall-runoff records of Chaukhutia 

watershed has been divided into two sets. Twelve out of 
twenty storm events were randomly selected for the cali-
bration of the model parameters. Analysis of these 
datashows that the ARMA (1, 1) process found to best 
fitted. The average values of the parameters of ARMA (1, 
1) (i.e. a1, b0 and b1) using the least-squares method 
(Equation 6) were found to be 0.60585, 0.04921 and 
0.37349, respectively. Using these parameters, the de-
rived ARMA-IUH for Chaukhutia watershed is given as 
follows. 

1
1 )60585.0( 66568.0 61647.0)( 
  t

tth    (39) 

The developed ARMA-IUH has been used to compute 
the direct runoff hydrographs using the convolution 
technique. The comparisons of computed direct hydro-
graphs along with the observed one are shown in Figure 
5. The hydrograph parameter i.e. peak flow rate for all 
the storm events used in the analysis are given in Table 3. 
The average estimated values of two statistical criteria 
(i.e. CE and EP) are given in Table 2. 
 
4.1. Comparison of ARMA-IUH with Nash-IUH 
 
The validity of the proposed approach has been tested by 

comparing the results obtained through the Nash-IUH 
Model (Equation 34). For this purpose, the shape pa-
rameter (i.e. n) has been estimated adopting the proce-
dure given by Wu et al. (1964) and time to peak (i.e. tp) 
has been obtained from the available storm event data of 
the two hilly watersheds. The calibration set of data have 
been used to estimate the value of n. The average esti-
mated values of shape parameter n and the time to peak 
tp for Arki and Chaukhutia watersheds were determined 
to be 3.75 and 1.50 hours and 5.307 and 2.00 hours, re-
spectively. Finally the obtained relationship of IUH for 
Arki watershed using Equation (34) is obtained as fol-
lows. 

 2.75
(0, ) 6.9997 0.667 0.667u t t e t    (40) 

In a similar fashion, the relationship obtained to define 
the Nash’s IUH (Equation 34) for Chaukhutia watershed 
is given as follows. 

 4.3070.5(0, ) 30.136 0.5 tu t t e       (41) 

The derived relationships of instantaneous unit hydro-
graphs using Nash model have been used to compute the 
direct runoff hydrographs for the available storm events 
of the two hilly watersheds. The comparison of the re-
sulting direct runoff hydrographs from Nash model with 
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the observed direct runoff hydrographs along with the 
DRH obtained from ARMA-IUH are shown in Figures 4 
and 5 for Arki and Chaukhutia watersheds, respectively. 
The hydrograph parameter i.e. peak flow rate for all the 
storm events used in the analysis are given in Tables 1 
and 3. Along with the visual assessment of proposed 
model, the statistical criteria (i.e. CE and EP) have been 
used and the average estimated values of these errors are 
given in Table 2. 
 
5. Summary and Conclusions 
 
In the present study, an attempt has been made to seek the 
applicability of linear theory on the complex hilly water-
sheds. For this purpose, transfer function derived from the 
ARMA type difference equation has been used for the 
derivation of IUH applying the Z-transform technique. 
The proposed ARMA-IUH has been used for computation 
of direct runoff hydrographs for two hilly watersheds viz. 
Arki and Chaukhutia watersheds. Further, the superiority 
of the proposed approach has been tested by comparing 
the responses obtained from the Nash-IUH. From the pre-
sent investigation, following conclusion can be drawn. 

1) Since, both the models have been developed from 
the linear theory concepts, i.e. ARMA-IUH is derived 
from the transfer function of the linear ARMA type dif-
ference equation and Nash-IUH was derived from the 
cascade of linear reservoirs, therefore, it is clear that the 
concept of linear theory is applicable to the hilly water-
sheds of complex hydrologic system.  

2) It has been clearly observed from the Figures 4 and 
5 as well as from Tables 1 through 3 that the proposed 
ARMA-IUH reproduced responses very close to the ob-
served responses in comparison to that of Nash-IUH. 
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Notations 
 

PQ


 Observed peak flow rate 

pT


 Time to observed peak flow 

  Dirac delta function 

)(tQ


 Observed direct runoff ordinate at time t 

a
1, 

a
2
 Time-invariant parameters in discrete system 

B Backward shift operator 

b
0, b1,

b
2
 Time-invariant parameters in discrete system 

CE Coefficient of efficiency 

EP Relative error in estimated peak 

H (Z) Z-transform of transfer function 

h(t) Impulse response function at time t 

H(t) Inverse transform of H(Z) 

I (t) Input (effective rainfall) at time t 

I (Z) Z-transform of I (t) 

K Storage constant 

K
1
 Recession constant 

n Shape parameter 

Q(t) Computed direct runoff ordinate at time t 

Q(Z) Z-transform of Q(t) 

Q
p
 Estimated peak flow rate 

T
p
 Time to simulated peak flow 
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