
Journal of Signal and Information Processing, 2013, 4, 186-196 
http://dx.doi.org/10.4236/jsip.2013.42026 Published Online May 2013 (http://www.scirp.org/journal/jsip) 

Single Channel Source Separation Using Filterbank and 
2D Sparse Matrix Factorization 

Xiangying Lu1, Bin Gao1, Li Chin Khor1, Wai Lok Woo1, Satnam Dlay1, Wingkuen Ling2,  
Cheng S. Chin3 

 

1School of Electrical and Electronic Engineering, Newcastle University, England, UK; 2Faculty of Information Engineering, 
Guangdong University of Technology, Guangzhou, China; 3School of Marine Science and Technology, Newcastle University, Eng-
land, UK. 
Email: bin.gao@ncl.ac.uk, w.l.woo@ncl.ac.uk 
 
Received December 20th, 2012; revised January 23rd, 2013; accepted January 31st, 2013 
 
Copyright © 2013 Xiangying Lu et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

We present a novel approach to solve the problem of single channel source separation (SCSS) based on filterbank tech- 
nique and sparse non-negative matrix two dimensional deconvolution (SNMF2D). The proposed approach does not 
require training information of the sources and therefore, it is highly suited for practicality of SCSS. The major problem 
of most existing SCSS algorithms lies in their inability to resolve the mixing ambiguity in the single channel observa- 
tion. Our proposed approach tackles this difficult problem by using filterbank which decomposes the mixed signal into 
sub-band domain. This will result the mixture in sub-band domain to be more separable. By incorporating SNMF2D 
algorithm, the spectral-temporal structure of the sources can be obtained more accurately. Real time test has been con- 
ducted and it is shown that the proposed method gives high quality source separation performance. 
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1. Introduction 

Blind source separation has gained a great deal of atten- 
tion in signal processing applications and these consist of 
medical signal analysis, telecommunications and speech 
recognition. There is an essential topic known as single 
channel source separation (SCSS) [1,2] which has not yet 
been enhanced enough to make its way out of laborato- 
ries. In recent years, new advances have been achieved in 
SCSS and this can be categorized into two main branches: 
supervised SCSS methods (e.g. model-based SCSS [3-6] 
techniques) and unsupervised SCSS methods (e.g. non- 
negative matrix factorization (NMF) [7] and computa- 
tional auditory scene analysis (CASA) [8]). In this paper, 
we proposed a novel unsupervised SCSS method based 
on non-negative matrix factorization approach. 

NMF methods have been widely exploited in the field 
of SCSS, and especially being used in separating audio 
mixtures, e.g. extracting drums from polyphonic music 
[9] and automatic transcription of polyphonic music [10]. 
Families of parameterized NMF cost functions such as 
the Beta divergence [11] and Csiszar’s divergences [12] 
have been presented for the separation of audio signals 

[13] and in general case, the least square distance [14] 
and the Kullback-Leibler (KL) divergence [15] are two 
main cost functions which have been widely employed in 
NMF. However, the problem where conventional NMF 
methods fail in SCSS is when two notes are played si- 
multaneously in which case they will be modeled as 
one component [7]. To overcome this limitation, the 
sparse non-negative matrix two dimensional deconvolu- 
tion (SNMF2D) [16] is derived to track the spectral fre- 
quencies of the sources that change over time. 

This paper presents a novel method based on SNMF2D 
and filterbank technique. The audio mixture is generated 
by sources composed of two different origins audio sig- 
nals but received synchronously by one microphone. 
Intuitively, the proposed separation strategy utilizes fil- 
terbank to make the observed mixed signal analyzed in 
sub-band domain. The impetus behind this is that the 
degree of mixing of the sources in the sub-band domain 
is now less ambiguous and thus, the dominating source in 
the sub-band mixture can be easily detected. Therefore, 
the spectral and temporal patterns (i.e. the spectral bases 
and temporal codes, respectively) associated in each 
sub-band can be extracted more accurately by using 
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SNMF2D. Once the sub-sources are obtained the k- 
means based clustering method is used to group these 
sub-sources into clusters where each cluster consist a set 
of sub-sources [17,18] which will be subsequently used 
for recovering the original sources. The proposed method 
concentrates on the idea of performance source separa- 
tion in the sub-band domain and avoids directly estimate- 
ing the sources using the mixture signal which contains 
too many mixing ambiguities between sources. In this 
way, we show that the proposed method can make a su- 
perior separation performance. 

The paper is organized as follows: In Section 2, the pro- 
posed source separation framework is fully developed. In 
Section 3, experimental results are presented. The impact 
factors and a series of performance comparison are dis- 
cussed in Section 4. Finally, Section 5 concludes the paper. 

2. Proposed Model 

The single channel audio mixture  x t  is given as: 

     1 2x t s t s t                (1) 

where  denotes time index. The goal of 
SCSS is to estimate the two sources 

1,2, ,t   T
 1s t  and  2s t  

when only the observation signal  x t  is available. 
The core procedure of the proposed method is shown 

in Figure 1. It consists of two main techniques-filterbank 
and SNMF2D. The benefits filterbank bring to SCSS are 1) 
the degree of mixing ambiguity from the original sources 
is reduced in that particular sub-band signal; and 2) the 
complexity of the spectral and temporal patterns associ- 
ated with each sub-band will be simpler and sparser as 
compared with that of the mixed signal. The specific steps 
of the proposed method are summarized as follows: 

Step 1: Transform the mixture from time domain into 
sub-band domain using filterbank, and then down-sam- 
pling the signal for reducing the aliasing problem. Hence, 
instead of processing the mixed signal directly, the sub- 
band signals are utilized as the new set of observations. 

Step 2: Convert the sub-band mixed signals into time- 
frequency (TF) domain by using STFT (Short-Time Fou- 
rier Transform) and then construct log-frequency magni- 
tude spectrogram, utilize SNMF2D to decompose the 
sub-band mixing TF mixtures into source related spectral 
and temporal patterns. The separated time domain sub- 
sources can be reconstructed by using the inverse STFT. 

Step 3: Use the k-means clustering method to group 
the sub-sources into different clusters where each cluster 
consist a set of sub-sources correspond to one recovered 
source. 

Step 4: Recover the time domain sources in the syn- 
thesis stage. 

1) Pre-processing stage: Filterbank includes low-pass, 
band-pass, and high-pass filters which are served to iso- 
late different frequency components in a signal. The per- 
fect filterbank will be designed so that the output source 
is the same as the input source with no distortion through 
a time shift and amplitude scaling. Here, the down-sam- 
pling is served to reduce the aliasing [19-21] problem. In 
the sub-band analysis, the formulation of filterbank is 
given as follow: 

         
0

1 1
4 sin 2 ,

2 2c c

N N
h n F c F w n 

  
   (2) 

   0

1 π
cos , 1, 2, ,

2k

n
h n h n k k K

K

        
     (3) 

 

 

Figure 1. Core procedure of the proposed method. 
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where the finite number of sub-bands is ,  is the 
length of window, the cut-off frequency is defined as 

K N

1

4cF
K

  and  is the Hamming window given by  w n

  2 π
0.54 0.46cos , 0,1, ,

n
w n n N

N
    
 

     (4) 

In this paper, the observations after filterbank proc- 
essing can be effectively down-sampled by an integer 
decimation factor r  (down-sampling rate) in each 
sub-band. The down-sampled observation 

D
 ,x k p  in 

the kth  sub-band is generated by using 
Equation (5), where r  denotes the time index at 
the reduced sampling rate for some integer l , and 

 for avoiding [21] any aliasing distortion. 

 1,2,k  

K

K



,
p lD

D 

    
1

,
N

k
n

x k p h n x p n


  



         (5) 

2) Separation stage: Once the new set of observations 
 ,x k p  has been generated, the sub-band mixed signals 

are transformed to the time-frequency (TF) domain using 
STFT. We then group the spectrogram bins into 175 
logarithmically spaced frequency bins in the range of 50 
Hz to 8 kHz with 24 bins per octave, which corresponds 
to twice the resolution of the equal tempered musical 
scale to construct log-frequency [7] magnitude spectro- 
gram. Within the context of SCSS, the TF representation 
of the mixture in (1) is given by  

.2 .2 .2

1 2 X S S            (6) 

where   1,2, ,

1,2, ,
,

s

i F

j T
X i j




   X




 and  

  1,2, ,

1,2, ,
,

s

i

d d

F

j T
S i j




   S




 are two-dimensional matrices  

(row and column vector represents the time slots and 
frequencies, respectively). In this paper, we term the 
sources at each sub-band as the sub-sources. To estimate 
these sub-sources, we project all the sub-band mixed 
signals from (5) into the TF domain, in which can be 
denoted as: 

1
22 s sx

k k k C C C 2
2

              (7) 

2x
kC  and 

2
ds

kC  denotes TF representations of the  

kth sub-band mixture  , x k p  and dth source, respec- 
tively. The matrices we are interested to determine are  

1
2s

kC  and 2
2s

kC  which can be estimated using any  

non-negative matrix factorization algorithm. In our ap- 
proach, we favours the SNMF2D algorithm where the 
desirable matrices can be estimated as 

1
2

,1 ,1
s
k k



Here, ,k d
W  denotes the dth column of k

W  that corre- 
sponds to the dth row of ,k d

H . In the case of two sources, 
we have  1,2d . The reasons SNMF2D [19,20] are 
favoured over other conventional NMF methods are 
noted as follows: 1) The NMF does not model notes but 
rather unique events only. Thus, if two notes are always 
played simultaneously they will be modelled as one 
component; 2) The structure of a factor in H can be input 
into signature of the same factor in W and vice versa. 
Thus, this leads to ambiguity that can be resolved by 
forcing the structure on W through imposing sparseness 
on H. The two basic cost functions for optimizing k

W  
and ,k d

H  are given by the Least Squares (LS) distance 
and Kullback-Leibler divergence (KLd) where  is a 
sparseness parameter and   1

f H H : 

LS:    
2

, ,
,

1

2SLS i j i j
i j

C f   V Λ H      (8) 

KLd:  ,
, , ,

, ,

log i j
SKL i j i j i j

i j i j

C f   
V

V V Λ H
Λ


   (9) 

In above,  is the log-frequency magnitude spec- 
trogram, 

,i jV
I J
V  is the data matrix of the sub-band  

TF mixture and 
 
 

 

 

 Λ W H   where 

 2

, , ,
,

i d i d i d
i

  


 W W W   . The derivatives of (8) with  

respect to W  and H  are given by: 
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,

2
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,

1

2

1

2
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
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


 


 

     
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Y Λ H
W

Y Λ H


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    (10) 
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

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


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   (11) 

Thus, by applying the standard gradient decent ap- 
proach, we have: 

, ,
,

, ,
,

SLS
i d i d

i d

SLS
d j d j

d j

C

C

 


 






 
    

 

 
    

 


 




 



W

H

W W
W

H H
H



         (12) 

k


 

 

 

 C W H  a n d  2
2
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s
k k


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 

 C W H . 

Copyright © 2013 SciRes.                                                                                 JSIP 



Single Channel Source Separation Using Filterbank and 2D Sparse Matrix Factorization 189

where W  and H  are positive learning rates which 
can be obtained by following the approach of Lee and 

Seung [15], namely, , ,
,

i d i j d j
j

 



 

,     

 
 


W W Λ H

 


 and  

 
, , ,

, ,
d j i d i j

i d j

f 
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
 

      
 


   

H

H
H W Λ

H
 




. Thus, in matrix  

notation, by using the multiplicative learning rules, the 
SNMF2D algorithm are summarized in Table 1. In these 
tables, the superscript “ ” denotes vector transpose, 
“  ” is the element-wise product and at each iteration, 

 denotes a matrix with the argument on the di- 
agonal. The column vectors of 

T

 diag
W  will be factor-wise 

normalized to unit length. 
After using mask, the sub-sources as

kc  can be ob- 
tained: 

 
 

1 1

2 2

1

1

s s x
k

s s

k k

x
k k

c STFT

c STFT





 

 

C

C





mask

mask k

          (13) 

where the masks are determined element-wise by: 
2 2

,
, ,

1, if

0,otherwise

a b
a

s s
s k ki j i j
k i j

         


C C 
mask ,      (14) 

3) Clustering stage: Once the sub-sources are obtained 
by using inverse STFT, the k-means based clustering 
method is used to group these sub-sources into clusters 
according to the number of sources. In this case, the 
k-means method aims to separate 2 K observations (K is 
number of sub-bands) into two clusters (corresponding to 
two sources). After convergence, all sub-sources will be 
grouped into their respective clusters which are given 

denoted as  2 2 2 2

21 2, , ,s s s s
k NG c c c     and  

 2 2 2 2

21 2, , ,s s s s
k G c c c    N  which contains  and  1N 2N

number of sub-sources that belong to Source 1 and 
Source 2, respectively. 

4) Synthesis stage: After up-sampling, the filterbank 
synthesis process is used to recombine all the sub- 
sources to form the estimated source signals. A series of 
expansions of the output can be reconstructed by using 
the time-shifted variants kg  (synthesis filter) [19-21]. 
The process is expressed as follow: 

 

   

0 0

0

1 , 1,2, ,

1 π
cos

2k

g h N n n N

n
g n g n k

K

   

      



       (15) 

Finally, the recovered sources from each cluster can be 
estimated as 

     
1 1

ˆ d
K N

s
d k k

k n

s t g n c t
 

n           (16) 

where  t t l M  denotes the time index at the restored 
sampling rate  M . 

3. Experimental Results 

The proposed monaural source separation algorithm is 
tested on recorded audio signals. Several experimental 
studies have been designed to investigate the efficacy of 
the proposed approach. All simulations and analysis are 
conducted using a PC with Intel Core 2 CPU 6600 @ 2.4 
GHz and 2 GB RAM. For mixture generation, two sen- 
tences of the target speakers (male and female) “fcjf0” 
and “mcpm0”, were selected from TIMIT speech data- 

 
Table 1. SNMF2D (LS and KL) algorithm. 

A) Initialize W and H are nonnegative randomly matrix 

B)  2
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,

i d i d i d
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Liebler) 
G) Repeat from step B) until convergence. 
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base and the others including flute, bass and drum music. 
All mixtures are sampled at 16 kHz sampling rate and the 
length of all test signals was chosen to be (40,000 sam- 
ples, approximately 2.5 s). The time-frequency represen- 
tation was computed by normalizing the time-domain 
signals to unit power and we computed the STFT using 
1024 point Hanning window FFT with 50% overlap. The 
spectrogram bins are grouped into 175 logarithmically 
spaced frequency bins in the range of 50 Hz to 8 kHz 
with 24 bins per octave, which corresponds to twice the 
resolution of the equal tempered musical scale. As for the 
filterbank, the parameter corresponding to the total num- 
ber of filters is set as 4 and the length of the hamming 
window is defined equal to 128. As for SNMF2D pa- 
rameters, the convolutive components in frequency and 
time were selected as  and , 
respectively. The sparse regularization term is set to 

K

0, , 4    0, ,10  

6  . Figure 2 shows the design of four sub-bands. 
Using the filterbank is very useful and helpful for the 

separation stage. This is because one of original sources 
may centralize its basic frequency information in a spe- 
cific sub-band such that the dominant source can be eas- 
ier extracted using source separation algorithms such as 
the SNMF2D. In the separation stage, the observed sig- 
nal in each sub-band is converted into the log-frequency 
spectrogram and decomposed by SNMF2D. The cost 
value of decomposing female speech mixed with bass 
music in each sub-band is shown in Figure 3. It is ob- 
served that the decomposition process converges to a low 
steady value after approximately 40 iterations for all 
sub-band mixtures by using the SNMF2D algorithm. Fig- 
ure 4 shows an example of H and W as decomposed in 
the fourth sub-band mixed signal. It is seen that the spec- 
tral bases and temporal codes of each source are distin- 
guishable so that each spectral basis can represent the 
frequency patterns of one sub-sources. The example of 
final separation results are shown in Figure 5. 

The measure distortion between the original source 
 

 

Figure 2. Filterbank designs. 
 

 

Figure 3. Convergence of LS cost function. 
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(a)                                                           (b) 

Figure 4. (a) H (in fourth sub-band); (b) W (in fourth sub-band). 
 

 

Figure 5. Original signals (blue) and recovered signals (red) using proposed method. 
 

and the estimated one is computed by using the im- 
provement of signal-to-noise ratio (ISNR) [22] defined 
as: 

 

   

 

   

2

10 102
10 log 10log

ˆ

d

d
t t

d d d
t t

ISNR

s t s t
2

2

d

s t s t x t s t
 



 

  

 

(17) 

The ISNR is used as the quantitative measure of sepa- 
ration performance and the average ISNR will be tabu- 

lated in the evaluation tables. The ISNR represents the 
degree of suppression of the interfering signals to im- 
prove the quality of the target signal. It has been com- 
monly used to measure the separation quality between 
the mixed and separated signal. The higher value of 
ISNR indicates better separation performance. In this 
paper, six types of mixture have been generated: 1) flute 
mixed with male speech; 2) flute mixed with female 
speech; 3) bass mixed male speech; 4) bass mixed female 
speech; 5) drum mixed male speech and 6) drum mixed 
female speech. All separation results have been summa- 
rized in Figure 6 where  , , , ,M W F B D  represent 
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male speech, female speech, flute music, bass music and 
drum music. The separation of speech-bass music mix- 
ture is much better than those of other types of mixtures 
where the average ISNR has approached to 10 dB for 
recovered speech signal and 4 dB for recovered bass mu- 
sic. 

Figure 6 summarizes the separation results of our pro- 
posed method. It is worth pointing out that because the 
frequency range of bass and drum music locate at very 
lower frequency region, the lower frequency bands are 
dominated with most energy from the bass or drum 
components through filterbank process. Hence, it is eas- 
ier to extract these lower frequency components by 
using the SNMF2D. Thus, Figure 6 shows the rela- 
tively better separation results when audio mixture 
contains bass or drum music. On the other hand, the 
frequency range of flute is very similar to speech 
sources (as indicated in Figure 9) and this particular 
mixture is very difficult to separate which explains the 
reason why the ISNR is relatively low. However, this 
performance is still substantially better than using the 
SNMF2D alone. 

4. Discussion 

4.1. Effects on Audio Mixtures Separation 
with/without Filterbank Preprocessing 

The benefits filterbank preprocessing bring to SCSS is 
that since a filtered signal bounded within a particular 
range of sub-band frequencies, the complexity of the 
spectral and temporal patterns associated with each sub- 
band signal will be simpler and sparser than that of the 
mixed signal. This effectively means that there is a rela- 
tively clear distinction of the spectral and temporal pat- 
terns between the dominating source and the less domi- 
nating one in the TF domain in each sub-band. This is 
shown in Figures 7 and 8. 

Figures 9 and 10 further show the time domain sub- 

band signal. It is clearly visible that the mixing at the 
different sub-band is dominated either by Source 1 or 
Source 2. In this example, it can be seen that flute music 
dominates the 1st sub-band while male speech dominates 
the 2nd-4thsub-band. The final comparison results of audio 
mixtures separation with/without filter-bank preprocess- 
ing are given in Figure 11. 

4.2. Impact of Sparsity Regularization 

In the separation stage, λ (sparse regularization), an es- 
sential parameter influences separation results. In Figure 
7, we use an example-mixture of male speech and flute 
music for analyzing the impact of sparsity regularization. 
The separation results are concluded given different lev- 
els of sparse λ based on either LS or KLd cost functions. 
It is observed that the best ISNR has been found with the 
sparse factor λ = 6 by using the LS cost function and λ = 
20 by using the KLd cost function. In addition, the LS 
cost function based decomposition reflects the local mi- 
nimum whereas the KLd based decomposition returns the 
global minimum. However, our results have shown that 
both LS and KLd methods give comparable performance 
as shown in Table 2. 

In this section, we develop a test to compare the sepa- 
ration performance between the proposed method and 
SNMF2D SCSS method. Figure 11 shows that the ISNR 
results obtained using the proposed method which ren- 
ders considerable improvements over the SNMF2D SCSS 
method. An average improvement of 1.8 dB per source is 
obtained across all the different type of mixtures for 
proposed method when compared to SNMF2D SCSS 
method. The specific comparison results are summarized 
as follows: 1) for mixture of speech and flute music, the 
average improvement is about 3.4 dB; 2) for mixture of 
speech and bass music, the improvement is 1.5 dB; 3) for 
mixture of speech and drum music, the average improve- 
ment is approximately 0.2 dB. 

 

 

Figure 6. Separation results using the proposed method. 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) and (b) denote the log-frequency spectrogram of flute music and male speech, respectively; (c) denotes the log- 
frequency spectrogram of mixed signal (flute + male). 
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Figure 8. Log-frequency mixed spectrogram with filter-bank processing. 
 

 

Figure 9. Time domain signals (flute music and male speech). 
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Figure 10. Time domain sub-band signals with filter-bank processing. 
 

5. Conclusion 

 

Figure 11. Overall comparison result. 
 

Table 2. Separation results by using different sparse regu- 
larization. 

λ LS KL 

0 2.92 5.14 

0.5 3.50 5.16 

1.5 2.82 4.99 

6 5.64 4.48 

10 2.69 5.00 

20 2.78 5.17 

50 2.16 4.73 

This paper has presented a novel framework of amalgam- 
mating filterbank technique with two-dimensional sparse 
non-negative matrix deconvolution (SNMF2D) for single 
channel source separation. Although proposed method 
and the SNMF2D SCSS method can extract sources from 
single channel mixture, the results obtained from our 
approach outperform that of using the SNMF2D. The 
strength of the proposed method: 1) it does not rely on 
training information so that it is more practical; 2) the 
degree of mixing ambiguity in each sub-band is less am- 
biguous than those in mixed signal; therefore the sub- 
band mixtures are simpler and sparser, and hence the 
spectral and temporal patterns can be efficiently extracted. 
Considerable improvements have been achieved in terms 
of ISNR by using our proposed method. 
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