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Abstract 
Personal empirical experience when lecturing and consulting shows that not only students, but 
also experienced engineers familiar with DOE, show much more interest in the modeling of a 
process than to statistical inference, neglecting attention to “boundary conditions” of the process. 
But exactly the observation of ancillary boundary conditions of experiments, such as minimizing 
Beta-risk and noise, is determinant for the efficient execution of an experimental design and the 
effective application of DOE derived models. This essay focuses attention to the must-dos in the 
DOE statistics approach in order to avoid research pitfalls by presenting a fail-proof 14-step ap-
proach when applying DOE modeling. 
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1. Introduction 
Design of experiments (DOE) is a structured, statistics based, active regression modeling which aims to optim-
ize a response variable with regard to different input factors with a minimum number of trials. The word “power” 
in the title of this essay has a twofold meaning: 
• First, it points to the superiority of the DOE technique compared with one-factor-at-time (OFAT) or even 

with more simplistic Trial and Error (T&E) methods usually applied in industry, and 
• Second, it alludes to the statistics theory of being able to detect an effect discrimination between different 

realizations of a process input variable. 
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We will focus in this paper especially on this second aspect of the word power. Power (1 − β) is the comple-
mentary aspect of the Beta-risk in statistics inference. Compared with the Alpha-risk to make a type one error, 
the Beta-risk refers to the possibility to make a type two error. The attention in statistics inference is put on the 
Alpha-risk whereas the Beta-risk is usually neglected. This might be of secondary importance in industry, where 
even simplistic approaches, such as T&E, are widely applied in the belief of finding the “optimal” operating set-
tings of production equipment. But on the contrary to industry, the Beta-risk cannot be neglected in scientific 
research to find a statistical significant effect. The aim of this paper is not to explain the theory of DOE model-
ing but to drive attention to Beta-risk and some additional aspects to be observed during the planning phase of 
scientific DOE to avoid potential pitfalls. In the following, we will at first briefly explain how DOE works, then 
we will enter into the reasons why the Beta-risk cannot be neglected, and in accordance, we propose a consistent 
14-step DOE approach to avoid pitfalls in research, and finally a short algorithm to choose the proper DOE 
modeling; all this is aimed at students and researchers less familiar with statistics. 

2. What Is DOE 
Let us say, we have the assigned task in an industrial environment to find out the appropriate parameter settings 
of a machining equipment (e.g. type of cutting tool, cutting angle, mandrel revolutions, mandrel advancement) 
which optimizes the targets of surface roughness (quality) and oil consumption (efficiency). The task is to find 
the optimal settings of the independent variables such as cutting angle, mandrel revolution, and mandrel ad-
vancement optimizing both targets at the same time. This corresponds to a multi-objective function of which fi-
nal settings should comply to Pareto-optimality. We can solve this problem with a black box approach, i.e. ana-
lyzing the phenotypic behavior of a system with an input-output transfer function even without knowing the 
mechano-thermodynamic physics law of cutting and heat dissipation. In a nutshell, we want to identify which 
factors have a statistical significant influence on the response, i.e. which terms are relevant to be retained in the 
final model. Compared to the OFAT approach, which suits the human brain capability, by varying only one fac-
tor at time to understand the response, the computer assisted DOE approach allows the variation of all settings 
simultaneously in order to find the response surface of the design space. 

The most used DOE approach is a 2-level factorial design of experiments, either full, i.e. executing all, or 
fractional factorial, i.e. executing only a part of the trials of the design cube, leading to a linear model. The fac-
torial design technique is to explore the hyperspace response surface of the corners of a k-dimensional design 
cube, eventually with placing in addition a center point to test for non-linearity of the response function (Figure 
1). The number of experimental runs, also called trials, in one replicate is given by the fractional factorial nota-
tion 

number of runs 2k p
R
−=  

where 2 is the factor levels (low, high settings), k is the number of factors to be investigated, p is the partition 
called fraction of the whole experiment, and R is the resolution type, i.e. the confounding, in the case of a frac-
tional design. For further details see e.g. [1] or another textbook on DOE. 

Now, the statistical relevance of a factor for the model depends on the magnitude of the response to the 
change of the factor level, i.e. the effect (Figure 2) [2]. Virtually seen, the statistical significance is given by 
comparing the confidence interval of the response at the low (−1) and high (+1) settings of the variable as given 
in 

( ) ( )1 2, 1 1 2, 1sup : 1 inf : 1 .n n
s sy t y t
n nα αµ µ− − + −

   
= − ± ⋅ < = + ± ⋅   

   
 

If the two confidence intervals do not overlap, then the effect is statically significant with a confidence level 
1 α− . Practically executed, the regression analysis tests for the significance of the slope tanϑ of each factor, i.e. 
the coefficients ak of the predictors xk, of the linear regression model,  

0 1 1 2 2 12 1 2y a a x a x a x x ε= + + + + +  

in other word, if the slopes ak are statistically significantly different from zero.  
If the null hypothesis H0 (i.e. the population slope is assumed to be zero) is rejected and the decision is to ac-

cept the alternative hypothesis HA (i.e. the inference values of ak are supposed to be different from zero) the  
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Figure 1. Design space of a 3-factor 2-level full factorial DOE with 
center point.                                                              

 

 
Figure 2. Response significance to the change of factor level.                       

 
factor is statistically significant and has to be retained in the model. The p-value in function of the residual Al-
pha-risk, also called the significance level, will discriminate between H0 and HA. The p-value gives the probabil-
ity to incur into a type one error, i.e. the probability to be wrong by rejecting a true null hypothesis. So far so 
good—but this is only half of the truth. 

3. Paying Also Attention to Beta-Risk 
Uncertainty has an ambivalent characteristic: randomness and fuzziness. Randomness is related to the stochastic 
character of a variable (variability of outcome), fuzziness reflects the incomplete knowledge regarding a situa-
tion (vagueness of attribution to a binary state). We will not enter here into the discussion of uncertainty reasons 
but we will apply the classical concept of statistical variability of functional realizations being neither a stochas-
tic nor a fully deterministic response variable. The presence of noise in the system will cause variability of the 
output following a Z-shaped or rather a t-shaped distribution. The higher the noise, the larger will be the stan-
dard deviation of the response. 

Due to sampling, we cannot prove equality in statistics but we can only detect differences, with magnitude of 
this effect to be discovered which can be fixed as small as one likes. If we try to discriminate two values, i.e. 
realizations of an experiment, we will always have a residual risk which is called Alpha-risk, to incur into a type 
one error when we reject the null hypothesis of equality, i.e. to see a false-positive effect. If we accept the null 
hypothesis we will be confident with a confidence level of 1 − α, often set to 95%. In this case we usually talk 
about confidence and not about probability, because probability is an “ex ante” view of an event. In the case of a 
sample, the sample statistics have been computed and therefore applying the inferential statistics corresponds to 
an “ex post” rationalization of the event to draw conclusion about the population parameters. We will reject the 
null hypothesis, when the conditional probability given by the p-value to incur into a type one error 

( )0 0-value : reject | truep p H H=  

is smaller than a prefixed accepted residual error risk α (i.e. the significance level of decision) which is usually 
set to 5% in engineering science 

{ }0 0-value : keep ; reject .p H Hα≥ →  

If we do not find enough evidence to reject the null hypothesis this does not mean that the null hypothesis is 

a

b

c

Effect 
significant No 

overlapping
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correct. Indeed, we may incur into a type two error, i.e. retaining the null hypothesis although there is in reality 
an effect which we did not discover, this means falling into a false-negative trap. This is the Beta-risk. Now, if 
we reject the null hypothesis and accept the alternative hypothesis, we believe to have detected a significant ef-
fect. The question is, is this effect real or is it a just-in-case effect (i.e. effect occurred by chance). Now, what is 
the probability to detect an effect of a certain magnitude when it exists? This probability 1 β−  is called power 
and allows to determine the sensitivity to detect a real effect 

( )0power : reject | true .Ap H H=  

The relations between Alpha, Beta, power and effect Delta are shown in Figure 3 [2]. Interesting is, that the 
Alpha-risk cannot be reduced without increasing at the same time the Beta-risk because they are coupled; and 
with increasing Beta-risk the power will decrease to detect a real effect. This shows that it is not enough to limit 
the probability of being wrong by accepting the alternative hypothesis, we have also to take into consideration 
the power to detect the desired difference if the difference exists. From Figure 3 it is also observable that with 
shrinking variation the power increases, variation which is influenced by noise. By modeling the behavior of a 
system during scientific research we have therefore not to focus only on the mathematical modeling of the 
physical behavior of the system but especially scientific researchers have to care also about the statistical signi-
ficance and the sensitivity of the test results, which is often neglected in engineering sciences, contrary to phar-
maceutical research.  

Figure 4 shows the simplified relationship of the “boundary conditions” in statistical inference to validate a 
model. It shows the central importance of power and how it is linked to the other variables. Cohen [3] states, the 
power should be at least 0.8, i.e. in four out of five cases we will detect a difference of a certain prefixed amount. 
Higher power values more than 0.8 are welcome but will increase sample sizes too much and may lead to the il-
lusion of seeing an effect falling finally into a false-positive trap. Indeed, the more trials one performs, the more 
likely to incur into a type one error. The sample size n, e.g. for the two-sample mean comparison of the case 
shown in Figure 3, is given by 
 

 
Figure 3. Relation between Alpha and Beta-risk to detect an effect Delta.             

 

 
Figure 4. Simplified systemic boundary conditions determining model 
validation.                                                                 
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( )2

2

2 where
ˆ

Z Z
n

α β
δ

σδ

+ ∆
= =  

which shows mathematically the relationships of Figure 3 and Figure 4. If the population’s standard deviation 
Sigma is not known, i.e. the standard deviation has been estimated based on the sample statistics, the Z-distri- 
bution has to be swapped with the t-distribution with ν degrees of freedom.  

( )2

2, ,

2 where
t t

n
s

α ν β ν
δ

δ

+ ∆
= =  

As experience shows, students, if at all, pay only attention to orthogonality and rotatability when setting the 
design of the experiments but without giving afterwards the necessary attention to the Beta-risk. It is therefore 
imperatively necessary to document with each research work also the power of detecting an effect in the expe-
rimental results. Today, performant statistics packages exist with the specific power metric integrated into DOE 
software. Great attention should imperatively also be directed to limit the noise of the experiments by identify-
ing the potential sources of noise and how to limit their harmful impact to the response, noise being translated 
mathematically into a larger standard deviation deteriorating the power. The signal-to-noise ratio, i.e. the 
F-statistics, has to be maximized in order to declare the effect significant.  

4. A Fail-Proof Approach in 14 Steps for Scientific DOE Modeling 
In order to avoid pitfalls during experimental modeling we propose the following fail-proof approach in 14 steps 
(Figure 5) [2]. It shows clearly, that the main attention and effort should be given to the planning phase and less 
to the modeling. This structured approach eliminates a precipitant experimental proceeding and favors a delibe-
rate course of actions leading to consistent and significant research results. Here we give some additional advice 
for each step of Figure 5: 

1) Describe in words the issue or the objective in order to understand what is to be modeled. 
2) Classify the problem as identification or optimization (maximize, minimize, target hitting, robustness). 
3) Select a measurable response and, if possible, identify additional interesting ancillary related output va-

riables to be measured during the trials. 
4) Conduct imperatively a measurement system analysis (MSA) for the response variables to prove the capa-

bility of the measurement system used, or explain why it is not executed. A not capable measurement system 
immediately invalidates the obtained results. 

5) Select appropriate and physically controllable variable factors (e.g. rotor pitch versus rotor revolutions). 
Identify potential sources of noise and how to deal with them (by fixing, if possible, or by randomizing trials) 
and define the operational procedures to observe at each trial especially with respect to limiting noise. 

6) Select appropriate factor levels covering the whole design space and test the combined settings (e.g. tem-
perature and pressure) that they are feasible and they do not go beyond safety limits. If we are in presence of 
discrete factor levels, choose the extremes accordingly to allow center point setting. Assign to discrete setting 
levels with ordinal character continuous and not attributive character (general full factorial); then it is possible to 
compensate an eventual continuous value of a discrete setting correcting it by another, fully continuous variable. 
This will also allow to change the operating point stressing robustness of the response by decreasing sensitivity 
of factor change, especially if noise-influenced.  

7) Now we come to the cardinal topic to identify the power of the experiments and the related number of trials, 
i.e. replicates of the experiment necessary to identify an effect of a certain magnitude. But how to estimate up-
front the potential power of the experiment without knowing the variance of the process? If the long term stan-
dard deviation of the process, i.e. the population’s standard deviation, is not known a priori, it can be estimated 
unbiased by approximation with Equation (1), if at least the range of the realizations at a consistent setting level 
is known, with 

( ) max minˆ
6

y y
SD Y σ

−
= ≈  where max

min

3
3

y y
y y

σ
σ

≈ +

≈ −
                         (1) 

The here defined range of ±3 standard deviation between ymax and ymin contains 99.7% of the response varia- 
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Figure 5. Fail-proof DOE approach for scientific research in 14 steps.           

 
tion; outliers apart, this fairly represents the whole process. Or more likely, if the range of variability is not 
known, the expected sample standard deviation can be estimated with the following proposed Equation (2) 
without going through variance calculations, conducting only two preliminary trials y1 and y2 at the same setting, 
if possible at the center point settings to limit impact of potential heteroscedasticity, assuming 

( ) ( ) 1 2ˆ ˆwhere .
2Yi Yi

i

y ySD Y E s s −
≈ =                            (2) 

Attention, do not confound SD, i.e. the standard deviation of the population with SE, i.e. the standard error of 
a distribution of sample means. Whereas the Sigma estimated with Equation (1) is the “true” sigma of the 
process, the standard deviation calculated according to Equation (2) depends on the two realizations y1 and y2. 
Due to the aleatoric characteristic of repeats or replicates, this leads to a distribution of potential standard devia-
tions dist(sY) of the process estimated according to Equation (2) with the mean E(sY). Such a distribution, per-
formed with a Monte Carlo simulation of a standardized y response with distribution N(0, 1) of 10,000 couples 
y1 and y2, is shown in Figure 6. It shows, that the mean of the estimated standard deviation according to equa-
tion 2, E(sY), is slightly underestimated compared to SD(Y), i.e. 0.8 vs 1, 

( ) ( ) ( ) ( ) ( )2ˆ where 1 .Y Y iiE s s SD Y SD Y y y n≈ < = − −∑  

This bias is of secondary importance because the upfront estimation of the power serves only to approximate 
the corresponding number of trials and the true power of the experiment has to be evaluated afterwards with the 
true standard deviation of the experiments. Please note, these approximations have their validity only with the 
underlying assumption of normally distributed data of the y response.  

Further, the power is determined by the Alpha-risk fixed at 5%, by the process’ standard deviation estimated 
as shown above, by the fixed minimum magnitude of the effect to be detected, and by the sample size. Or if the 
power is prefixed to suggested 0.8, the minimum effect to be detected with a probability of 80% is now given by 
the sample size. If the number of replicates and consequent trials to be executed become too much, the minimum 
detectable effect has to be increased, if that is desirable and possible, to keep the number of trials at a managea-
ble size. At the end of the experiment, the real power of the experiments has to be recalculated; this is now 
possible knowing the real “within” subgroups variability of the responses. The real power of the response should 
always be stated with the experimental results.  

8) Select according to the previous decisions the design and add some center points to the design. The center 
point, of course, is unique but it can be repeated as often as one wants, especially when running only one repli-
cate it can be used to estimate the variation of the response. N.B. the addition of the center point does not make a 
3-level design out of the DOE, i.e. it remains a 2-level linear model. The center point, in this case, only allows 
for testing for non-linearity of the model. 

1. Define the problem

2. Determine kind of optimization

3. Select the response variable(s) (Ys)

4. Verify the measurement system for Ys

5. Select the factors (Xs) and identify the noise sources

6. Set and test practicability of factor levels

7. Estimate the process sigma, define the desired power

8. Select the design and number of replicates awa CP

9. Set-up the design and randomize the sequence

10. Execute the trials and record the data

11. Analyze graphically and analytically  the data

12. Build the optimal model and check the residuals

13. Verify the model

14. Draw  the conclusions

Planning

Analyzing

ExperimentingComputer-
assisted

Rüttimann
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Figure 6. Monte Carlo simulated histogram of estimated standard deviations according to 
Equation (2) for N(0, 1)-standardized y response.                                             

 
9) Set-up the experiments design in a suitable statistics software package. In research application the factor 

levels need to be defined with coded units to observe orthogonality of the design. In an orthogonal design the 
model parameters can be estimated independently. Do not forget to randomize the sequence of the runs. The 
randomization is absolutely necessary in order to discover long-term variability and to spread the influence of 
noise over the whole experiments; pay attention in presence of a necessary restricted randomization. 

10) Execute the trials with care taking notes in an action log of any deviation from the procedure. This allows, 
in the case of an abnormal outlier, to repeat just the doubtful trial. Make sure to limit any influence of any nuis-
ance factor. 

11) Analyze the data beginning with a graphical overlook of main and interaction effect plots; this gives im-
mediately a first impression. Never rely only on graphical analysis but confirm always analytically the potential 
significance of effect; indeed, due to scale effects a slope might look to be relevant but this has not to be the case 
statistically. 

12) Build the full model and reduce it step by step with the help of F and t-statistics. If there are not enough 
degrees of freedom available to carry out the ANOVA (i.e. the error term results to be zero) because of too 
many terms to be estimated, a provided Pareto-plot based on Lenth’s pseudo standard error for unreplicated ex-
periments may help to select and eliminate non-relevant factors to re-enter in excess trials compared to the 
number of terms to be estimated, i.e. to release some degrees of freedom. This is possible due to the projective 
properties of fractional factorial design. Analyze the residuals plot to observe non-normality of residuals distri-
bution, presence of heteroscedasticity in form of an ellipse, butterfly, wedge/fan, or other strange, e.g. curvili-
near, residual patterns due to non exhaustive explanation of the variability of the response with the present mod-
el. Indeed, heteroscedasticity may lead to the need to take a Bonferroni corrective approach into consideration. 
Keep also an eye on the autocorrelation of experiment’s sequence. 

13) Finally, execute some trials at different settings and compare these with the forecasted results of the mod-
el to test the suitability of your model.  

14) If the difference is acceptable the model can be used. If the deviations are too big, this might be the con-
sequence of non-linearity. If the test for curvature is negative the lack of fit might be the consequence of too 
much noise. If the test for curvature results in being significant, you have to go for non-linear modeling. 

In the case of non-linearity, the 2-level factorial design allows for expanding the design by adding axial points 
(called star points) to a so-called Central Composite Design (CCD) keeping valid the trials already executed. 
Selection of the appropriate alpha-value (N.B. this alpha-value has nothing to do with the Alpha-risk) is essen-
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tial to maintain the rotatable character of the design. Design rotatability is a searched-for characteristic in DOE 
design because it maintains the same variability of response for settings having equal distance from the design 
center; limiting variation increases precision of the model. But be aware: axial points with alpha > 1 go beyond 
the before fixed proven and safe design space. To avoid this, one can choose a face-centered design with alpha 
=1 but loosing characteristic of rotatability. Full quadratic models are quite powerful, not needing to build more 
complex polynomial models. 

5. Selecting the Appropriate Type of DOE Modeling 
If there are more than 20 variables, it may be opportune to go first for a Screening DOE approach, leaving aside 
investigation for interaction effects, focusing only on the significance of main effects. This allows the elimina-
tion of non-significant terms and to boil down the number of variables to be modeled in the Refining DOE. 
Usually, Refining DOE as described in the 14 steps approach is often enough to obtain very suitable models. In 
general, for refining and optimizing DOE, the simplified algorithm shown in Figure 7 [2] can be followed to 
find which class of DOE model to apply. In the presence of known non-linearity, it may be reasonable to go di-
rectly to non-linear Optimizing DOE such as e.g. the Box-Behnken design which has the advantage of having 
less trials than the CCD. Box-Behnken design is an edge-centered design and is based on multiple polynomial 
regression of second order 

( ) 2
1 2 0

1 1
, , , .

n n

n i i ii i
i i

y x x x b b x b x
= =

= + +∑ ∑  

It is a 3-level design with trials remaining in the proven design space and with the factor settings which are 
never set simultaneously at the high level. This design allows an efficient estimation of 2nd order regression 
coefficients, although representing only a part of a 3-level full factorial design space; in addition it has rotatable 
character and allows orthogonal blocking. This is a very efficient non-linear experimental design. 

In the case of multiple discrete factor levels, a general full factorial model is needed. In this case it is recom-
mended to limit the factor levels due to power-function-similar increase of the number of trials. Other DOE 
types exist, such as e.g. Taguchi or D-optimal designs, but the comparison of different DOE types is out of 
scope of this essay and we refer to the scholastic literature. 
 

 
Figure 7. Simplified algorithm to select the appropriate type of DOE 
modeling.                                                                 
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6. Conclusion 
DOE modeling is increasingly being applied in industry and science, resulting in a powerful effective technique 
to identify, in an efficient way, influential variables as well as finding the correct settings to optimize the re-
sponse. Whereas the application in industrial environment is targeted at identifying the optimal parameter set-
tings of production equipment, and at the same time looks to minimize the number of trials for cost reasons, an 
indiscriminant and lazy application of statistics boundary conditions may be excusable. But this is not tolerable 
in an academic environment. In scientific research, the statistical relevance of response of a factor has to comply 
rigorously with the statistical requirements of minimizing Alpha and Beta-risk. Students have to put serious time 
and effort into the planning phase of the DOE to limit noise during experimentations and estimate up-front the 
potential power of their DOE in order not to invalidate the experimental results with a too low power. The here 
presented easy understandable 14-step approach with explicit focus on Beta-risk is ideally suitable for scientific 
investigation, guiding statistics-inexperienced students and researchers with a consistent fail-proof approach to 
obtain statistical significant research results. 
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