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Abstract 
This paper presents a back-propagation neural network model for sound quality prediction 
(BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and 
regulations, four kinds of vehicle interior noises under operating conditions, including idle, con-
stant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and 
subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. 
With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, 
A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for 
modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are 
highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed 
BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of 
vehicle interior noise under multiple working conditions. 
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1. Introduction 
With the development of automobile industry, vehicle noise problem has been paid increasing attention all over 
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the world. Correspondingly, sound quality has become an important index to measure the quality of automotive 
products. Recently, many studies related to sound quality evaluation (SQE) of vehicle noise have been investi-
gated by researchers, and many achievements were acquired. Shu [1] studied the relation between psychological 
assessment indexes and subjective annoyance at the same speed of different cars, and demonstrated that the li-
near combination of psychoacoustic parameters is feasible to evaluate the stationary vehicle sound quality. Chen 
[2] investigated sound quality preference of vehicle interior noise under stationary condition and built a prefe-
rence prediction model using multi-dimensional linear regression method. Shen [3] predicted the sound quality 
of vehicle interior noise at constant speed with three methods: MLR, back-propagation neural network and sup-
port vector machine; the results showed that support vector machine is most accurate in vehicle SQE. Xu [4] re-
searched sound samples collected at the position of the driver’s ear and obtained the conclusion that the an-
noyance model can correctly predict subjective preference of the sound samples. Wang [5] predicted sound 
quality of vehicle interior noise under non-stationary conditions effectively based on a wavelet pre-processing 
neural network model. But the in-situ studies scarcely involve in the issue that the vehicle noises under multiple 
working conditions are included in one model. 

Vehicle interior noise signal under stationary working condition of a vehicle is easy to be measured and eva-
luated. The non-stationary interior noise, which keeps changing with the vehicle speed, is very complicated. 
How to evaluate the non-stationary sound so that the evaluated results can reflect perception of candidates accu-
rately is a difficult problem for SQE engineers. It is important for modern vehicle to develop new methods, 
which can efficiently estimate the sound quality under multiple working conditions. Thus, based on the back- 
propagation neural network (BPNN), a SQP model for multi-working conditions’ vehicle interior noise is built 
in this paper. By this model, human auditory perception for vehicle interior noise can be described quantitatively 
with the model outputs, subjective annoyance values. 

2. BP Network Theory 
The BPNN [6] is a common method for training artificial neural networks in conjunction with an optimization 
method, such as the gradient descent. The method calculates the gradient of a loss function with respects to all 
the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the 
weights, in an attempt to minimize the loss function. Back propagation (BP) requires a known, desired output 
for each input value in order to calculate the loss function gradient. It is therefore usually considered to be a su-
pervised learning method, although it is also used in some unsupervised networks. It is a generalization of the 
delta rule to multi-layered feed forward networks, made possible by using the chain rule to iteratively compute 
gradients for each layer. The BP requires that the activation function used by the artificial neurons (or “nodes”) 
be differentiable. Figure 1 shows a typical structure of a 3-layer BP neural network. 

Given the number of nodes of the input layer, the hidden and the output network n, k, m, respectively, the total 
number of input samples is pix , which indicates that the P sample’s the ith input value, kiv  indicates the ith 
node of input layer to the hidden layer of the kth node weight, jkω  means the node weight from hidden layer of  
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Figure 1. A typical 3-layer BP neural network structure. 
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the k to the output layer of the j. For convenience, the threshold is included connection weights, and then the 
output of hidden layer node k is: 
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The output layer nodes for the node j: 
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where, standard sigmoid function is selected as incentive function: 
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The definition of global error functions can be expressed as: 
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where pE , is error of the sample p , pjt  is the ideal output. The adjustment formulas of weights are as fol-
lows. 

a) The weight adjustment formula of output layer neurons: 
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where, η  is the learning rate, whose general range is 0.1 - 0.3. 
b) The weight adjustment formula of each hidden layer neurons: 
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The basic idea of the BP algorithm is the learning process and can be divided into two stages: the first stage 
(forward propagation process), given input information through a layer by layer processing each hidden layer 
and calculate the actual output value of each unit of pjy ; the second stage (the reverse process), if the output 
layer fails to get the expected output value, then layer by layer recursively calculates the difference of error be-
tween the actual output and the expected output. The gradient descent method modifies the weights of the kiv∆ , 

jkω∆ , making the total error function minimum. 

3. BPNN-SQP Model for Multiple Working Conditions’ Vehicle Interior Noise 
3.1. Road Tests and SQE for Samples 
The vehicle noise signals under the conditions of idle, constant speed, accelerating and braking are acquired by 
road tests in this paper. The test conditions are carefully constructed referring to the measurement method for 
vehicle interior noise using GB/T 18697 standard [7], which has similar settings for the test environment and 
conditions as the standards ISO 5128 [8] and ISO 362 [9]. With the LMS multichannel data acquisition system, 
the interior noises of three kinds of B-class car are measured. The noise signals at each position are recorded 3 
times under each working condition. The best samples of each car are picked out. Totally 36 noise signal sam-
ples are acquired and subjectively evaluated. Sound annoyance is defined as 11 grades (shown in Table 1) and 
the jury tests are performed with 26 volunteers (18 men and 8 women), who are composed of engineers, experts, 
technicians and drivers. With the LMS software, six psychoacoustic parameters, such as the loudness, sharpness, 
roughness, articulation index, tonality and A-weighted sound pressure levels (SPLs) of the measured 36 samples 
are calculated. The subjective and objective evaluated results are listed in Table 2, which will be used for 
BPNN-SQP modeling in the following text. 
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Table 1. Ranks of subjective annoyance. 

Very terrible Terrible Very bad Bad Dissatisfied Acceptable Satisfied Well Good Very good Excellent 

1 2 3 4 5 6 7 8 9 10 11 

 
Table 2. Results of the subjective and objective evaluation of vehicle interior noise. 

Models/condition A-weighted sound 
(dB) 

Loudness 
(sone) 

Sharpness 
(acum) 

Roughness 
(asper) 

Articulation index 
(%) Annoyance 

A/acceleration 65.33 15.63 0.63 0.16 91.53 5.72 

A/brake 60 61.21 12.85 0.77 0.13 95.24 4.33 

A/brake 80 59.08 10.87 0.77 0.16 95.61 3.83 

A/brake 100 61.21 13.17 0.75 0.18 93.5 3.06 

A/constant 90 62.61 14.38 0.78 0.19 91.45 2.89 

A/constant 90 61.21 13.43 0.79 0.23 93.37 2.11 

A/constant 90 53.98 8.36 0.82 0.1 96.85 5.00 

··· ··· ··· ··· ··· ··· ··· 
C/constant 100 62.27 15.07 0.97 0.79 86.36 5.13 

C/acceleration 63.81 17.72 1 0.23 70.96 5.56 

C/brake 60 60.48 12.89 0.88 0.26 86.25 3.81 

C/brake 80 58.58 13.11 1.28 0.46 91.95 4.48 

3.2. Correlation Analysis and Significance Test 
For checking the correlations between calculated psychoacoustic indices and the subjective annoyance values, 
the SPSS software is adopted for Pearson correlation analysis. The correlation coefficients and two-tailed test 
results are listed in Table 3, where SQ is the subjectively evaluated annoyance, AW is the A-weighted SPL; L is 
the loudness; S is the sharpness; AI is the articulation index; R is the roughness; T is the tonality. 

According to the Pearson correlation analysis in Table 3, the correlation coefficients of the roughness and to-
nality are too low, which means the roughness and tonality indices can be excluded in sound annoyance evalua-
tion. The A-weighted SPL, loudness, AI index and sharpness, which have higher correlation with the sound an-
noyance, is selected as the input values for establishing the BPNN-SQP model in this paper. 

3.3. Model Construction 
The BPNN-SQP model is constructed with MATLAB software in this paper. The measured 36 interior noise 
samples are used for model establishment. After relative analyzing and normalization processing, these data are 
divided into two groups, in which samples no. 1 - 24 are selected as training data, The rest samples no. 25 - 36 
are used as testing data in order to verify the accuracy of the BPNN-SQP model. With correlation analysis and 
significance test, the final evaluation model is built within permissible error. 

3.3.1. Input and Output Layer Nodes 
Sound annoyance has higher correlations with A-weighted sound pressure, loudness, AI index, and sharpness, as 
shown in Table 3. Therefore, this paper selects these parameters to establish the BPNN-SQP model as the input 
value. 

3.3.2. Normalization of Sample Data 
To build a uniform SQP model, signal amplitudes of the samples directly influence accuracy of the BPNN-SQP 
model. Before inputting the sample data to the model, sample normalizations should be conducted. In this paper, 
the sample data are compressed in a range of [0, 1], according to Equation (7). 
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3.3.3. Determination of Network Parameters 
The S-type of hidden layer and the linear output layer in a 3-layer BPNN can approximate any function [10]. In 
the present work, the 3-layer BP neural network as shown in Figure 1 is determined to build a sound quality 
prediction model. Considering the hidden layer selection rules, after testing, the hidden layer number is set to 7. 
The logsig, purlin linear functions are selected as transfer functions of the hidden layer and the output layer, re-
spectively. The samples no. 1 - 24 is fed to the neural network for training. The training parameters of network 
are very important, which direct impact on the network performance. In this paper, the expected error is set to 
0.003, the learning rate is 0.3, and the momentum factor is 0.5. After repeated tests, and the final echo number in 
training is 5000 times. 

3.3.4. Prediction Results and Analysis 
Taking the optimal parameters obtained from the training data, the BPNN-SQP model with multi-working con-
ditions is used to predict sound quality (annoyance) of vehicle interior noise. To check the model accuracy, 
firstly, the A-weighted SPLs, loudness, sharpness, AI index of the training samples are fed to as the model and 
the predicted annoyance values are compared with those from jury tests in Figure 2. Further analysis shows that, 
the prediction accuracy of the model is above 95.57%, which satisfy the requirement of error percentage within 
10%. Moreover, annoyances of the test samples no. 25 - 36 are estimated by using the BPNN-SQP model, the 
estimated results are compared with the subjective annoyance values in Figure 3. We obtained an averaged es-
timation error of 9.11%, which suggests a good accuracy of the newly established BPNN-SQP model in SQE of 
vehicle interior noises. 

4. Conclusion 
Taking the vehicle interior noises under multiple working conditions, this paper established a BPNN-SQP model, 
using some objective evaluation parameters, such as A-weighted sound level, loudness, AI index and sharpness 
 

Table 3. Correlations of subjective annoyance (SA) values and psychoacoustic parameters. 

 Parameters SA AW L AI R S T 

SA 
Pearson correlation 1 0.661** 0.820** −0.770** −0.096 0.652* −0.173 

Sig.(2-tailed)  0.000 0.000 0.000 0.030 0.000 0.321 

**Correlation is significant at the 0.01 level (2-tailed); *Correlation is significant at the 0.05 level (2-tailed). 
 

 
Figure 2. Comparison of estimated values and original values with the training samples. 
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Figure 3. Comparison of estimated and tested values with the measured noise samples. 

 
et al., as input, and subjective annoyance values as output. By applying this model to predict unknown noise 
samples, the averaged relative error of predicted results comparing with the actual results is 9.11%. The BPNN- 
SQP model for multi-condition of vehicle interior noise has high accuracy of prediction forecasting and good 
generalization ability. 
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