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ABSTRACT 
The identification and classification of pathological voice are still a challenging area of research in speech proc-
essing. Acoustic features of speech are used mainly to discriminate normal voices from pathological voices. This 
paper explores and compares various classification models to find the ability of acoustic parameters in differen-
tiating normal voices from pathological voices. An attempt is made to analyze and to discriminate pathological 
voice from normal voice in children using different classification methods. The classification of pathological voice 
from normal voice is implemented using Support Vector Machine (SVM) and Radial Basis Functional Neural 
Network (RBFNN). The normal and pathological voices of children are used to train and test the classifiers. A 
dataset is constructed by recording speech utterances of a set of Tamil phrases. The speech signal is then ana-
lyzed in order to extract the acoustic parameters such as the Signal Energy, pitch, formant frequencies, Mean 
Square Residual signal, Reflection coefficients, Jitter and Shimmer. In this study various acoustic features are 
combined to form a feature set, so as to detect voice disorders in children based on which further treatments can 
be prescribed by a pathologist. Hence, a successful pathological voice classification will enable an automatic 
non-invasive device to diagnose and analyze the voice of the patient. 
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1. Introduction 
In the past 20 years, a significant attention has been paid 
to the science of voice pathology diagnostic and moni-
toring. The purpose of this work is to help patients with 
pathological problems for monitoring their progress over 
the course of voice therapy. Currently, patients are re-
quired to routinely visit a specialist to follow up their 
progress. Moreover, the traditional ways to diagnose 
voice pathology are subjective, invasive methods such as 
the direct inspection of the vocal folds and the observa-
tions of the vocal folds by endoscopic instruments are 
done. These techniques are expensive, risky, time con-
suming, discomfort to the patients and require costly re-
sources, such as special light sources, endoscopic in-
struments and specialized video-camera equipment. In 
order to circumvent the above problems, non-invasive 

methods have been developed to help the ENT clinicians 
and speech therapists for early detection of vocal fold 
pathology and can improve the accuracy of the assess-
ments. The voice disorders are caused due to defects in 
the speech organs, mental illness, hearing impairment, 
autism, paralysis or multiple disabilities. 

Clinically a number of guidelines and methods are 
used in practice for detection of voice disorders in chil-
dren. In this study an automatic classification of patho-
logical voice disorder using acoustic features is proposed. 
Acoustic features, which are used to identify voice dis-
orders, best describe the functioning and condition of 
various speech organs. Pitch is an attribute which repre-
sents the structure and size of the larynx and vocal folds. 
Pitch is closely related to frequency, but the two are not 
equivalent. Formants are the distinguishing or meaning-
ful frequency components of human speech that humans 
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require to distinguish between vowels. The formant with 
the lowest frequency is called f1, the second f2, and the 
third f3. Most often the first two formants, f1 and f2 are 
enough to disambiguate the vowel. These two formants 
determine the quality of vowels in terms of the open/ 
close and front/back dimensions. LPC is generally used 
for speech analysis and re-synthesis. During speech syn-
thesis the values of the reflection coefficients are used to 
define the digital lattice filter which acts as the vocal 
tract in this speech synthesis system. In general if the 
energy of the speech signal is higher, the volume of the 
output speech signal will also be higher. Using these 
acoustic features an extensive number of researches are 
carried out and various algorithms are used for extracting 
these features from the speech signal. The goal of the 
feature extractor is to characterize an object to be recog-
nized by measurements whose values are very similar for 
objects in the same category and very different for the 
objects in different categories leading to the idea of 
seeking distinguishing features that are invariant to ir-
relevant transformations of the input.  

The patterns for training the SVM and RBFNN were 
obtained from the recordings of children voices with 
normal voice and children with pathological voice. Since 
there are different types of classifiers, we are cross-vali- 
dating different classification methods to find the best 
hyperparameters and best classifier. The basis of SVM 
approach is the projection of low-dimensional training 
data in a higher dimensional feature space, because it is 
easier to separate input data. RBFNN is a type of neural 
network consisting of an input layer, an output layer and 
a hidden layer. RBFNN is associated with radial basis 
function which trains faster than multi-layer perceptrons 
and hence it classifies the normal and pathological voice 
in a better and faster way. The general process of classi-
fication is shown in Figure 1. 

2. Related Works 
In the recent works of speech pathology discrimination, 
researchers are mostly concentrating in the implementa-
tion of feature extraction techniques and pattern classifi-
cation techniques. [1] proposes a classification technique 
which focuses on the acoustic features of the speech us-
ing wavelet analysis and multilayer neural network. [2] 
proposes a system that determines the pitch using Auto-
correlation method. [3] classifies the normal and patho-
logical voice using 27 features and are incorporated us-
ing PCA and SVM (RBF). Here the audio signals are 
classified using a non-linear classification technique 
RBFNN and they are concentrating on classification part 
rather than feature extraction [4]. [5] compares various 
kernel functions and helps to identify Laryngeal disorder. 
[6] evaluates the computational time and hence feature 
extraction is carried out using MFCC and classified using  

 
Figure 1. Overview of classification. 

 
GMM. This paper deals with the extraction of acoustic 
parameters from the residue signal and diagnoses 21 dif-
ferent voice disorders [7]. [8] analyzes the speech signal 
and the feature set is optimized using Genetic Algorithm 
and classified using different kernels of SVM. 

3. Acoustic Feature Extraction 
3.1. Signal Energy 
The energy level of unvoiced segments is noticeably 
lower than that of the voiced segments. The higher the 
energy, the higher the volume of the output speech sig-
nals and higher the amplitude. The short-time energy of 
speech signals reflects the amplitude variation and is 
defined using the equation below as in [1]. 

( ) ( ) 21

1
i

N
E i

N n
x n=

=
∑              (1) 

N is the length of the sample. 
In order to reflect the amplitude variations in time (for 

this a short window is necessary), and considering the 
need for a low pass filter to provide smoothing, h(n) was 
chosen to be a hamming window. It has been shown to 
give good results in terms of reflecting amplitude varia-
tions hamming window powered by 2. It has been shown 
to give good results in terms of reflecting amplitude 
variations.  

In voiced speech the short-time energy values are 
much higher than in unvoiced speech, which has a higher 
zero crossing rate (Figure 2). 

3.2. Pitch 
Voiced speech signals can be considered as quasi-peri- 
odic. The basic period is called the pitch period. The av-
erage pitch frequency (in short, the pitch), time pattern, 
gain, and fluctuation change from one individual speaker 
to another. For speech signal analysis, and especially for 
synthesis, identifying the pitch is extremely important. A 
well-known method for pitch detection is given in [9]. It 
is based on the fact that two consecutive pitch cycles 
have a high cross-correlation value, as opposed to two 
consecutive speech fractions of the same length but dif-
ferent from the pitch cycle time. Figure 3 describes a 
vocal phoneme, in which the pitch marks are denoted 



Classification of Normal and Pathological Voice Using SVM and RBFNN 

OPEN ACCESS                                                                                        JSIP 

3 

 
Figure 2. A speech signal (a) speech waveform (b) short 
term energy. 
 

 
Figure 3. A phoneme with its pitch cycle marks (in red). 

 
in red. 

The pitch detector’s algorithm can be given by the 
equation as below. 

( ) ( )2
,

; ,x x x
x y
x y

τρ = =
⋅

        (2) 

4. Pattern Classification 
4.1. Support Vector Machine 
Support vector machine (SVM) is based on the principle of 
Structural Risk Minimization (SRM). Like RBFNN, 
support vector machines can be used for pattern classifi-
cation and nonlinear regression. SVM constructs a linear 
model to estimate the decision function using non-linear 
class boundaries based on support vectors. The basic 

SVM takes a set of input data and predicts, for each given 
input, which of two possible classes forms the output, 
making it a non-probabilistic binary linear classifier.  

Given a set of training examples, each marked as be-
longing to one of two categories, an SVM training algo-
rithm builds a model that assigns new examples into one 
category or the other. An SVM model is a representation 
of the examples as points in space, mapped so that the 
examples of the separate categories are divided by a clear 
gap that is as wide as possible. New examples are then 
mapped into that same space and predicted to belong to a 
category based on which side of the gap they fall on. 
(Figure 4) A support vector machine constructs a hyper-
plane or set of hyperplanes in a high- or infinite-dimen- 
sional space, which can be used for classification, regres-
sion, or other tasks. Intuitively, a good separation is 
achieved by the hyperplane that has the largest distance to 
the nearest training data point of any class (so-called 
functional margin), since in general the larger the margin 
the lower the generalization error of the classifier. A linear 
support vector machine is composed of a set of given 
support vectors z and a set of weights w. The computation 
for the output of a given SVM with N support vectors z1, 
z2 …, zN and weights w1, w2, …, wN is then given by: 

( ) ( )1   ,N
iF x Wi k Zi x b
=

= +∑         (3) 

4.2. Radial Basis Functional Neural Network 
The radial basis function is so named because the radius 
distance is the argument to the function. Euclidean dis-
tance is computed from the test point being evaluated to 
the mean center of each neuron, and a radial basis function 
is applied to the distance to compute the weight for each 
neuron. The farther a neuron is from the test point being 
evaluated, the lesser the influence it has. Feature-response 
decreases monotonically with distance from a central 
point. RBFNN have one hidden layer and it requires more 
hidden units (Figure 5). 

RBFNN are more robust to novel data and trains faster 
but suffers from the cause of dimensionality. RBFNN 
consists of an input layer with ni units for ni dimensional 
input vector fully connected to hidden layer. Hidden 
layer with nh units fully connected to output layer. Out-
put layer with nc units for nc number of classes. Hidden 
layer implements the Gaussian radial basis function and 
the activation function of the ith hidden unit for an input 
vector xj is characterised by the mean vectors and co-
variance matrices: 

( )
2

2exp
2
j i

i j
i

x
g x

µ

σ

 − − =   
 

           (4) 

where xj  = input vector; μi = mean vector(centers); 2
iσ  

= variance. 
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Figure 4. Principle of SVM. 

 

 
Figure 5. Principle of RBFNN. 

5. Proposed Methodology 
The speech from the pathological voiced children and 
normal children was recorded. They are trained to utter 
same set of phrases and the silences in between speech 
utterances are clipped off using a silence removal algo-
rithm (Figure 6). 

5.1. Silence Removal 
Silence removal is considered to be one of the efficient 
dimensionality reduction processes. The signal energy 
and spectral centroid are used for silence removal in 
speech signal. The segments are decided based on the 
threshold value, which is extracted from the feature se-
quences of the input signal. 

Signal Energy of the ith frame is defined using the 
formula  

( ) ( ) 2

1

1 N

i
n

E i
N

x n
=

= ∑               (5) 

N is the length of the sample. 
The spectral centroid, Ci is defined as the center of 

gravity of the spectrum. 
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,         (6) 

where xi(k) is the DFT of the ith frame.  

5.2. Windowing 
Speech is non-stationary signal where properties change 
quite rapidly over time. This is completely natural and 
nice thing but makes the use of DFT or autocorrelation as 
such impossible. For most phonemes the properties of the 
speech remain invariant for a short period of time (5 - 
100 ms). Thus for a short window of time, traditional 
signal processing methods can be applied relatively suc-
cessfully. Most of speech processing in fact is done in 
this way: by taking short windows (overlapping possibly) 
and processing them. The short window of signal like 
this is called frame. In implementation view, the win-
dowing corresponds to what is understood in filter design 
as window-method: a long signal (of speech for instance 
or ideal impulse response) is multiplied with a window 
function of finite length, giving finite length weighted 
(usually) version of the original signal and is shown be-
low in Figure 7. 
 

 
Figure 6. System overview for classifying the normal and 
pathological voice. 
 

 
(a) 

 
(b) 

Figure 7. (a) Original signal (b)Windowed signal. 
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5.3. Fundamental Frequency Estimation 
A pitch detection algorithm (PDA) is an algorithm de-
signed to estimate the pitch or fundamental frequency of 
a quasiperiodic or virtually periodic signal, usually a 
digital recording of speech or a musical note or tone. 
Fundamental Frequency (f0) or pitch voice corresponds 
perceptually to the number of times per second the vocal 
folds come together during phonation. Fundamental fre-
quency has long been difficult parameter to reliably es-
timate from the speech signal. Previously it was ne-
glected for number of reasons, including large computa-
tional burden required for accurate estimation, the con-
cern that unreliable estimation would be a barrier 
achieving high performance, and the difficulty in charac-
terizing complex interactions between and suprasegmen-
tal phenomena. The time-domain pitch period estimation 
techniques use auto-correlation function (ACF). The ba-
sic idea of correlation-based pitch tracking is that the 
correlation signal will have a peak of large magnitude at 
a lag corresponding to the pitch period. The autocorrela-
tion computation is made directly on the waveform and is 
a fairly straightforward computation [1]. 

The information about pitch period “T0” is more pro-
nounced in the autocorrelation sequence of voiced speech 
compared to the speech segment itself. Since autocorre-
lation sequence is symmetric with respect to zero lag, only 
positive lag values are considered. The “T0” information 
is more pronounced in the autocorrelation sequence 
compared to speech. By that, the second largest peak is the 
autocorrelation sequence, represents pitch T0 and can be 
picked up easily by a simple peak picking algorithm 
compared to finding “T0” from the speech segment itself. 
Hence autocorrelation method is preferred over other 
direct methods of pitch estimation from speech. 

Autocorrelation function for a signal x(n) is computed 
as given in [1]: 

( ) ( ) ( )1lim
2 1 n

N
Nn

x m x n x n m
N =−→∞

∅ = +
+ ∑    (7) 

The autocorrelation function of a signal is basically a 
(non-invertible) transformation of the signal which is 
useful for displaying structure in the waveform. Thus, for 
pitch detection, if we assume x(n) is exactly periodic with 
period P, i.e. x(n) = x(n + P) for all n, then the autocorre-
lation function Øx(m) is also periodic with the same pe-
riod.  

( ) ( )x m x m P∅ =∅ +  

5.4. Formant Estimation 
Linear Predictive Coding analyzes the speech signal by 
estimating the formants, removing their effects from the 
speech signal, and estimating the intensity and frequency 
of the remaining buzz. The process of removing the for-

mants is called inverse filtering, and the remaining signal 
after the subtraction of the filtered modelled signal is 
called the residue. A formant or resonance of the vocal 
tract above the vocal folds is a frequency region that will 
strongly pass energy in that frequency region if it receives 
energy at those frequencies from the glottal source (glottal 
flow). The formant frequencies depend upon the size and 
shape of the vocal tract. 

In autoregressive coding of speech, it is essential that 
the LPC model contain accurate information about the 
first three formants; specifically, that the LPC spectrum 
should reproduce the correct formant frequencies and the 
corresponding bandwidths. The modified linear predictive 
coder (MLPC) is superior to the widely used linear pre-
dictive coder (LPC) when the data frames are short. Per-
ception of these syllables critically depends on accurate 
detection of the rapid frequency changes in the first mil-
liseconds of voicing (formant transitions). Inaccurate 
detection of these formant transitions inevitably interferes 
with the identification of the phonological cues that are 
typical for spoken language. The resonant (formant) 
frequency of a uniform tube, which is a model of the vocal 
tract [4] is given by the equation below: 

( )2 1 4nF n c L= −             (8) 

where 
Fn—nth formant frequency [Hz] 
c—sound velocity [m/s] 
L—vocal tract length [m]. 
The aim of linear prediction is to estimate the transfer 

function of the vocal tract from the speech. The signal 
model can be defined as:  

( ) ( ) ( ) ( )1
LPN

LPis n i s n i e n
=

= ∝ − +∑     (9) 

where NLP, αLP and e(n) represent, respectively, the 
number of coefficients in the model the linear prediction 
coefficients and the error in the model. The above equa-
tion can be written in Z-transform notation as a linear 
filtering operation:  

( ) ( ) ( )LPE z H z s z= ⋅            (10) 

5.5. Jitter Estimation 
Jitter deals with varying loudness in the voice. Jitter is 
said to be the interval between the maximum effects or 
minimum effects of a signal characteristic that changes 
regularly in time. The average absolute difference be-
tween consecutive periods is expressed as in [8]: 

( ) 1
11

1Jitter absolute
1

 N
i ii T

N
T−

+=−
= −∑    (11) 

where Ti are the extracted F0 period lengths and N is the 
number of extracted F0 periods. 

Jitter (relative) is the average absolute difference be-
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tween consecutive periods, divided by the average period 
and is expressed as a percentage [8]: 

( )
1

11

1

1
1

Jitter Relat e
1
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N
i ii

N
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T T

N
T

N
−

+=

=

−
= − ∑

∑
     (12) 

5.6. Shimmer Estimation 

Shimmer deals with a frequent back and forth change in 
amplitude in the voice. The average absolute base-10 
logarithm of the difference between the amplitudes of 
consecutive periods, multiplied by 20 [8]: 

( ) ( )1
111

1Shimmer absolute 20logN
i iiN

A A−
+=−

= ∑  (13) 

where Ai is the extracted peak-to-peak amplitude data 
and N is the number of extracted fundamental frequency 
periods. 

Shimmer (relative) is defined as the average absolute 
difference between the amplitudes of consecutive periods, 
divided by the average amplitude, expressed as in [8]: 

( )
1

11

1

1

Shimmer Relat
1
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5.7. Reflection Coefficients 

A reflection coefficient calculated from the cross-sec- 
tional areas of vocal tubes expresses the rate of reflection. 
Let the cross-sectional area of the left tube be Sn and of 
the right tube be Sn+1. The reflection coefficient kn is 
defined as follows: 

1

1

1 1n n
n

n n

s s
k k

s s
+

+

−
= − < <

+
       (15) 

5.8. Classification 
5.8.1. Support Vector Machine 
The SVM algorithm can construct a variety of learning 
machines by use of different kernel functions [4]. Three 
kinds of kernel functions are usually used 

Linear Kernel 

The Linear kernel is the simplest kernel function. It is 
given by the common inner product <x, y> plus an op-
tional constant c. Kernel algorithms using a linear kernel 
are equivalent to their non-kernel counterparts. 

( ), Tk x y x y c= +             (16) 

Polynomial Kernel 
The polynomial kernel is a non-stationary kernel. It is 

well suited for problems where all data is normalized. 

( ) ( ),
dTk x y x y c= ∝ +            (17) 

Gaussian Kernel 
Gaussian kernel is one of the most versatile kernels. 

The width parameter of the Gaussian kernel controls the 
flexibility of the resulting classifier. 

( )
2

2, exp
2

x y
k x y

σ

 −
= − 

 
 

         (18) 

5.8.2. Radial Basis Functional Neural Network 
A radial basis function network is an artificial neural 
network which uses radial basis functions as activation 
functions by which the output of the network is deter-
mined by a linear combination of radial basis functions 
of the inputs and neuron parameters (Figure 8). 

A typical Gaussian RBF is given as: 

( )
2

2exp
2
x c

h x
σ

 − −
 =
 
 

           (19) 

where x = input; c = mean centre; σ = spread. 

6. Experiments and Results 
The speech signal is recorded from 20 children (10 nor- 
mal, 10 pathological) at the rate of 8000 samples per 
second and a dataset is created. All the speech samples 
were recorded in noise free environment using a micro- 
phone array. Each speech sample is pre-processed using 
a silence removal algorithm and a windowing technique. 
Using Autocorrelation method the fundamental frequen- 
cy is estimated, and Linear predictive analysis is used to 
extract the formant frequencies F1 and F2. The two first 
formants, f1 and f2, are enough to disambiguate the nor- 
mal and pathological voices. Since the number of for- 
mants is same for all the utterances the peaks of the for- 
mant frequencies are found using a magnitude threshold 
 

 
Figure 8. Architecture of RBFNN. 
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Table 1. Precisions of both classifiers. 

Results Classification Accuracy 
RBFNN 91% 

SVM 83% 

 
based peak detection algorithm. The feature vector is 
constructed using the peaks of Formant frequencies, av-
erage pitch period, the signal energy, mean square resid-
ual signal, reflection coefficients, jitter and shimmer. 
Combining all these feature vectors forms a 16 coeffi-
cient feature set. The classifiers are trained and tested 
with the same pre-condition like the same data set and 
the same characteristic parameters. 

The experimental results for the classification of 
pathological voice are shown in Table 1. The Table 1 
shows the classification accuracy of the various Classifi-
ers used for classification. Among the 2 classifiers 
RBFNN outperforms SVM in terms of Classification 
Accuracy. 

7. Conclusion 
In this paper several acoustic techniques for extracting 
different acoustic parameters and providing a hybrid ap-
proach of feature extraction are presented. The purpose 
of this methodology is to classify the voice dataset into 
normal and pathological voice and to compare the classi-
fication performance based on classification accuracy 
using Support Vector Machine and Radial Basis Func-
tional Neural Network. The future work will be based on 
extracting different feature sets by combining the derived 
features like Linear Predictive Co-efficients (LPC), Lin-
ear Predictive Cepstral Co-efficients (LPCC), etc., with 
the currently extracted raw features. Considering all the 
features, a combined feature set is constructed for meas-
uring their performance. Further this feature set will be 
used to implement different classification models so as to 
compare different classifiers based on classification ac-
curacy and also to design a new pattern classification 

model. 
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