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ABSTRACT 

In this paper, a new signal separation method mainly for AM-FM components blended in noises is revisited based on 
the new derived time-varying bandpass filter (TVBF), which can separate the AM-FM components whose frequencies 
have overlapped regions in Fourier transform domain and even have crossed points in time-frequency distribution (TFD) 
so that the proposed TVBF seems like a “soft-cutter” that cuts the frequency domain to snaky slices with rational 
physical sense. First, the Hilbert transform based decomposition is analyzed for the analysis of nonstationary signals. 
Based on the above analysis, a hypothesis under a certain condition that AM-FM components can be separated suc-
cessfully based on Hilbert transform and the assisted signal is developed, which is supported by representative experi-
ments and theoretical performance analyses on a error bound that is shown to be proportional to the product of fre-
quency width and noise variance. The assisted signals are derived from the refined time-frequency distributions via im-
age fusion and least squares optimization. Experiments on man-made and real-life data verify the efficiency of the pro-
posed method and demonstrate the advantages over the other main methods. 
 
Keywords: Time-Varying Bandpass Filter (TVBF); Hilbert Tranform; Assisted Signal; AM-FM Component; 

Time-Frequency Distribution (TFD) 

1. Introduction 

The decomposition of signals blended in noises is a real- 
life problem in measurement and other signal processing 
fields, which includes two tasks: first filtering and then 
decomposing the signals. The filtering of signals from 
observed noisy data, while preserving their original fea- 
tures respectively, remains a challenging problem in both 
signal processing and statistics. A number of filtering 
methods have been proposed, particularly for the case of 
additive white Gaussian noise [1-10]. Frequently, linear 
methods such as the Wiener filtering [1,4,10,11] are used 
because linear filters are easy to design and implement. 
However, linear filtering methods are not very effective 
when signals are nonstationary. To overcome the short- 
comings, nonlinear methods have been proposed such as 
wavelet thresholding [5,7]. The idea of wavelet thresh- 
olding relies on the assumption that signal magnitudes 
dominate the magnitudes of the noise in a wavelet repre- 
sentation so that wavelet coefficients can be set to zero if  

their magnitudes are less than a predetermined threshold 
[1,7]. A limit of the wavelet approach is that the basic 
functions are fixed and, thus, do not necessarily match all 
real signals. On the other hand, the second task—the de- 
composition of multi-components is also an important 
problem in signal processing. The adaptive methods for 
signal separation should be explored [2,8-18] especially 
for the separation of multiple components blended in 
noise data. That is to say, the separation of signals from 
real-life observed noisy data includes two steps’ work, 
filtering the signals and then decomposing the signals to 
multiple independent components. In most of the re- 
ported papers [1-25], the two tasks are separate and they 
cannot do the both tasks at the same time. In this paper, 
we will combine these two tasks to single one. 

Among many types of signals, the AM-FM (amplitude 
modulation and frequency modulation) signals are one of 
the most important ones and play an important role in 
various signal processing fields [1]. In telecommunica- 
tions, amplitude modulation and frequency modulation 
convey information over a carrier wave by varying its 
instantaneous amplitude and frequency. AM-FM signals  
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are also widely used in telemetry, radar, seismic pros- 
pecting and newborn EEG seizure monitoring, broad- 
casting music and speech, two-way radio systems, mag- 
netic tape-recording systems and some video-trans-mis- 
sion systems. Furthermore, many real-life signals can 
also be taken as the AM-FM signals approximately. In 
some cases, once the multiple AM-FM components are 
superposed and noised, the information carried by every 
AM-FM component is blended and hidden and cannot be 
recognized clearly. In this work, an elementary funda- 
mental problem how to separate the AM-FM components 
blended in noises is addressed.  

There have been some methods involving decompos- 
ing the superposed AM-FM components, including the 
frequency domain separation method such as the LFM 
(linear frequency modulation) component separation via 
FRFT [17], the empirical mode decomposition (EMD) 
[3,12], the improved EMD (IEMD) [2,8] (the method in 
[8] is only for pure FM signal), the masking method 
[13,14] and the Hilbert transform [1,19] based method 
[16]. The frequency domain separation method is the 
most traditional method to separate the superposed AM- 
FM components in frequency domain or fractional fre- 
quency domain [17] through finding the separation points 
or peak points. For the case that the superposed AM-FM 
components have distinguishable frequency regions, the 
separation is done well. Unfortunately, once the super- 
posed AM-FM components have overlapped and undis- 
tinguishable frequency regions, the separation method in 
frequency domain will fail to work. 

After the introduction of the HHT by Huang et al. [12], 
the EMD has become an important tool to analyze non- 
linear and non-stationary signals by breaking them down 
into a number of elementary amplitude and frequency 
modulated (AM/FM) zero mean signals termed intrinsic 
mode functions (IMFs). The EMD can separate the su- 
perposed AM-FM components successfully under some 
conditions that have been addressed by Rilling and P. 
Flandrin [18], i.e., when and where the two tones (can be 
taken as two simple AM-FM components) can be sepa- 
rated well using EMD. If these conditions are not satis- 
fied, EMD fails to separate them. Therefore, the im- 
proved EMD (IEMD) method [2] for AM-FM component 
decomposition is proposed in order to avoid the failure of 
EMD. Although IEMD can improve the performance, 
there are still some problems. First, the IEMD method is 
not stable, and in some cases it fails to separate the su- 
perposed AM-FM components, e.g., the possible failure 
of the polynomial estimation for more complicated fre- 
quency and phase functions due to the long signal’s 
length. Second, the employment of this IEMD method is 
cumbersome for more complicated cases such as the 
components with crossed instantaneous frequencies. 

The masking method [13,14] uses the mask signals to 
help decompose the superposed AM-FM components. In 
fact this method makes full use of the characters of filter 
bank for EMD [3] to extract the component whose fre- 
quency is close to the mask signal, and then eliminates 
the mask signal in IMFs to obtain the components. This 
method has two problems. The mask signal is based on 
Fourier spectral, therefore this method fails to handle the 
case of time-varying instantaneous frequencies that have 
overlapped frequency regions in frequency domain. In 
addition, this method still fails to separate two compo- 
nents with crossed frequencies. 

Differently, the Hilbert transform based method can 
separate the superposed AM-FM components whose fre- 
quencies are very close in principle. Unfortunately, the 
frequency of the assisted signal used in the Hilbert trans- 
form based method needs to be found in the Fourier 
transform domain via the valley values that can distin- 
guish the different frequency modes. In other words, in 
the case of more overlapping of frequencies, this method 
will fail.  

In this paper, we will first analyze the performance of 
the Hilbert transform based method in great details and 
find its limitation, and then find its potential value for 
analysis of the more complicated cases such as time- 
varying instantaneous frequencies with overlapped and 
crossed points. The main aim in Section 2 to analyze the 
Hilbert transform based method is twofold: 1), we want 
to know what amplitudes and frequencies are the optimal 
for the assisted signals; 2), for the overlapped frequencies 
(e.g., the Figure 1) in Fourier transform domain, whether 
this method will still work well or not? After that, in Sec- 
tion 3, the time-varying bandpass filter based on Hilbert 
transform and assisted signals is proposed, in addition the 
error bounds are analyzed theoretically and verified via 
simulations. The estimation of time-varying assisted sig- 
nals is addressed in Section 4 via image fusion and least 
square optimization. In Section 5 experiments on man- 
made and real-life data are shown. Section 6 concludes 
this paper. 

2. Component Separation via Hilbert 
Transform and Assisted Signal 

2.1. Component Separation 

The decomposition theorem [16] by G. Chen and Z. 
Wang is defined as follows. Let ( )x t  denote a real time 
series of n significant frequency components 

( 1 2, , , 0n    ) in  of the real time 

variable t. It can be decomposed into n signals 

2 ,L  
   d
ix t  

( 1, 2, ,i n  ) whose Fourier spectra are equal to  X    

over n mutually exclusive frequency ranges: 
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Figure 1. An example of two AM-FM components that can 
be separated successfully via Equations (6) and (7). Here 

    1 = cos 2π 0.12 + 1x t t t ,     2 = cos 2π 0.18 + 1.5x t t t  

and     as,cos = cos 2π 0.15x t


+ 1.25t t , 

   as,sin = sin 2π 0.15 + 1.25x t t t . Sampling frequency is 

500 Hz, time support is 30 seconds. Finally, . < 0.001er
 

,10, as ,   , , . That is,  ,1 ,2,as as   , 1 ,,as n as n 

     
1

n
d

i
i

x t x


  t .            (1) 

Here,  X   is the Fourier transform of  x t ,   

represents a frequency variable, and  , 1 ,i as i i  

 are  assisted frequencies for the   1,2,  1n ,i n
assisted signals. Each signal has a narrow bandwidth in 
the frequency domain and can be determined by 

           1 1
d d

i i i n nx s t s t x x t s t    ， ， ,   (2) 

          
 

, ,

,

sin cos cos

( ) sin( )

i as i as i as i

as i

,s t t H x t t

H x t t

 



   

 

t
,(3) 

where  0 0s t  , and H{·} represents the Hilbert trans-  

form of the function inside the bracket “{}”. 
The proof of this theorem can be found in [2]. This 

theorem tells us two key issues: the determination of as-
sisted signal and the condition that this theorem holds. 
Very fortunately we find an exciting fact: even if there 
are overlapped frequency ranges in Fourier transform 
domain, the above theorem still hold in some conditions. 

Hypothesis 1: For two harmonic AM-FM components 

     1 2x t x t x t   (   1 1 1cos  x t a t t  and 

    2 2 2cosx t a t t ) in , if  2 ,L  

     2 1 0ast t t      and  are positive am-  1 2,a a

plitudes, it’s possible we have 

          
        

1 sin cos

cos sin

as as

as as

x t t t H x t t t

t t H x t t t

 

 

  

  
,   (4) 

     2 1x t x t x t  ,              (5) 

if      2 1, ast t  , t  and  satisfy certain con- 1 2,a a

ditions. These conditions will be determined by rational 
simulations in the following section. 

2.2. The Conditions for Hypothesis 1 

For two harmonic AM-FM components 

    1 1 1cosx t a t t  and     2 2 2cosx t a t t  

      1 2x t x t x t   in , we first assume 

that 

2 ,L  
     2 1 0t ast t    and  are positive  1 2,a a

amplitudes. In order to simplify our analysis, we let 

    1 cos 2x t f t t    2 cos 2,  x t a cf t t  a n d  

the assisted signal    ,cos cos 2as x t kf t t , 

    ,sin sin 2asx t kf t t . Here    2 0t f t  


, the 

circle instantaneous frequency f t  is slow-varying in  

t R , a, c and k are constants with . Then we 
can obtain 

1 k c 

        
      

1 ,sin ,cos

,cos ,sin

as as

as as

x t x t H x t x t

x t H x t x t

  

  


       (6) 

    2 1x t x t x t   .             (7) 

If    1 1x t x t  and   2 2 x t x t , then the separa-  

tion is fully successful, otherwise, there is error. To mea- 
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sure the error quantitatively, we set 

     

   

2

2

2

21,2
min 1, max

l l L R

l
l L R

x t x t
er

x t

       

 



.     (8) 

Clearly, if , then the separation is fully suc- 
cessful. With the increasing of , the performance of 
decomposition will degrade. If , then the decom- 
position is a full failure. 

0er 
er
er 1

2.2.1. For 
+1

=
2

c
k  with a and c Varying 

Case 1: the amplitude a changes from 10−6 to 106, and c  
changes from 1 to 500 and   1f t  . The decomposition  

result can be found in Figure 2(a).  
Case 2: the amplitude a changes from 10−6 to 106, and  

c changes from 1 to 500 and   0.05 1f t t  . The de- 

composition result can be found in Figure 2(b). 
Case 3: the amplitude a changes from 10−6 to 106, and  

c changes from 1 to 500 and   20.01 0.02 1f t t t   .  

The decomposition result can be found in Figure 2(c). 
Clearly, for different instantaneous frequencies (the 

constant frequency, the linear modulation frequency and 
the quadratic modulation frequency), the decompositions 
are the similar and we can obtain the same result: if the 
amplitude a and the frequency ratio c are in the blue 
regions in the shape of “U”, i.e., satisfy the relation  
 

 
(a)                             (b) 

 
(c) 

Figure 2. The separation results of different instantaneous 
frequencies via Equations (6) and (7). 

10log4 ac  , then the decomposition will be nearly per-  
fect. 

2.2.2. For c = 2 with a and k Varying 
Case 1: the amplitude a changes from 10−6 to 106, and k  
changes from 1 to 500 and   1f t  . The decomposition 

result can be found in Figure 3(a). 

    1 cos 2 0.12 1x t t  t , 

    2 cos 2 0.18 1.5x t t  t  and  

    ,cos cos 2 0.15 1.25asx t t  t , 

    ,sin sin 2 0.15 1.25asx t t  t . Sampling frequency  

is 500 Hz, time support is 30 seconds. Finally, 
0.001er  . 

Case 2: the amplitude a changes from 10−6 to 106, and  
k changes from 1 to 500 and   0.05 1f t t  . The de-  

composition result can be found in Figure 3(b). 
Case 3: the amplitude a changes from 10−6 to 106, and  

k changes from 1 to 500 and   20.01 0.02 1f t t t   .  

The decomposition result can be found in Figure 3(c). 
Clearly, for different instantaneous frequencies (the 

constant frequency, the linear modulation frequency and 
the quadratic modulation frequency), the decompositions 
are the similar and we can obtain the same result: if the 
amplitude a and the frequency ratio k are in the blue 
regions, i.e., the middle region between the two functions  
 

 
(a)                             (b) 

 
(c) 

Figure 3. The separation results of different instantaneous 
frequencies via Equations (6) and (7). 
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 2

10log
2

4

a
k     and , then the de-  2

102 logk  a

composition will be nearly perfect. 
Therefore, if the amplitudes and frequencies of the two 

AM-FM components are known, the assisted signal’s 
frequency can be selected in wide scope according to the  

above results because the conditions ( 10log4 ac  , the 

middle region between 
 2

10log
2

4

a
k     and  

 2

102 logk  a ) are very loose and easy to satisfy in  

practice.  
The example in Figure 1 is a breakthrough of the de- 

composition theorem in [16]. The simulations in Figures 
2 and 3 verify that this breakthrough is rational and find 
the performance bounds for the separation of two AM- 
FM components. 

Compared with the performance limitation of EMD 
[12], the method based on Hilbert transform and assisted 
signal is a great improvement for component separation. 
That is, if we can obtain the rational assisted signals, the 
separation of AM-FM components will be feasible in 
principle. 

3. Time-Varying Bandpass Filter 

3.1. Time-Varying Bandpass Filter 

Let    
3

1
l

l

x t x


  t  with   cosl l l   x t a t t  denote  

a real time series of 3 significant instantaneous frequent-  
cies (here the amplitude , and these slow-varying  0la 
instantaneous frequencies satisfy 

     1 2 3 0t t t      for any  0,t T . Now we 

want to obtain the interested component    2inx t x t  

out of  x t    1
,cos ,as as.     1

,sinx t x

   

t  and  

    2 2
,cos ,sin,as as x t x t  are the assisted signal pairs so that 

                1 1 1
,cos ,sincos , sinas as as as 1x t t x t  t

2 t

2

 with  

       1
1 ast t    ,           (9) 

                2 2 2
,cos ,sincos , sinas as as asx t t x t   t

3 t

 with  

       2
2 ast t    .          (10) 

Then we can obtain an approximation of the interested 
component  inx t  with error   by the time-varying  

bandpass filter (TVBF) 

            
          

1 1
1 ,sin ,cos

1 1
,cos ,sin

as as

as as

s t x t H x t x t

x t H x t x t

  

  


,       (11) 

            
          

2 2
2 ,sin ,cos

2 2
,cos ,sin

as as

as as

s t x t H x t x t

x t H x t x t

  

  


,      (12) 

    2 1 2 x t s t s t    ,            (13) 

where 
     

   

2

2

2

2

2
0 1

in L T

in L T

x t x t

x t



 


  ( is a very small  

nonnegative value). 
The most important is the selection of these functions  
        1 2,as ast  t . In fact, if the instantaneous frequency 

   2in t t   is known, we can let  

       1 1as int t     and          2 1as int t   

with 0 1   only if  and         1
1 as int t    t

       2
3in ast t    t  hold. If the other two compo- 

nents     1 3,x t x t  are the noises (such as the zero-  
mean Gaussian white noises) whose bandwidths occupy 
the whole frequency domain. Therefore, we hope   to 
be as small as possible. On the other hand, if   is too 
small, the performance of TVBF in (11)-(13) will de- 
crease because the limited signal resolution won’t be too 
- high for the reason of sampling and others. In the fol- 
low section, we will address the optimal   for fixed  
instantaneous frequency  in t  under different SNR  
(signal-to-noise-ratio) (or noise variance  ). 

3.2. Optimal Filter Parameter in Noises 

In this section, we explore the optimal   under differ- 
ent noise variance   for the fixed instantaneous fre-  
quency  inf t  via simulations. We set  

    2cos 2 0.002 0.05 1inx t t  t t  with the instant- 

taneous frequency   20.002 0inf t t .05 1t    (the time 

support  0,30t  and the sampling frequency is 500  

Hz). According to (11)-(13), we set 
        
        

1
,cos

1
,sin

cos 2 1 ,

sin 2 1 ,

as in

as in

x t f t t

x t f

 

 

 

  t t
      (14) 

        
        

2
,cos

2
,sin

cos 2 1 ,

sin 2 1 .

as in

as in

x t f t t

x t f

 

 

 

  t t
      (15) 

Set      inx t x t nn t  , and  is the zero-   nn t

mean Gaussian white noise with variance  . Now we  
use the TVBF to obtain  inx t  (an approximation of the 

interested component  inx t ) so as to see how the error  

  varies while the variance   and the parameter   
varying. 
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dle parts between the two assisted signal pairs in the 
time-frequency distribution. First we set the Gaussian  

If there are no other components whose frequencies 
are close to the interested component, when the noise 
variance is small, we can let   be large. However, if 
there are other components whose frequencies are close 
to the interested component, then we must let   as 
small as possible. On the other hand, in order to separate 
the interested component,   cannot be zero. Therefore, 
after analysis and simulation in Figure 4 (see the red dot 
lines), we find that the optimal   should be in the 
scope of 0.001 ~ 0.1 in most cases. Of course, in practice 
we should take care of all the factors comprehensively to 
give a better choice of   empirically. 

noise            1 2 3 4 5nn t s t s t s t s t s t      with 

      cos 2l sl sls t a t f t t sl    1, ,5l    and  

          1 2 3 41s s in s s f t f t f t f t f t       

     51 0in sf t f t    , that is to say,  2s t is the  

assumed equivalent component (coming from the Gaus-  

sian noise) that has the same bandwidth as    1
asx t , and 

 4s t is the assumed equivalent component (coming  

from the Gaussian noise) that has the same bandwidth as  Compared with the performance limitation of EMD 
[12], the method based on Hilbert transform and assisted 
signal is a great improvement for component separation. 
That is, if we can obtain the rational assisted signals, the 
separation of AM-FM components will be feasible in 
principle. 

   2
asx t .  1s t is the equivalent component (coming from  

the Gaussian noise) whose bandwidth occupies the fre-  
quency range over    1 inf t .  5s t is the equivalent  

component (coming from the Gaussian noise) whose 
bandwidth occupies the frequency range less than  

   1 inf t .  3s t is the equivalent component (com-  3.3. Performance Analysis in Noises 
ing from the Gaussian noise) whose bandwidth occupies  

In follows, we will analyze the error resulted by the equi- 
valent component that has the same frequency as the as- 
sisted signal pairs from the Gaussian noises and the mid-  

the frequency range between   1 in f t  and  

   1 inf t . Therefore  

                1 2 3 4 5in in x t x t nn t x t s t s t s t s t s t        .               (16) 

Taking into account (14), (15) and (16), finally we obtain 

                       
                              

1 1 1 1
1 ,sin ,cos ,cos ,sin

1 1 1
3 4 5 ,sin 2 ,cos ,cos 2 ,sin

as as as as

in as as as as

s t x t H x t x t x t H x t x t

1x t s t s t s t x t H s t x t x t H s t x t

     

         


 

Since the bandwidth of  2s t  is the same as    1
asx t  

and the Gaussian white noise’s spectrum magnitude is 

constant, we obtain      1
2 ass t x t  so that  

                     1 1 1 1
,sin 2 ,cos ,cos 2 ,sin 0as as as asx t H s t x t x t H s t x t       

without loss of generality, hence          1 3 4in 5s t x t s t s t s t    . 

In the same manner, we have 

                       
                       

2 2 2 2
2 ,sin ,cos ,cos ,sin

2 2 2
5 ,sin 4 ,cos ,cos 4 ,sin

as as as as

as as as as

s t x t H x t x t x t H x t x t

2s t x t H s t x t x t H s t x t

     

      


 

Since the bandwidth of  4s t  is the same as    2
asx t  

and the Gaussian white noise’s spectrum magnitude is 

constant, we obtain      2
4 ass t x t , so that 

                     2 2 2 2
,sin 4 ,cos ,cos 4 ,sin 0as as as asx t H s t x t x t H s t x t       

without loss of generality, hence    2 5s t s t . 

Finally, 

           
   

1 2 3 4

3

in in

in

x t s t s t x t s t s t

x t s t

    

 

  
. 

Taking into account that  3s t is the equivalent com-  

ponent (coming from the Gaussian noise) whose band- 

width occupies the frequency range between  

   1 inf t  and   1 in f t , and the Gaussian white  

noise’s spectrum magnitude is constant , we get 

      2
3in inx t x t s t      .       (17) 

This implies that the recovery error is proportional to 
the value of   and the variance 2  of the noise. This 
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has been verified by the simulation in Figure 4 and the 
two results (the theoretical result in (17) and the simu- 
lation result in Figure 4) are consistent. 

4. Parameter Estimation for Assisted Signals 
from TFDs 

4.1. Refined TFD via Image Fusion 

In order to obtain the assisted signals and their instan- 
taneous frequencies, we need to obtain the refined TFD 
of the original signals in noises, in which we can estimate 
the assisted signals’ instantaneous frequencies that satisfy 
the relations in TVBF. In our work, we would like to use 
these traditional tools [1,11] such as Wigner-Ville distri- 
bution, pseudo Wigner-Ville distribution, smoothed pseu- 
do Wigner-Ville distribution and short Fourier transform 
to refine our TFD by fusion rather than some updated 
TFDs [19,24] because these traditional but simple and 
reliable TFDs are enough for our task. The fusion proce- 
dure is as follow. 

1) Calculate the normalized Wigner-Ville distribution 

 ,wv I t f , pseudo Wigner-Ville distribution  ,pwvI t f , 

smoothed pseudo Wigner-Ville distribution  ,spwvI t f  

and short Fourier transform  ,sft I t f . Here the “norma-  

lized” means that all the images above are mapped to the 
value scope between 0 and 1 in proportion. 

2) Calculate the first refined TFD by  

    1 , ,wv pwv ,I t f I t f I t f  , where  denotes 

     
   

1

1

, , ,

sign , ,

wv pwv

wv pwv

I t f I t f I t f

I t f I t f th

 

  
 

 

 

Figure 4. Relation between the error  with the variance 
 and the parameter . 

δ
σ λ

(where ) by  
1 0

sign
0 else

x
x


 


 1 0.1, 0.3th  ). 

3) Calculate the second refined TFD by 

     2 , ,spwv sft ,I t f I t f I t f   by threshold  (gen- 

erally 

2th

 2 0.01, 0.2th  ). Additional operations: if there  

are many small isolated regions, then the following steps 
are adopted: a) perform isolated block removal whose  
area is less than  (generally 3th  3 500, 2000th 

( , )

) that 

is the number of the pixels in 2I t f ; b) dilate the im- 
age  2 ,I t f ; c) erode the image  2 ,I t f . 

4) Calculate the third refined TFD by  

     3 1 2, , ,I t f I t f I t f  , where   denotes first  

performing multiplication pixel by pixel and then the 
following steps are possibly adopted: a) perform isolated  
block removal whose area is less than  (generally 4th

 4 10, 1000th  ) that is the number of the pixels; b) di-  

late the image; c) erode the image. 
Note that there is no normal theoretical foundation for 

the fusion procedure due to the complicated variants in 
practice. However, these thresholds and the approaches 
can be found in the similar context in image processing 
[15]. The similar empirical employment of this fusion 
procedure can also be found in [19,26]. 

We find that for most cases, the above procedure plays 
an effective role in refining the TFD. Figures 5-7 are 
three examples showing the effective results by the above 
procedure. Note that the refining of the TFD in our work 
is not our final target, which is only a basis in the process 
of our component separation in noises. Therefore, even 
we obtain the crude TFD with some distortion in our 
selected interested regions, if the most pixel points in the 
true time-frequency ridge are obtained, the effective 
assisted signals’ instantaneous frequencies are available 
via least squares optimization. For example, in Figures 
5(i) and 6(i) there are some points that are not in the true 
time-frequency ridges, but they are distributed nearly 
uniformly around the true time-frequency ridges. On the 
other hand, our assisted signals’ instantaneous frequen- 
cies can be defined in a scope (see Figure 4) limited by 
  that give us more tolerance for the distortion of TFD. 
Similarly, we can select the regions of other interested 
frequencies in Figures 5 and 6. These selected points 
 t f,  (the red points in the image of Figures 5(i) and 
6(i)) can be used to estimate the polynomial instan- 
taneous frequency applied for the construction of assisted 
signals via least squares optimization. 

Since the practical TFDs in noises are possibly too 
complicated with some intersections, it is too hard to 
automatically select the interested components’ regions 
in TFDs. Therefore, we have o artificially select our in-  t 
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(g)                                      (h)                                      (i) 

Figure 5. Normalized TFD for assisted instantaneous frequency construction. (a) Wigner-Ville distribution; (b) pseudo 
Wigner-Ville distribution; (c) short Fourier transform; (d) smoothed pseudo Wigner-Ville distribution; (e) HHT; (f) the fused 
result of (c) and (d); (g) the fused result of (a) and (b); (h) the fused result of (f) and (g); (i) an example of the interested fre- 
quency component selection for the further estimation of assisted signal’s instantaneous frequency. Here , 1 = 0.2th

      2
1 = 1 + 0.01 2π 0.1 + 3.5x t t cos t t t ,     2 = 2π 0.44 + 0.4x t cos t t , , , 2 = 0.03th 3 = 1000th

    2
3 = 2π 0.04 0.4 + 1.5x t cos t t t , , 4 = 20th       2

4 = 1 0.001 2π 0.4 + 4.5x t t cos t t  , and the zero-mean Gaussian 

noise’s variance . The sampling frequency is 100 Hz. = 1σ
 

4.2. Polynomial Instantaneous Frequency 
Construction via Least Squares 

terested components via image region selection [15]. 
There are many powerful and skillful tools [15] to help to 
operate image region selection. Even in MATLAB [9], 
we can easily operate the image region selection piece- 
wise via some simple tries and tests after a few times. 

We let the selected region’s instantaneous frequency be  

 
1

v
i

in i
i

f t a t


   (  is the number of the coefficients).  
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Figure 6. Normalized TFD for assisted instantaneous frequency construction. (a) Wigner-Ville distribution; (b) pseudo 
Wigner-Ville distribution; (c) short Fourier transform distribution; (d) smoothed pseudo Wigner-Ville distribution; (e) HHT; 
(f) the fused result of (c) and (d); (g) the fused result of (a) and (b); (h) the fused result of (f) and (g); (i) an example of the 
interested frequency component selection for the further estimation of assisted signal’s instantaneous frequency. Here 

, , , 1 = 0.2th 2 = 0.03th 3 = 1000th      1 = 2π 3 1.5 0.2πx t cos sin t t ,    2 = 0.02 + 1x t t ·   2π 0.31 + 0.4cos t t ,  

and the zero-mean Gaussian noise’s variance 

4 = 20th

= 2σ . Sampling frequency is 25 Hz. 

 
From the selected region, we can obtain the nonzero pi-  

xel points   ,l in lt f t  (1  and sl L    sL  is the  

number of the nonzero pixel points in the selected region).  

Set ,  and , 

then we can obtain the optimal parameters via the least 
squares optimization by 

 
 

 

1

2

sL

f t

f t
Y

f t

 
 
 

  
 
 
 


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2

n

a

a
A

a

 
 
 
 
 
 



2
1 1 1

2
2 2 2

2

1

1

1
s s s

v

v

v
L L L

t t t

t t t
B

t t t



 






    


  1
A B B B Y


 T T ,        (18) 








where the superscript “ ” is the matrix transpose 
operator. 

T

In most cases, what we need to do is to provide the 
number  of the parameters in v A . In fact, after the 
acquisition of the refined TFD, every frequency ridge     
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(g)                                          (h) 

Figure 7. Normalized TFD for assisted instantaneous frequency construction. (a) Wigner-Ville distribution; (b) pseudo 
Wigner-Ville distribution; (c) short Fourier transform distribution; (d) smoothed pseudo Wigner-Ville distribution; (e) HHT; 
(f) the fused result of (c) and (d); (g) the fused result of (a) and (b); (h) the fused result of (f) and (g). Here , 

, 

1 = 0.2th

2 = 0.03th     2
1 = 2 2π 0.012 1.2 + 35x t cos t t t

1

, , ,  and the 

zero-mean Gaussian noise’s variance 

      20.003 50
2 = 2 2π 0.45 + 5tx t e cos t t 

3 = 1000th 4 = 20th

  . The sampling frequency is 250 Hz. 
 
function’s shape is salient, and we can give a number a 
priori. Generally, works well. 5v 

Once the instantaneous frequency  
1

v
i

in i
i

f t a


 t  is  

determined, we can obtain the according two assisted 
signals’ instantaneous frequencies  

   ,1
1

1
v

i
as i

i

f t a


  t  and    ,2
1

1
v

i
as i

i

f t a


  t  to  

construct the two assisted signal pairs: 

             1 1
,cos ,1 ,sin ,1cos 2 , sin 2as as as asx t f t t x t f   t t , 

(19) 
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            2 2
,cos ,2 ,sin ,2cos 2 , sin 2as as as as x t f t t x t f  t t . 

(20) 

Furthermore, we can obtain the according interested  
component’s approximation  inx t  from the noised 

signal  x t  by 

            
          

1 1
1 ,sin ,cos

1 1
,cos ,sin

as as

as as

s t x t H x t x t

x t H x t x t

  

  


,    (21) 

            
          

2 2
2 ,sin ,cos

2 2
,cos ,sin

as as

as as

s t x t H x t x t

x t H x t x t

  

  


,    (22) 

     1 2inx t s t s t    ,           (23) 

and with the SNR 

   

     

2

2

2

10 102
10 log 10log

in L T

in in L t

x t
snr

x t x t


 
  ,  (24) 

where  inx t  is the according interested original com-  

ponent.  
In practice, the Hilbert transform has the boundary ef- 

fect [1] near the endpoints that is similar with EMD’s 
boundary effect [20-23]. One of the most used methods 
[20-23] is the prolonging on the two sides of the original 
signals via rational extrapolation. Since there are a lot of 
noises, it is relatively hard to extend the original signals 
with seamless splicing. Therefore, in this work we use 
one simple but effective method: mirror extension [20]. 
We find that although the mirror extension cannot elimi- 
nate the boundary effect completely, it greatly attenuates 
the errors resulted by the boundary effect. 

5. Experiments and Discussion 

5.1. On Simulations 

In this section, we will use the proposed method to sepa-  

rate the noised AM-FM components in the Figures 5-7. 
There are eight significant AM-FM components at all. In 
these experiments, we take 0.02   for all components. 
The compared methods include the empirical mode de- 
composition (EMD) [12], the improved EMD (IEMD) 
[2], the Hilbert transform based method [16] via Fourier 
spectra, the masking method [13,14] and our proposed 
method. In EMD we will use the most related IMF to the 
original true component as the according separated 
component. In IEMD and the masking method, we first 
perform simple filtering by EMD via discarding the first 
two IMFs. In the Hilbert transform based method [16], 
we assume the number of the components in noises is 
known so that we can obtain according modes’ number a 
priori. The comparison via SNR can be found in Table 1. 
The measure used in Table 1 is defined in (24). The sig- 
nals that are decomposed come from Figures 5-7. The 
comparison methods are the above mentioned methods: 
EMD, IEMD, masking method and our proposed 
method.  

One notation is that all the other four methods (EMD, 
IEMD, masking method and the Hilbert transform based 
method [16]) fail to separate the components with cro- 
ssed instantaneous frequencies. EMD, IEMD and mask- 
ing method only extract the high-frequency part every 
time. At the same time, they are seriously affected by the 
noises. The method [16] employs the Fourier spectra to 
obtain the assisted signals’ constant frequencies, which 
are not suitable for the time-varying frequency compo- 
nents, and in other words, it only holds for the compo- 
nents with distinguishable (or non-overlapped) frequency 
regions in Fourier spectra. Therefore, these four methods’ 
performance is far lower than our proposed method for 
the more general and complicated cases in noises. 

In Figure 7, the second component  2x t  is inter-  

mittent. In this case, we still obtain the selected region 
including the according pixels that are related with the  
instantaneous frequency of  2x t  at first. Then the con-  

struction of the assisted signals is also the same as that of  
 

Table 1. The comparison between some methods to separate the components in noises. 

 snr 

 Figure 5 Figure 6 Figure 7 

 x1(t) x2(t) x3(t) x4(t) x1(t) x2(t) x1(t) x2(t) 

EMD [3] 1.2574 1.0001 - 3.4464 2.2574 2.3072 1.8894 - 

IEMD [6] - - 4.3375 5.1247 4.1113 3.8879 - - 

Masking method [4,5] 3.6905 - 2.3467 2.9870 3.9802 - 6.4301 - 

Method in [2] 3.8979 3.7021 2.2554 - 6.8794 3.3210 7.2578 - 

Our method 17.1615 18.4958 21.7105 14.6292 15.2934 14.3257 17.5273 19.3419 

Here “−” denotes this term is negative. 
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non-intermittent component. The difference is the extrac- 
tion of the component using TVBF. Since the component 
is intermittent, then its effective time support is short 
than the whole time support. Therefore, we only need to 
extract the according component in the effective time 
support that can be estimated in the refined TFD. In order 
to reduce the lose of the small instantaneous amplitude as 
much as possible without introducing more noises, we 
can extract the component by 

     1 2 1 2,

0, elsewhere
in

s t s t t t t t t
x t

        


 
 ,   (25) 

where  1 2,t t  is the component’s effective time support  

roughly estimated in the TFD, and here we take  

 2 1 4t t t   . 

Another problem is the sampling frequency. Since 
Hilbert transform will be affected by the sampling fre- 
quency and the signal’s max frequency, we must take 
into account the ratio between the sampling frequency 
and the signal’s max frequency. We find that with the 
increasing of the ratio between the sampling frequency 
and the signal’s max frequency, the performance will 
upgrade, and vice versa. Figure 8 is the relation between 
the SNR and the frequency ratio for the separation of the 
two components from Figure 6. We find that the higher 
the ratio, the higher the SNR. In addition, when the ratio 
is more than 10, the SNR varies slowly. In the same ma- 
nner, we also test the components in Figures 5 and 7 and 
obtain the same conclusion for fixed noise’s variance: 
when the ratio is more than about 10, the performance is 
better. On the other hand, when the ratio is more than 
about 5, the performance is nearly acceptable. 

5.2. Experiments on Real-Life Data of Bat 

In this section, we will use the proposed method to ana- 
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Figure 8. The relation between SNR and the frequency ratio 
for the two components from Figure 6. 

lyze the noised bat’s data (see Figure 9(a)). Since the 
data is disturbed by heavy noises, the true components in 
the data cannot be seen at all. Now we compared some 
methods with our proposed method to separate them. The 
compared methods include the empirical mode decom- 
position (EMD) [12] and the improved EMD (IEMD) [2]. 
IEMD cannot find the according assisted component and 
it fails to do this work because of the heavy noises (so 
there is no according result here). EMD can do this work, 
but its result (see Figure 9(f)) has no physical sense from 
the real-life nature. Instead, since our method makes full 
use of the fused time-frequency distribution and the 
function of soft-cutting in frequency domain, we finally 
obtain the two main decomposed components (see Fig- 
ures 9(j) and (k)) with its rational physical interpretation 
(see Figure 9(i)). 

6. Conclusions 

AM-FM signals are widely used in various signal proc- 
essing fields. When multiple AM-FM components are 
blended in noises, how to separate them is still a chal- 
lenge. The tasks in the separation of multiple AM-FM 
components blended in noises are twofold: one is the de- 
noising and another is the decomposition of these com- 
ponents. Especially when the frequency spectra of these 
components have overlapped regions in Fourier trans- 
form domain and even their instantaneous frequencies 
have crossed points in TFD, how to extract every AM- 
FM component is nearly an open question to our knowl- 
edge. In this paper, we merge the two tasks (filtering the 
noises and decomposition of these components) to one 
new derived method.  

Our contribution mainly includes the following. First, 
the Hilbert transform based decomposition is analyzed 
for the time-varying frequency components (i.e., nonsta-
tionary signals) via representative simulations and theo-
retical analyses. From these simulations and analyses we 
can obtain the conclusion: this method holds for the 
complicated case that the components have overlapped 
frequency regions in transform domain, which is a break- 
through in decomposing noised signals so that this dem- 
onstrates great potential valuable performance in the 
separation of components for more general/complicated 
cases. Second, based on the above analysis, a hypothesis 
with the condition that AM-FM components can be 
separated successfully based on Hilbert transform and the 
assisted signal is proposed, which is supported by the 
experiments. After this, the time-varying bandpass filter 
(TVBF) based on assisted signals is proposed to separate 
the components blended in noises. The assisted signals 
used in TVBF are derived from the refined TFDs via 
image fusion and least squares optimization. The theo- 
retical errors are also analyzed to bound the performance   
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Figure 9. The analysis of real-life data of bat. (a) The noised real-life data of bat; (b) Wigner-Ville distribution; (c) pseudo 
Wigner-Ville distribution; (d) short Fourier transform distribution; (e) smoothed pseudo Wigner-Ville distribution; (f) HHT; 
(g) the fused result of (d) and (e); (h) the fused result of (b) and (c); (i) the fused result of (g) and (h); (j) the first component 
separated by our method; (k) the second component separated by our method. 
 
of this method: the error is proportional to the product of 
the two parameters:   and 2 . Finally, some represen- 
tative experiments on man-made and real-life data are 

shown to verify the efficiency of the proposed method 
and demonstrate the advantages over the other main 
methods. 
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Our biggest contribution of this paper is that we in- 
troduce a novel approach filtering and decomposing sig-
nals in a fully different manner. Our proposed TVBF 
seems like a “soft-cutter” and expediently cuts the com- 
ponents that have complicated instantaneous frequencies 
in frequency domain with rational physical sense. This 
method changes the idea of filtering and decomposing 
signals and will be a breakthrough from “soft” filtering 
and decomposing signals. In addition, one of our me- 
thod’s biggest advantages is that we merge the two tasks 
(filtering and decomposing) to single one, which effect- 
tively separates the components blended in noises that 
other methods fail to do. 
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