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ABSTRACT 

The classical linear filter is able to extract components from multi-component stochastic processes where the frequen-
cies of components do not overlap over time, but fail for those processes where the frequencies overlap over time. In 
this paper, we discuss two filtering methods for non-stationary processes: the G-filtering method and the Fractional 
Fourier transform (FrFT) method. The FrFT method is mainly designed for linear chirp signals where the frequency is 
linearly changing with time. The G-filter can be used to filter signals with wide range of frequency behaviors such as 
linear chirps, quadratic chirps and other type of chirp signals with strong time-varying frequency behavior. If frequen-
cies of the components can be approximated or separated by a straight line or a polynomial curve, the G-filter can suc-
cessfully extract components from the original series. We show that the G-filter is applicable to a wider variety of fil-
tering applications than methods such as the FrFT which require data of a specified frequency behavior. 
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1. Introduction 

The traditional linear filter is defined as 

       dy t x a t x t u a u u




    , where  ,t    

and  da t t




  , and ( )x t  and  y t  are the input 

and output processes. A fundamental filtering result, see 
Papoulis (1965) [1] and Shumway and D. S. Stoffer (2000) 

[2], is that      2

y xP f A f P f , where  xP f  and  

 yP f  are the power spectra of stationary input and 
output processes  x t  and  y t  respectively, and 

    2πe diftA f a t






  t  is the Fourier transform of  a t . 

This theorem illustrates how the linear filter affects the 
spectrum of the output processes. Based on this, certain 
linear filters, such as the Butterworth filter (Butterworth 
(1930) [3], have been designed to extract components 
from multicomponent time series, For a low-pass But-  

terworth filter,    2 2
1 1

N

cA f f f    , where cf   

is the cutoff frequency, and N is the order of the filter. As 
N gets larger,   2

A f  approximates a step function 

with domain  0, cf . So, applying a low-pass Butter-
worth filter with an appropriate order N can filter the low 
frequency behavior below the cut-off frequency cf . The 
opposite applies to a high-pass Butterworth filter. 

For stationary time series where the frequency stays 
constant over time, and for those non-stationary time 
series where the frequencies of different components do 
not overlap over time, the traditional linear filter with a 
single cut-off frequency can successfully extract compo-
nents. But, for non-stationary time series with time vary-
ing frequency behavior (TVF), especially where the fre-
quencies of components overlap over time, directly ap-
plying the traditional linear filter will not be able to ex-
tract components. (See Xu, Woodward and Gray (2012) 
[4].) Some non-linear filtering techniques can be used to 
address this issue such as the Fractional Fourier trans-
form (FrFT) method, which has been widely used in sig-
nal processing especially to filter linear chirp signals. Xu, 
et al. (2012) [4] proposed the G-filtering method based 
on the time deformation method. This method can be 
widely used to filter a large range of different types of 
non-stationary signals with multiple frequency structures. 
The objective of this paper is to compare the two meth-
ods for filtering signals with different types of time  
varying frequency behaviors (TVF). 
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This paper is organized as follows. In Section 2, we 
review the time-deformation method. In Section 3, we 
review the FrFT method. In Section 4, we report the re-
sults of comparison studies which compare these two 
methods by filtering different types of data with TVF. 

2. The G-Filter or the Time Deformation 
Method 

The G-filter or the time deformation method is based on 
the concept of transforming the frequency behavior of 
the data by deforming the time scale. If viewed from the 
frequency domain point of view, rather than applying a 
constant cut-off frequency as in the traditional linear fil-
ter, the G-filter applies a time-dependent cut-off fre-
quency function to filter components. Below we review 
the basic concept and definition of the G-filter. 

Definition 2.1: A process  is      , ,Y u u  
 


called a dual of a stochastic process   , ,X t t a b  if  

there exists a mapping   , ,u g t t a b  




 of which a 
well-defined inverse function  

     1 , ,t g u u g a g b   exists so that  

   X t Y g t  when . The mapping   ,t a b 
   , ,u g t t a b   is called the time-deformation func-

tion. 
Definition 2.2: A process     , ,X t t a b

b

 is a G- 
stationary process if and only if a stationary dual process 

 exists under some time-deforma-      , ,Y u u  
u g


tion function .   , ,t t a

The earlier work by Gray, Vijverberg, and Woodward 
(2005) [5] focused on the transformation    ln ,g t t  

. Jiang, Gray and Woodward (2006) [6] used  0,t 
the Box-Cox transformation    1

,  0,
t

g t t



   ,  

which is called a  G   transformation. (  G   trans-
formation uses a parameter called offset to describe the 
sample origin.) Liu (2004) [7] and Robertson, Gray, and 
Woodward (2010) [8], considered the linear chirp trans-
formation . These time-de- 
formation procedures are available in the GWS software 
written in S+, which is downloadable from the website 
http://www.texasoft.com/atsa. While these authors used 
time transformations for purposes of producing a station-
ary time series in the dual space, our primary goal in this 
paper will be to find a time transformation to produce 
dual data from which the components can be separated in 
the frequency domain. 

   ,  0,g t c t  2at bt 

If a stochastic process     , , X t t a b  is G-station- 
ary under some time deformation function,  g t , Jiang, 
et al (2006) [6] proved that the generalized instantaneous 
frequency is approximately proportional to  g t . Boa- 

shash (1992) [9] has shown that if a component has a 
phase function  2π t , then the instantaneous fre-
quency is  t . Thus for the G-stationary process, 

 X t , this time-deformation function  g t  is appro- 
ximately proportional to its phase function  t2π . 

Suppose the phase function of a signal is  t2π . Let 
 tu g  be a monotonic time deformation function. 

Then in the dual space, the phase function becomes 
  12π g t   and the instantaneous frequency becomes  

     
  

1 1

1

d

d

g t g t

u g g t

 







 
 . For a process consisting of  

two components, one with a phase function  1 t2π  
and the other  2 t

 
 

2π , the instantaneous frequencies of 
these two components are and . In the dual   1 t  t2

space, they are 
  
  

1
11

1

g ut

g t g g u







 


 and 

 
 

  
  

1
22

1

g ut

g t g g u

 






 
.  

If          ,a b1 2 and 0t cg t t g t      t  ,  

then 
  
  

  
  

1 1
1 2

1 1

g u g u
c

g g u g g u 
 

 

   
. Or, in the dual  

space, the two components can be extracted by the tradi-
tional linear filter with a constant cut-off frequency if 
these two components can be separated by some G-sta- 
tionary component (viewed in the frequency domain) in 
the original space. This leads to the definition of the 
G-filter. 

Definition 2.3: Given a stochastic process  

    , ,X t t a b  and an impulse response function,  

   ,h t t a b , the G-filter or G-convolution is defined 
as 

     g t *d dY t X h t X h   , 

where *d dX h  is the usual convolution, and  

    d
1X u X g u   and ,   dh u h   1g u

 ,u   , are the duals of  X t  and  h t  under 
the time-deformation function  g t . 

Applying the principle of unitary equivalence systems 
(Baraniuk and Jones (1995) [10]), the G-filtering proce-
dure has the following steps: 1) take an appropriate time 
deformation,  u g t , on the original data to obtain a 
dual process that does not have overlapping frequencies 
in the frequency domain (which can be shown in a 
Wigner-Ville time frequency plot (Boashash (1992)) [9]; 
2) apply the traditional linear filter on the dual process to 
extract components; 3) transform the filtered dual com-
ponents back to the original time scale. 

For a process consisting of two or more components, 
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A realization from this process is displayed in Figure 
1(a). The instantaneous frequencies of the two compo-
nents are linearly changing with time as is illustrated in 
the Wigner-Ville time-frequency distribution in Figure 
1(b). Such signals are called linear chirps and are of par-
ticular interest in acoustical and optical systems. Notice 
that the frequency level of the low frequency component 
after time t = 3 is similar to that of the high frequency 
component before time t = 1. For this type of data, the 
traditional filters fail to extract components, since they 
do not properly account for the time-varying frequency 
behavior, or they do not adjust the cutoff frequency with 
time according to the frequency behavior of the data. 

there are two ways to find a time-deformation function so 
that in the dual space the frequencies do not overlap over 
time and the components are separable. One is to treat 
one of the components as G-stationary and find a time 
deformation to transform this component into stationarity. 
Such a time deformation is based on the exact frequency 
behavior of one of the components. The other involves 
finding a time deformation function  g t  such that 

2  and making the time-deformation 
based on 

     1 t cg t t   
 


g t . Here, the time-deformation only partly 

depends on the original components’ frequency behavior 
and there can be multiple choices of such a time-defor- 
mation function. (See Xu, Woodward, Gray (2012) 
[11]). Here, we use the time deformation method to filter 

each component. First, an appropriate time deformation 
function needs to be chosen. Observing that the high and 
low frequency components can be separated by a cut-off 
frequency, 0.06, up to time 2, we use a high-pass But-
terworth filter with this cut-off frequency to obtain a 
front piece of the high frequency component. From this 
piece of data, GWS chooses a G(λ) time-deformation 

In the following example, we utilize the G-filter to fil-
ter a stochastic process consisting of two linear chirp 
components with TVF. 

Example 2.1:  

        
 

2 2

2

cos 2π cos 2π 2 7 ,  

0, 4 ,  0.2.wn

Y t t t t WN t

t 

   

 
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Figure 1. (a) and (b) A realization and its Wigner-Ville time-frequency distribution; (c) and (d) The dual data and its 
igner-Ville time-frequency distribution; (e) and (f) The two filtered dual components. W 
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with λ = 1.3 and offset = 147, which can approximately 
stabilize the frequency level of the high frequency com-
ponent as illustrated in Figure 1(d). These two dual fre-
quencies do not overlap over time as compared with the 
original frequencies shown in Figure 1(b). Now, a But-
terworth filter with a cut-off frequency 0.0725, is applied 
to the dual data so that the two components in the dual 
space are extracted, which are then transformed back into 
the original time scale by reinterpolation (See Xu, et al. 
(2012) [11]). The results (Figure 2) suggest that the time 
deformation method has successfully extracted both 
components from the original data. 

3. The Fractional Fourier Transform 

The fractional Fourier transform (FrFT) is a generaliza-
tion of the classical Fourier transform. It is a valuable 
tool for the analysis of the linear chirp signals. The ath 
order FrFT is a linear operator defined by the integral 
(Ozaktas, Zalevsky and Kutay (2000) [12]). 

      ,a
a dF f u K u x f x x





  ,       (4) 

where 

   2 2, exp iπ cot 2csc cotaK u x A u ux x         

and 
π

1 icot ,   =  .
2

A a     

The FrFT is a powerful tool for filtering linear chirp 
signals. For a complex linear chirp signal 

   2 d2πi
e

cx x
f x


 , 

      2 2cot 2 csc cot 2iπ
e d

u x u d x caF f u A x
  



     



  . (5) 

When cot 2 0c    or  1tan 1 2c   , 

    

 

2

2

i2π csciπcot

iπcot sin

e e

e

a x u du

u

F f u A

A I u d

dx





 


 




 


.   (6) 

Here,  I x  is the Dirac delta function or  I x    
when 0x   and   0I x   when . 0x 

Or the FrFT with order  12 2
tan 1 2

π π
a c     

transforms a complex linear chirp signal into a Dirac 
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Figure 2. (a) and (b) THe two recovered components; (c) and (d) The two real components; (e) and (f) The Wigner-Ville 
ime-frequency distribution of the two recovered components. t   
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delta function. A real valued linear chirp signal consists 
of two complex conjugate signals which can be trans-
formed into Dirac delta functions at order  

12
tan 1 2

π
a   c . For a sampled signal, these orders 

are given by 
2

12
tan

π 2
sf N

a
c

  
  

 
  (Capus and Brown  

(2003) [13] and Ozaktas, Arikan, Kutay, and Bozdagt 
(1996) [14]), where sf  is the sampling frequency and N 
is the number of samples. For example, take a sample of 

  2cos 2π 2 7t t  on  with a sampling rate 
100 points per time unit, then at the orders  

[0,4]t

 
2

12 100 400
tan 0.97

π 2 1 2
a   
      

, the two complex com- 

ponents will be transformed into two approximations of 
Dirac delta functions. 

The FrFT is a linear operator with the additive prop-
erty,    1 1 2 2 1 1 2 2

a a  aF c f c f c F f c F f  
   1 2 1 2a a

 and  
a aF f F F f , , ,c c a a R  , , for any func- 1 2 1 2

tions 1f , 2f  and f . Thus  a af F F f  . If  aF f  
is known, f  can be recovered by applying an inverse 
FrFT with order “a” (Ozaktas, et al. (2000) [12]). 

In order to extract a complex valued linear chirp signal, 
use of the FrFT involves first finding the order “a” at 
which the FrFT can transform this signal into a Dirac 
delta function, then masking out this Dirac delta function

and transforming the remaining part back into the origi-
nal space using the inverse FrFT. For a real valued chirp 
signal consisting of two complex components, two FrFT 
steps for each compon ent are needed to filter out the 
chirp signal (See Ozaktas, et al. (2000) [12]). Note that 
masking out a Dirac delta function means to zero out 
those values in the peak region which are not zero. 

Example 3.1:  

        
 

2 2

2

cos 2π cos 2π 2 7 ,  

0, 4 ,  0.2wn

Y t t t t WN t

t 

   

 
 

This is the same example as Example 2.1. As dis-
cussed above, the two FrFT orders for each component 
can be calculated as 0.97 and 0.95. If the underlying 
model is unknown, these orders are typically found by 
searching over the possible values of the order of the 
FrFT on (0,1) to see which order can generate an output 
with a high peak or a Dirac delta function (Ozarkas, et al. 
(2000) [12]). The filtering steps are: 1) Apply the FrFT 
with order a = 0.97(0.95) to the original data; 2) Mask 
out the peak in the output of step 1); 3) Apply the FrFT 
with order a = –0.97 × 2 (–0.95 × 2) to the output from 
previous step; 4) Mask out the peak in the output of the 
previous step; 5) Apply the FrFT with order a = 
0.97(0.95) to recover the low (high) frequency compo-
nent. This procedure is illustrated in Figure 3. The re-
sults are given in Figure 4, which show that the FrFT 
method has successfully extracted each component. 
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2

(a) the Original Data
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(b) the 1st FrFT with Order=0.97
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(c) Masking Out the Peak
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(d) the 2nd FrFT with Order=-0.97*2
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0
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(e) Masking Out the Peak
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2

(f) the 3rd FrFT with order=0.97

 

Figure 3. The FrFT filtering procedure for recovering the low frequency component of Example 3.1: (a) The original data; (b) 
Applying a FrFT with order 0.97 to the original data; (c) Masking out the peak in (b); (d) Applying a FrFT with order −0.97 × 2 
to the output shown in (c); (e) Masking out the peak in (d); (f) Applying a FrFT with order 0.97 to the output shown in (e). 
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Figure 4. (a) and (b) The recovered low and high frequency components from the FrFT; (c) and (d) the Wigner-Ville time- 
frequency distribution of the two recovered components. 
 
4. Comparing the G-Filter and the FrFT in 

Filtering Non-Stationary Processes 

In the previous two sections, we have illustrated the 
methodology of the G-filter and the FrFT methods in 
filtering non-stationary processes, in particular, linear 
chirp processes whose instantaneous frequency exhibits a 
linear change with time. Some bat echolocation data and 
whale data consists of multiple linear chirp signals and 
have show linearly changing frequency behavior. Other 
types of data with time varying frequency behavior in-
clude quadratic chirps, cubic chirps, etc, of which the 
instantaneous frequencies of components are changing 
with time as a quadratic or cubic curve. Examples 2.1 
and 3.1 have shown that both methods can successfully 
extract linear chirp signals from the original data. In this 
section, we mainly compare the FrFT and the G-filter for 
filtering the TVF components whose frequency change 
behavior is not linear. The first example will be to filter 
out quadratic chirp components whose frequency change 
follows a quadratic curve in time; the second will be to 
filter out the M-stationary components (Gray, et al. (2005) 

[5]) whose frequency change is like 1/t and thus is even 
more different from linearity. 

Example 4.1: Consider the process 

   
     

3

3

cos 0.5π

cos 0.5π 0.5 15

Y t t

t t W



    N t
 

where   20,4.5 ,  0.1wnt    
This process consists of two quadratic chirp compo-

nents. The Wigner-Ville time-frequency distribution (Fig- 
ure 5(d)) shows that the frequency behavior of the two 
components changes nonlinearly in time. 

First we consider the use of the G-filter to extract the 
two components. By using the GWS software on the data 
up to time 1.8, we choose a G(λ) time deformation with λ = 
2.7 and offset = 200 to transform the data into a dual 
(Figure 5(e)) where the two components can be separated 
by a cut-off frequency about 0.09. The two recovered 
components are given in Figures 6(a) and (b). Then we 
apply the FrFT filtering procedure. By searching over the 
va es on [0,1], it is found that under the order a = 0.94, lu 
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Figure 5. (a) A realization of Example 4.1; (b) and (c) The two actual frequency components; (d) and (e) The Wigner-Ville 
time-frequency distributions of the data and the dual; (f) The output of the FrFT with order 0.94 to the data. 
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Figure 6. (a) and (b) The two recovered components from the G-filter; (c) The Wigner-Ville time-frequency distribution of 
the recovered low frequency component from the G-filter; (d) and (e) The two recovered components from the FrFT; (f) The 

igner-Ville time-frequency distribution of the recovered low frequency component from the FrFT. W  
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the outputs of the FrFT show a large spike or an ap-
proximate Dirac delta function (Figure 5(f)). Applying 
the FrFT filtering procedure with order 0.94, we obtain 
an approximation of the high frequency component. Sub-
tracting it from the original data, we obtain an estimate of 
the other component. The results are given in Figures 
6(d) and (e). 

The results in Figure 6 show that the G-filter has suc-
cessfully recovered both components, while the FrFT 
recovered the front half of the components (up to time 
2.5), but failed afterwards. The Wigner-Ville time-fre- 
quency distribution of the filtered low frequency com-
ponent from the FrFT method (Figure 6(f)) shows that 
the frequency behavior of this filtered component is very 
close to linear, indicating that the FrFT has extracted a 
linear chirp piece rather than the whole quadratic chirp 
signal. This is not surprising since the FrFT is mainly 
designed for the linear chirp. There is no order at which 
the FrFT can produce a Dirac delta function for the 
quadratic chirp signals as illustrated in this example. 
The G-filter used a Box-Cox time-deformation function 
(tλ –1)/λ with λ = 2.7 to deform the phase function of the 
quadratic chirp signal and thus changed the frequency 
behavior of the two components so that the frequencies 

of the components do not overlap anymore. This example 
shows that the G-filter does not necessarily need to de-
form the time scale based on the exact frequency struc-
ture. Also, this example illustrates the flexibility of the 
G-filter to filter a wide variety of TVF signals. This 
flexibility is based on the fact that a wide variety of TVF 
behaviors, e.g. high order chirp signals, such as quadratic 
or cubic chirps, can be analyzed using the G(λ) time de-
formation. 

Example 4.2: Consider the process 

  
    

2

cos 20π ln 0.3 3 π

cos 28π ln 0.22 ,  

[0, 4],  0.1.

t

wn

X t t

t WN

t 

  

  

 

t  

This is a process consisting of two M-stationary com-
ponents (Gray, et al. (2005) [5]), whose frequency be-
havior changes like 1/t. A realization of this process and 
the corresponding Wigner-Ville time-frequency distribu-
tion are given in Figures 7(a) and (d). The change in 
frequency behavior is even further from linearity than 
that of the quadratic chirps. Clearly, application of the 
traditional filter will not be effective in separating the 
two components. 
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Figure 7. (a) A realization of Example 4.2; (b) and (c) The two actual frequency components; (d) and (e) The Wigner-Ville 
ime-frequency distributions of the data and the dual; (f) The output of the FrFT with order 0.965 to the data. t   
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Using the same technique as in previous example, a 

G(λ) model with λ = –0.4 and offset = 47 is chosen by 
GWS to apply the time deformation method for filtering. 
The two recovered components from the G-filter are 
given in Figures 8(a) and (b). For the FrFT, at order a = 
0.965, the FrFT transforms the process into an output 
with a large spike (Figure 7(f)). Applying the FrFT with 
this order produces the outputs as shown in Figures 8(d) 
and (e). The G-filter has successfully recovered both 
components, while the FrFT partially filtered out each 
component as in the previous example. It extracted the 
signal after time 1.3, but failed before time 1.3. The 
Wigner-Ville time-frequency distribution of the filtered 
low frequency component (Figure 8(f)) shows that the 
FrFT only filtered out a linear chirp type piece, where the 
frequency change is close to linear. 

Note that even a windowing approaching using the 
FrFT will not be successful because of the sharp fre-
quency change. The data are split into two parts at time 

1.3. Figure 9(a) gives the result of the FrFT procedure 
on the piece before time 1.3. The FrFT still cannot fully 
filter out the component due to the strong non-linear fre-
quency behavior of this piece of data. 

In this example, the phase function of each component 
is the log function. The G-filter used a Box-Cox time 
deformation G(–0.4) to transform the data with overlap-
ping frequency behavior into a dual where the frequen-
cies are relatively stable and are non-overlapping (Fig-
ures 7(d) and (e)). Here the time-deformation function is 
not the same as the phase function of the actual signals, 
suggesting that several different λ values would have 
produced transformed data on which the frequencies 
could be separated. 

5. Conclusions 

The traditional linear filters generally fail to extract 
components from the non-stationary process with time  
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Figure 8. (a) and (b) The two recovered components from the G-filter; (c) The Wigner-Ville time-frequency distribution of 
the recovered low frequency component from the G-filter; (d) and (e) The two recovered components from the FrFT; (f) The 
Wigner-Ville time-frequency distribution of the recovered low frequency component from the FrFT. 

Copyright © 2012 SciRes.                                                                                 JSIP 



Comparing the Time-Deformation Method with the Fractional Fourier Transform  
in Filtering Non-Stationary Processes 

500 

(a) FrFT Filtered Low Freq Component (1:1.3)
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Figure 9. (a) The recovered low frequency component (0:1.3) from the FrFT; (b) The Wigner-Ville time-frequency distribu-
tion of this recovered component; (c) The corresponding residuals. 
 
varying frequency behavior. In this paper, we discussed 
two methods which can be used to filter multi-compo- 
nent non-stationary process: The G-filter and the FrFT 
method. The G-filter transforms the frequency behavior 
of the data by deforming the time scale. If viewed from 
the frequency domain, the G-filter applies a cut-off fre-
quency function according to the frequency behavior of 
the data. The FrFT method is a generalization of classical 
Fourier transform, which has been widely used to filter 
linear chirp signals. 

The two filtering methods are similar in that they both 
transform the data from the original space, where the 
component is difficult to extract, into a new space where 
the component can be extracted by available techniques. 
The original components are then recovered after these 
filtered components are transformed back into the origi-
nal space. In the FrFT, the new space is obtained by ap-
plying the FrFT with an appropriate order and a masking 
technique is used to filter out the component in this space. 
In the G-filter, the new (dual) space is obtained by ap-
plying the time-deformation method with an appropriate 

time deformation function, and a traditional linear filter-
ing technique is used in the dual space to extract each 
component. 

As discussed previously, the FrFT is designed for the 
linear chirps. As a result, the power of this method 
closely depends on the underlying frequency structure of 
the component, i.e. whether its frequency changes line-
arly with time. If not, the FrFT cannot produce a trans-
formation where a Dirac delta function can be closely 
approximated and thus can not fully extract the compo-
nent. For the G-filter, it is not necessary that the compo-
nent has to be of any particular type. A group of time- 
deformation functions such as the Box-Cox or G(λ) 
time-deformation functions have been developed and can 
be used to either approximate the phase functions of 
components and thus transform the components into sta-
tionary or deformation the phase functions to change the 
frequency behavior of the data so that the frequency of 
dual components does not overlap. In conclusion, the 
G-filter can be used to filter a broad range of components 
beyond linear chirps, quadratic chirps, etc. The depend-
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ence on the exact frequency structure of the component is 
less stringent in this method, which gives it more flexi-
bility and power over the filtering methods depending on 
the exact frequency behavior of the data such as the FrFT 
method. 

Finally, we point out that in this research, we used the 
Butterworth filter to extract components in the dual space, 
but the G-filtering approach can be incorporated with any 
other appropriate traditional linear filters. Also, even 
though in the simulation examples, we used data whose 
components can each be explicitly written as sinusoidal 
functions, the G-filter can be applied to any type of sto-
chastic processes where the individual component’s 
mathematical form may not be explicitly written such as 
the AR-chirp processes (Liu (2004) [7] and Robertson, et 
al. (2010) [8]). 
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