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ABSTRACT 

This paper describes a cooperative decentralized architecture for reactive real-time route guidance. The architecture is 
cooperative in the sense that it allows adjacent local controllers to exchange information regarding the traffic conditions 
in their territories. A set of local decision rules and associated heuristic functions to support the cooperative architecture 
are specified. A protocol governing the knowledge exchange among local adjacent controllers is developed. A simula-
tion-assignment modeling framework is used for assessing the effectiveness of this cooperative architecture under vari-
ous levels of controller knowledge and network traffic congestion. The cooperative decentralized system is tested under 
various scenarios of knowledge and cooperation and network traffic demand levels. The cooperative system is com-
pared against the shortest path algorithm as a benchmark. 
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1. Introduction 

A common approach for route guidance envisions a cen- 
tral controller with capability to predict driver origin- 
destination (O-D) trip desires, to optimally assign a path 
to each driver from origin to destination, as well as to 
re-route as warranted [1,2]. The reported limitations of 
centralized systems include the massive data processing 
and communication needs between the TMC and thou- 
sands of users at a time. Excessive computing, storage 
and communication capacities are required at the TMC. 
As a result, the TMC might be frequently overloaded [3]. 
Furthermore, such systems were reported to have high 
system operating costs [4]. 

In contrast, hierarchical distributed architectures pro- 
vide for locally oriented real-time reactive strategies for 
vehicle routing that rely on limited available information 
[5,6]. In large-scale networks, the need for fast control 
action in response to local data inputs and perturbations 
strongly suggests use of distributed information and con- 
trol structures. While distributed systems have been ex- 
tensively exploited in areas such as telecommunications 
and computing network control, only recently have dis- 
tributed systems been considered as a promising basis for 
route guidance in vehicular traffic networks.  

Hawas and Mahmassani [2] developed a non-coopera- 
tive decentralized structure and a family of heuristic-based 
rules for reactive real-time route guidance. The premise  

of this decentralized structure is the ability to deal with 
varying degrees of information, spatially and temporally. 
In addition, unlike the centralized predictive approach, it 
does not require a priori knowledge (or prediction) of the 
time-dependent OD demand desires. This structure as- 
sumes a set of local controllers distributed over the net- 
work. Each local controller is responsible for providing 
reactive route guidance for vehicles in its territory. The 
controllers are non-cooperative in the sense that they do 
not exchange knowledge of the traffic states in their re- 
spective territories. Local decision rules that incorporate 
heuristic evaluation functions are specified, reflecting 
varying degrees of intelligence. The non-cooperative de- 
centralized architecture has been shown to be computa- 
tionally efficient, and fairly robust and effective under 
recurrent as well as incident situations [2]. 

The use of distributed multi-agent systems to improve 
dynamic route guidance and traffic management is re- 
ported in Adler et al. [7]. Inter vehicular communication 
(IVC) networks provide decentralized solutions for traf- 
fic management problems [8-11]. IVC networks are in- 
stantiations of mobile ad hoc networks, which have no 
fixed infrastructure and instead rely on ordinary nodes to 
perform network management functions. 

There are several ITS projects based on IVC networks. 
FleetNet [9] uses an IVC network to improve the drivers 
and passengers’ safety and comfort. VGrid [8] proposes 
solving vehicular traffic flow control problems autono- 
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mously. TrafficView [10] defines a framework to dis- 
seminate and gather information about the vehicles based 
on IVC. 

Hawas, Napeñas and Hamdouch [12] developed two 
algorithms for inter-vehicular communication (IVC)-based 
route guidance in a traffic network. Although the per-
formance of such IVC-based algorithms is quite rea- 
sonable as compared to the centralized systems, there are 
still many challenges such as the rapid topology changes, 
the frequent fragmentations and the small effective net- 
work diameter. Because of the high relative speed of 
vehicles, the IVC network experiences very rapid changes 
in topology. Also, due to the low deployment of vehicles 
having IVC, the IVC network is subject to frequent 
fragmentation. Finally, because of the poor connectivity, 
the effective network diameter is usually small. These 
aspects impose restrictions if deployed via IVC tech-
nologies. For instance, one should compromise the extra 
effectiveness of having wider ranges of communication 
against the possible degradation in performance due to 
poor communication. 

Bearing in mind the massive data processing and high 
operational cost associated with the centralized systems, 
the instability and communication constraints associated 
with the IVC-based systems, this paper seeks to provide 
improvement to the earlier work of Hawas and Mah- 
massni [2]. The improvement is intended to resolve the 
reported cycling problems commonly encountered in the 
typical pure distributed systems. The improvement is 
sought through allowing for information exchange (or 
cooperation) among the various decentralized controllers. 
In a sense, we investigate the possibility of using inter- 
controller communication for exchanging knowledge 
regarding the traffic conditions in their respective territo- 
ries. Such improvement is thought of as a way to over- 
come the limitations of the rapid topology changes, the 
frequent fragmentation and poor communication associ- 
ated with the IVC-based systems, as well as the limita- 
tions of the heavy processing and cost of the centralized 
systems. The information exchange would enrich the 
knowledge base of any individual controller, and poten- 
tially improve the quality of control by providing the 
opportunity to utilize higher degrees of intelligence to 
improve the specification of the heuristic evaluation fun- 
ctions underlying the local decision rules. This new sys- 
tem shall be denoted in this paper by the cooperative 
decentralized system. 

The paper is organized in five sections. Section 2 re- 
views the detail the decentralized system structure, as- 
sumptions, and rule specifications. Then details of the 
rationale, and the essential modifications to the rule 
specifications and heuristics to support the cooperative 
decentralized scheme are presented. Section 3 discusses 
the off-line simulation experimental design for the de- 

centralized schemes for vehicle routing. Section 4 pro- 
vides comparative estimates of the performance of both 
decentralized route guidance non-cooperative and coo- 
perative algorithms, with particular emphasis on the im- 
provement in performance obtained by allowing know- 
ledge sharing among the local controllers. Section 5 pro- 
vides some concluding comments.  

2. Decentralized Route Guidance Strategies 

Hawas and Mahmassani [2] presented a distributed ar- 
chitecture that provides for locally oriented real-time 
strategies for reactive route guidance. This decentralized 
architecture has the ability to deal with situations where 
only limited information is available to the controllers. 
The decentralized architecture envisioned a set of local 
controllers distributed over the network, where every 
controller can extract only limited “raw” information 
(speed, concentration, etc.) from detectors, and utilizes 
this information in conjunction with local decision rules 
to guide vehicles within its territory to their individual 
destinations. The local controllers are specific hardware 
units that may be located at the level of the network in- 
tersection; the decentralization level could be coarser or 
finer depending on the available hardware, the level of 
investment and the desired accuracy. Figure 1 illustrates 
the spatial extent of the area from which the controller at 
node i extracts information. The size of information ex- 
tracted by a single controller (denoted by the knowledge 
level, K) refers to the number of downstream links, from 
which traffic measurements can be measured and utilized 
in making the routing decisions. Figure 1 shows an ex- 
ample of a local controller with K equals 1, 2, 3 and 4, 
respectively. 

Local decision rules use available partial information 
and heuristics to evaluate alternative subpaths emanating 
from the decision node towards the destination, and as-
sign vehicles at that node to the link(s) immediately 
downstream. The vehicle could be assigned to only one 
link, or multiple successive links within the local area. At 
the end node of the assigned portion, the vehicle reaches  
 

K=4 

K=3 
K=2 

K=1 

i j 

 

Figure 1. Controller i with various knowledge levels. 
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another local controller, where a new assignment is in- 
structed. A subpath (i, j, m, K) denotes the first (K) links 
of path (m) from the decision node (i) to destination (j). 
Assignment decisions are reached after evaluating the 
various alternative subpaths in the local area. The con- 
troller uses the current state in the local area and the an- 
ticipated state outside the local area to evaluate the alter- 
native subpaths. The subpath evaluation is analogous to 
that of the A* graph search algorithm, which uses heuris- 
tic information to decide which node to scan first. The 
distinctive feature of the A* algorithm is the definition of 
the evaluation function, F, which has two components: 
the cost of reaching the node from the start node, G, and 
the cost of reaching the goal from the node, H. The node 
to expand is the one for which F = G + H is minimum 
[13]. 

Consider a vehicle v going from origin node O(v) to 
destination node D(v), v = 1, ···, V. Let t denote the time 
at which v is about to cross a given controller i in its way 
to D(v). The problem is to assign vehicle v to an outgoing 
link (or links) emanating from i. Upon reaching the 
downstream end node of the assigned link(s), the vehicle 
is similarly assigned to another outgoing link(s), and so 
on until v reaches D(v). 

The type of local assignment rule considered here se- 
lects, at node i, a K-link subpath on the basis of current 
knowledge of travel time, distance, and concentration 
along all the possible K-link subpaths (emanating from 
node i). A penalty function , ,  is defined to evaluate 
the K links on subpath , using their current state. 

t
i jG 


The anticipated cost of non-local portion of the vehi-

cle’s trip (from the end of the subpath to the vehicle’s de- 
stination) is estimated using a heuristic penalty function 

, , . The total penalty, given by , , , , , , , 
provides the basis for evaluating the alternative subpaths. 
The specification of the heuristic function may reflect 
varying degrees of “knowledge”, with varying corre- 
sponding effort in terms of computation, data acquisition, 
data processing and/or prediction. Figure 2 shows an 
example of a subpath of nodes from controller i to node j, 
and illustrates the functions G and H. 

t
i jH 

t t t
i j i j i jF G H  

 

Local Area 

i j b 
G H 

 

Figure 2. The performance functions G and H; F = G + H. 

Two different structures are discussed afterwards. The 
first is a non-cooperative structure where controllers 
work independently. This is denoted by the “pure” de- 
centralized structure. Every controller is assumed to have 
access to information and traffic measurements from its 
own territory, and share no information with adjacent 
controllers. The second is a cooperative structure, where 
controllers are envisioned to share useful information 
with adjacent controllers regarding the traffic states of 
their own territories. This cooperative scheme provides 
for the mechanism to enrich the knowledge base of indi-
vidual controllers. 

2.1. Non-Cooperative Decentralized Route 
Guidance 

Hawas and Mahmassani (1996) presented the generalized 
rules that can be used to distribute vehicles among seve- 
ral subpaths using a logit splitting model. A generalized 
subpath penalty function was developed. It comprised 
local state variables (travel-time and concentration), and 
non-local variables (anticipated travel time). A penalty 
coefficient was introduced and associated with each state 
variable to reflect the variable’s relative impact on the 
subpath total penalty. The penalty function comprised 
three sets of state variables: 1) local variables to measure 
congestion (average weighted concentration); 2) local 
and non-local variables to measure traveling distance; 
and 3) local and non-local variables to measure travel 
time. 

The local portion of the penalty function  was 
specified as follows: 

, ,
t
i jG 

, ,
, , , , , , , ,
t L L t L L t L
i j T i j K i j S i jG T K         

LS        (1) 

where L
T , L

K , and L
S  are the penalty coefficients of 

the current local travel time along subpath  at time t, 
,

, ,
L t

i jT  , the current average concentration, ,
, ,
L t
i j K

,
, ,

, and the 
local traveled distance, , ,i j  , respectively. LS L t

i j



T


  is the 
sum of the link travel times along subpath  at time t; 

, ,  is the sum of link distances along , and is given 
by: 

L
i jS 

, , ( )L
i j

a

S S


 


a                (2) 

where is the length of link a. ( )S a
In Equation (1), ,

, ,
L t
i jK   denotes the average concen- 

tration along the subpath, as an indicator of the local con- 
gestion level. The current concentration also reflects the 
average number of vehicles to be affected by the assign- 
ment. If the coefficient L

K  of this variable is inter- 
preted as the average additional (marginal) cost imposed 
on the subpath vehicles, then ,

, ,
L L t
K i jK    would indicate 

the additional delay (per unit distance) incurred by the 
subpath vehicles. The effect on the subpath vehicles di- 
minishes gradually as vehicles get further from the deci- 
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sion node. Link concentrations are weighted inversely to 
account for the spatially diminishing effect, as follows:  

,t aC

,
, ,

( )
1

( )

aL t
i j

a

D a
K

D a















               (3) 

where is the current concentration (vehicles/unit 

ortion of the eva- 
lu

NL

,t aC  
distance) of link a at time t, and D(a) is the depth of link 
a with respect to the decision node, i. 

The specification of the non-local p
ation function, , ,

t
i jH   is given by: 

,t NL NL t NL
, , , , , ,i j i j i jT S

H T  S         (4) 

where, 

    
  

NL
T

   and NL
S

   are the penalty coefficients of 
the non-  anticipated travel-time, ,

, ,local NL t
i jT 
 , and the non-  

local anticipated traveled distance, , ,
NLSi j  , respectively.  

The state variable ,
, ,
NL t

i jT 
  is an approx tion of the an- ima

ticipated non-local l time from the end of subpath 
  to destination j; ,

, ,

trave
NL t

i jT 
 can be calculated by extrapo- 

ing the local prev g travel time, from historical 
information, or it may be replaced by corresponding in- 
formation exchanged from the adjacent controllers under 
the cooperative scheme as will be discussed later. 

Because the actual path to be followed beyond 

lat ailin

the lo- 
cal area boundaries is not known a priori, heuristics are 
used to obtain coarse estimates of , ,

NL
i jS 
 , and ,

, ,
NL t

i jT 
 . 

While recognizing that the specification could r t 
varying degrees of intelligence, and involve correspond-
ingly varying amount of computational processing; our 
intent was to test very simple specifications that did not 
require any network path computations for the non-local 
portion. 

A part ,

eflec

icular specification of , ,
NL t

i jT 
  is given by: 

,
, ,
L t

i j,
, , , ,

, ,

NL t NL
i j i j

i j

T S
S

  


              (5) 

The non-local travel distance, 

T

, ,
NL
i jS 

tes o

, is calculated by 
su


    (6) 

      (7) 

The parameters WM and WE are selected a
th

 among several feasible 
su

bstituting the Cartesian coordina f the subpath end 
node bn at the boundary and those of the destination 
node j into a weighted sum of both “Manhattan” (right- 
angle) and “Euclidean” distances between the two points 
(Equations (6) and (7)). 

 NL   

    
, ,

0.52 2

j bn j bni j M

E j bn j bn

x x y yS W

W x x y y

 

 


  


 

0, 0;   and  1M E M EW W W W     

ccording to 
e general network topology. For ideal grid networks the 

distance between any two nodes is the Manhattan dis- 
tance, and WM = 1 with WE = 0. 

This rule distributes vehicles
bpaths using a splitting model, which allocates more 

vehicles to least cost subpaths, and fewer vehicles to sub- 
paths with worse performance, in an attempt to equalize 
the performance on all emanating feasible subpaths. A 
subpath   belongs to the subset of feasible subpaths, 

( ) ( )i F iS   (where ( )FS i is the set of all subpaths 
m i if the ing condition applies: 

(1 ),     0t tF F  

emanati rong f follow

*, , , ,i j i j
     

where is the minimum value of *, ,

t

i j
F


 , ,

t
i jF    

( )FS i  For .   equals 0, ( )i  includes  only the 
best subpath, * , and this rule op es as all-or-nothing 
assignment. If 

erat
   , then ( ) ( )i FS i  . 

The fraction cles assof vehi i  feasigned to a ble subpath 
 , is inversely proportional to the penalty value, , ,

t
i jF  . 

veral functional forms could be used for the splitting 
rule. A standard logit form was used as follows: 
Se

, , *, ,

, , *, ,

, , , ( ), ( ), , ,
i j

t t
i j

i j

t
i j

F F

f

e
p f i i i j t

e


 

 
 

 

   









   (8) 

The model allocates vehicles to any subpath based on 
th

t t
i jF F

 
 

e difference between the subpath performance, , ,
t

i jF  , 
and the performance of the best subpath, *, ,

t

i j
F


.  

parameter  is the dispersion factor and its va  typi-
cally negative. 

The above ru

 The
slue i

le specification required the calibration of 
th

2.2. Cooperative Decentralized Route Guidance 

,t
          (9) 

The term 

e time-dependent penalty coefficients. A simulation- 
based optimization procedure that employs a variant of 
the well-known Hill Climbing Technique was used. 
The penalty coefficients were calibrated so as to optimize 
the overall network performance over the analysis period 
T. 

A mathematical optimal control formulation is developed 
for the derivation of the optimal specification of the heu- 
ristic function , ,

t
i jG  , in a simplified network. The pe- 

nalty function i ecified as the approximate current 
marginal travel time along the subpath. This can be ex- 
pressed as: 

s sp

, ,
, , , , , , , ,. .t L t L t L

i j i j i j i jG T M K S     

 , ,
, , , ,
L t L t
i j i jK S   

g subpath 
expresses the

ve
 total number of 

hicles alon . The coefficient M is the av-
erage marginal effect of the added vehicle at i on any of 
the  , ,

, ,

L t              (10) 

, ,
L t L t
i j i jK S   vehicles. The heuristic function can 

be specified as: 
,

, , , ,
t N
i j i jH T 

  
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Exchanging knowledge among l
te

2.3. Cooperative Decentralized System Structure 

ocal controllers is in- same knowledge level K). Figure 4 shows a simplified 
network (with K = 2) where controllers share information. 
As shown, controller i receives information from con-
troller c and all other depth-K controllers to improve the 
specification of the heuristic function , , . Assume 
that  is a subpath from i to j, where c is the boundary 
node of . Assume subpath f* (f* = [c, m, d]), as shown 
in Figure 4, is the least travel time subpath from c to j at 
time t. 

t
i jH 




nded to reduce the influence of errors introduced by the 
heuristic function , ,

t
i jH   in calculating the non-local 

variables. One might utilize abstract or processed infor- 
mation from neighboring controllers to improve the heu- 
ristic function specification. While incorporating a higher 
knowledge level might increase the computational bur- 
den significantly, combining abstract information (from 
adjacent controllers) increases the knowledge at negligi- 
ble cost. The cooperative control scheme envisions a set 
of controllers connected through a two-way communica- 
tion system. The exchanged knowledge is incorporated in 
the heuristic function specification , ,

t
i jH   to better anti- 

cipate traffic conditions in the non-local portion. Figure 
3 outlines a schematic representation of the cooperative 
distributed system. 

Different cooperative schemes may be defined de- 
pe

Controller i receives the following information items 
from controller c at time t:  

1) Average concentration in the local area governed by 
controller c.  

2) Estimated travel time estimate from c to the destina- 
tion node j along the least travel time subpath, f*. The 
decision controller at i utilizes this information only if c 
is closer to the destination node, j.  

nding on the relative locations of the controllers that 
may exchange knowledge, the information to be ex- 
changed, and the specification of the heuristic function 

, ,
t
i jH  . 

3) Distance from c to the destination node j along the 
least travel time subpath, f*. The decision controller at i 
utilizes this information only if c is closer to the destina- 
tion node, j.  

This information is used by controller i to improve the 
specification of the heuristic function , , . The heuris- 
tic function , , (Equation (4)) is modified by introduc- 
ing a new variable as well as a penalty factor, 

t
i jH 

t
i jH   

E
K  

A two-way communication system is envisioned to allow 
of the 

exchanged concentration from c, as will be shown later. 
Travel time information from c is used to replace the  

term ,
, ,
NL t

i jT 
  in , ,

t
i jH   (Equation (4)) by * *

, 1 , 1

, , , ,

L t NL t

c j f
T T   , 

the controller at i to receive knowledge from those con- 
trollers that reside at its boundary nodes. The territories 
of any two communicating controllers will overlap and 
share an area of depth K (if both controllers have the  

c j f
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Figure 3. Structure of the cooperative decentralized system. 
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Figure 4. Information exchange with spatial propagation. 
 

here , 1L tT   is the prevailing travel time along subpath w *, ,c j f
e t −f* at tim  1, and *

, 1

, ,

NL tT   denotes the “anticipated” 
non-local travel time fro  boundary node of subpath 
f* (node d as shown in Figure 4) to j, at time t − 1. Simi- 
larly, the distance information is used to replace , ,

c j f
m the

NLS 
  

(in Equation (4)) by * *
L NLS S  , where, L

c j
S   

i j

*, , f
 is

 

2.4. Knowledge Exchange Protocol 

ing knowledge 

, ,c j f , ,c j f

 traveled alothe prevailing distance ng subpath nd   f*, a

*
NLS  denotes the “anticipated” non-local distance from  
, ,c j f

the boundary node of subpath f* (node d) to j. 

Figure 5 shows a controller i exchang
with all the boundary controllers [a, b, c, e, f, g, k]. In the 
figure, concentration information is exchanged between i 
and all depth-K controllers. Travel time and distance in- 
formation are utilized from three boundary controllers 
only [a, b, c]. Denote by, ,

, ,
E t
i jK  , the concentration re- 

ceived by i (from the control  the end node of  , c) 
at time interval t. 

ler at
E
K  is the penalty coefficient of the 

concentration term, ,
, ,
E t
i j  . As indicated previously, this 

information is proces y controller c, at interval t − 1. 
The heuristic function , ,

t
i jH   (for subpath   from con- 

troller i at time t) is now re-specified as:  

 , 1, L tt NL NL t      

K
sed b

 
* *

* *

, 1
, , , , , , , ,

, , , , , ,

,
, ,

NL t
i j i jT c j f c j f

L NLNL NL
i jS c j f c j f

E E t
K i j

T TH x T y

S Sx S y

K








    

 

 

 



  

e, x and y are binary indicators. x = 0 and 

 


   (11) 

wher y = 1 if 

fication 

derived using the optimal control theory. The exchanged 
kn

* *, , , , , ,i j c j f c j f
     (12) 

where M rginal cost of f . 
Note that , is forced to 

re individual controllers may have full access 
to

rt of the 
ad

ong controllers, 
i.e

sign 

nducted to assess the ef-
d reactive approach, with 

the Manhattan distance from c to j is greater than the 
Manhattan distance from i to j, otherwise, x = 1 and y = 
0. In other words, the travel time and distance informa- 
tion are utilized only if the relaying controller, c, is closer 
to the destination node, j, than the receiving controller, i. 
The above specification replaces the heuristic function 
non-cooperative specification (Equation (4)).  

The same protocol is also applied to the speci

owledge is utilized to enhance the heuristic function 
(Equation (10)) by adding a term that captures the mar-
ginal cost along subpath, f*. The travel time information 
is also utilized according to the binary values of x and y, 
as indicated above. The specification of the heuristic 
function becomes: 

 , 1 , 1,
, ,

L t NL tt L t
i j

T TH x T y     


 *
,

, ,2 , ,

E t L
i j c j f

K SM  

 

2 is the coefficient of the ma
 if the concentration coefficient, M2

*

a value of 0, it will represent the case that concentration 
information is not exchanged among controllers. Various 
operational modes can be tested based on the values of x, 
y, and M2: 

1) FCD refers to the fully cooperative decentralized 
system whe

 knowledge processed by adjacent depth-K controllers, 
i.e. x and y values are set according to the controllers 
locations with respect to the destination node.  

2) PCD refers to the partially cooperative distributed 
system where controllers may only access pa

jacent controllers’ information (the concentration is 
not shared among controllers), i.e. x and y values are set 
according to the controllers locations with respect to the 
destination node, but M2 is set to 0. 

3) NCD which refers to the non-cooperative scheme 
that permits no information exchange am

. x = 1, y = 0, M2 = 0. 

3. Experimental De

Simulation experiments are co
fectiveness of the decentralize
particular emphasis on the cooperative scheme. The latter 
is tested under various scenarios of network congestion, 
and knowledge levels. The experiments address the fol-
lowing aspects: 
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Figure 5. Type of Information utilized from depth-K controllers. 
 
 The performance of the 

amined under various network congestion and know- 

r various network congestion levels, 

decentralized scheme is ex- 

ledge levels. 
 The cooperative scheme is evaluated against the above 

scenarios, fo
knowledge levels, and the three operational modes 
discussed earlier (FCD, PCD and NCD). By compar- 
ing the network performance under both non-coopera- 
tive and cooperative decentralized schemes, the mar- 
ginal effect of the knowledge exchange can be as- 
sessed under the various knowledge and congestion 
levels. Under the FCD mode, travel time, distance 
and concentration information could be exchanged. 
The PCD mode allows only travel time and distance 
to be exchanged. Exchanged information replace the 
heuristic estimates as warranted by the protocol pre- 
sented earlier. The difference in performance between 
the NCD, PCD, and FCD modes could be attributed 
to the effect of exchanged information in the latter 
modes. Similarly, the difference between the FCD 
and PCD modes is attributed to the effect of the addi- 
tional information (namely, ,

, ,
E t
i jK  , average concen- 

tration). 

Simulation Modeling 

To test the overall network performance under the con- 

decentralized architectures, 
an analysis period of T (60 minutes) is defined. The solu- 

pes of control is simulated over 
i-sim-s simulator (Hawas 2007, 

Ea

 

trol of both centralized and 

tions obtained by both ty
the analysis period using 
Hawas and Abdel Hameed, 2009), and estimates of the 
overall network travel time are obtained for comparative 
analysis of effectiveness. 

One hypothetical network is coded for testing. The 
hypothetical network links are bi-directional with same 
posted (free-flow) speed. The use of hypothetical net- 
works for the assessment of the algorithms is quite ade- 
quate as it enables testing various scenarios of network 
size, link lengths, speeds, etc. The hypothetical testing 
network as shown in Figure 6 has 49 nodes, 14 origins 
and 24 destinations. All intersections are operated with 
pre-timed controllers. The network is tested under vari- 
ous conditions of network congestions (demand levels) 
as shown in Table 1. 

The experimental setup accounts for the effect of the 
operational modes (column one), variations in the know- 
ledge levels (second column), and the variation in the 
OD demand pattern (third column). The first (1st) column 
shows the operational modes (FCD, PCD, and NCD). 

ch mode is tested with three knowledge levels, K (1, 3, 
5). Each operational mode (and knowledge levels) is 
tested with three demand scenarios. As the table indicates 
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Figure 6. Demand patterns of the test network: (a) Low; (b) 
Medium and (c) High intensities. 

Table 1. Testing scenarios. 

Operational 
Mode 

Knowledge 
Level (K) 

Source Volume 
(veh/hr) 

500 

1000 1 

2000 

500 

1000 3 

2000 

500 

1000 

FCD 
(Fully Cooperative) 

5 

2000 

500 

1000 1 

500 

1000 

1000 

PCD 
(Partially Cooperative) 

5 

1 

3 
NCD 

(Not-Cooperative) 

5 

Benchmark: SPA 
(Shortest Path Algorithm) 

 

2000 

3 

2000 

500 

2000 

500 

1000 

2000 

500 

1000 

2000 

500 

1000 

2000 

500 

1000 

2000 

 
the FCD is tested twenty seven (27) times. 

The “network demand” scenarios are aime
ing the effect of the operational mode, and ow- 
ledge level under various network demand vo s. As 
such, all the network demand experiments are carried out 
for the same network topograp  (link leng  kept 
fixed; 500 m) and same link speed (80 km/hr). 

The traffic loading intensity varies from lo ource 
volume of eh/hr), medium ource volum 1000 
veh/h rce volume of 2000 veh/ n all 
tested scenarios, the source volumes are equally distri- 
buted among all possible destinations. 

The Shortest Path Algorithm SPA) is u s the 
benchmark in all the above set of experiment at is, 

d at study- 
the kn

elum

hy th is

w (s
500 v  (s e of 

r) and high (sou hr). I

 ( sed a
s. Th
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the resulting network performance (the overa twork 
tra  th orrespondi lue if 
a r yed. 

Ex

dation in 
pe

 of 500, 1000 and  

mark SPA 
Travel Time 

with Respect to 
NCD 

ll ne
vel
eal-time SPA is deplo

 time) is compared with e c ng va

4. Experimental Results 

periments with the various operational modes were 
conducted using various network demand levels (500, 
1000 and 2000 veh/hr) and knowledge levels (1, 3 and 5), 
and results are summarized in Table 2 and Figure 7. 

At very low knowledge levels, vehicles may cycle in 
the network, and this may lead to high degra

rformance compared to the benchmark. The results in- 
dicate that the marginal improvement in performance is 
higher for low knowledge levels.  

The decentralized scheme is tested under three know- 
ledge levels (1, 3 and 5), demand levels

 
Table 2. Cooperative decentralized system performance. 

Demand 
Level 

Knowledge 
Level 

Operational 
Mode 

Total Travel  
Time as % of the 
Bench

Difference in 
Performance 

NCD 131 - 

PCD 126 5 1 

FCD 124 7 

NCD 122 - 

PCD 120 2 3 500 

FCD 117 5 

NCD 118 - 

PCD 117 1 5 

FCD 116 2 

NCD 137 - 

PCD 130 7 1 

FCD 122 15 

NCD 122 

5 

1 

3 2000 

NCD 123 - 

PCD 

FCD 

120 

118 

3 

5 

- 

3 

PCD 119 3 

1000 

FCD 118 4 

NCD 142 - 

PCD 135 7 

FCD 128 14 

NCD 131 - 

PCD 127 4 

FCD 124 7 

NCD 129 - 

PCD 128 1 5 

FCD 126 3 

NCD

PCD

FCD K=1
3

K=5
K=
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Figure 7. Performance of various cooperative schemes un-
der various knowledge levels and (a) Low; (b) Medium and 
(c) High traffic intensities. 
 

Source Volume = 2000 veh/hr 

 

2000 veh/hr, and the three operational modes (FCD, 
PCD, and NCD). Table 2 shows the performance of the 
various operational modes in relative terms of the corre- 
sponding benchmark performance. 

The results indicate that under low congestion levels 
(500 veh/hr), the relative performance of the FCD mode 
ranges from 116% to 124%, and that makes this coopera- 
tive mode even more competitive with the centralized 
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SPA scheme. 
Under the 500 veh/hr scenario, the FCD mode resulted 

in about 7% reduction in overall travel time with know- 
ledge level of 1, 5% with knowledge level of 3, and only 
2% with knowledge level of 5 when compared to the 
non-cooperative scheme NCD. Under highly congested 
situations (2000 veh/hr), the reductions in overall travel 
time are 14%, 7% and 3% for knowledge levels of 1, 3 
and 5, respectively. The relative performance of the FCD 
mode ranges from 126% to 128%. 

The effect of adding ,
, ,
L t
i jK   to the heuristic function 

(between the FCD and PCD schemes) is notable at low 
knowledge and/or low congestion levels. At high know- 
ledge levels, the concentration information, ,

, ,
L t
i jK  , ap- 

pears to have a limited im  on performance, and the 
local concentration variable ,

pact
, , ,

L t , becomes adequate to 

) achieved with the partial 

sess the effectiveness of the 
pr

nal cost associated with the centralized systems, 

th

territo- 
ries. Such improvement is thought of as a way to over- 

opology changes, the 

i j 
capture the marginal cost.  

The higher the knowledge level, the lesser the im- 
provement (compared to NCD

K

information scheme, PCD. Under limited knowledge le- 
vels, system performance can be enhanced by exchanged 
information. At high knowledge levels, the time lag as- 
sumed in transferring knowledge affects the accuracy of 
heuristic function estimates as compared to actually ex- 
perienced values, and situations where the PCD mode, or 
even the FCD mode, are worse than NCD could be ob- 
served. 

To conclude, it is evident that the fully cooperative 
mode, FCD, exhibited a highly competitive performance 
compared to the centralized SPA scheme. The gain in 
performance achieved by the cooperative scheme de-
clines with higher knowledge levels. The enhancement in 
performance under low knowledge levels, at which the 
non-cooperative scheme seems less effective, is quite 
significant. By achieving significant enhancement in per- 
formance under low knowledge levels, with negligible 
computational cost, the decentralized cooperative system 
becomes a very appealing route guidance system. 

5. Concluding Comments 

This paper presented a decentralized architecture that can 
be employed as a cooperative scheme for real-time route 
guidance in urban traffic ne s. Simulation experi- 
ments were performed to as

twork

oposed architecture. Under the cooperative scheme, the 
performance under low knowledge levels, at which the 
non-cooperative scheme seems less effective, is highly 
competitive with the SPA. By achieving significant en- 
hancement in performance under low knowledge levels, 
with negligible computational cost, the decentralized co- 
operative system becomes a very appealing route gui- 
dance system with good potential for early deployment.  

Bearing in mind the massive data processing and high 
operatio

e instability and communication constraints associated 
with the IVC-based systems, this paper seeks to provide 
improvement to the pure non-cooperative decentralized 
systems. The improvement is intended to resolve the re- 
ported cycling problems commonly encountered in the 
typical pure distributed systems. The improvement is 
sought through allowing for information exchange (or 
cooperation) among the various decentralized controllers. 
In a sense, we investigate the possibility of using inter- 
controller communication for exchanging knowledge 
regarding the traffic conditions in their respective 

come the limitations of the rapid t
frequent fragmentation and poor communication associ- 
ated with the IVC-based systems, as well as the limita- 
tions of the heavy processing and cost of the centralized 
systems. 

Further work will include the comparison of the pre- 
sented system against the IVC-based route guidance sys- 
tems reported in Hawas et al. (2009). It is expected that 
the two systems may exhibit similar performance as 
compared to the centralized system. Nonetheless, the 
cooperative decentralized system is expected to add no 
significant burden on the communication network. That 
is, in this case the IVC-based system, each vehicle com- 
municates with many other vehicles, and this implies 
heavy communication and inter-vehicle processing re- 
quirements. In the case of the cooperative decentralized 
system the communication requirements are heavily re- 
duced as each vehicle communicates only with one con- 
troller at a time. The fact that this communication is local 
with short distances allows for cheap communication 
media to be utilized. 
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