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ABSTRACT 

Multi-components sinusoidal engineering signals who are non-stationary signals were considered in this study since 
their separation and segmentations are of great interests in many engineering fields. In most cases, the segmentation of 
non-stationary or multi-component signals is conducted in time domain. In this paper, we explore the advantages of 
applying joint time-frequency (TF) distribution of the multi-component signals to identify their segments. The Spectro- 
gram that is known as Short-Time Fourier Transform (STFT) will be used for obtaining the time-frequency kernel. 
Time marginal of the computed kernel is optimally used for the signal segmentation. In order to obtain the desirable 
segmentation, it requires first to improve time marginal of the kernel by using two-dimensional Wiener mask filter ap- 
plied to the TF kernel to mitigate and suppress non-stationary noise or interference. Additionally, a proper choice of the 
sliding window and its overlaying has enhanced our scheme to capture the discontinuities corresponding to the bounda- 
ries of the candidate segments.  
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1. Introduction 

Segmentation of multi-components or non-stationary sig- 
nals has a considerable degree of importance for proc- 
essing signals in many fields such as communications, 
biomedical, seismic and ultrasonic signals. Most of the 
signal segmentation approaches have been implemented 
and analyzed in time domain [1-3]. One of their disad- 
vantages that they are statistical based analysis and in 
most cases they neglect the frequency information and its 
reflection on the signal dynamic changes over time. Re- 
cently, the wavelet transforms and time-frequency analy- 
sis have become a good and promise analytical methods 
due to their two-dimensional analysis [4-7]. Our pro- 
posed method is based on joint time-frequency analysis 
where both time and frequency information has been 
employed to obtain the desirable segmentation function.   

This paper is composed of two level of analysis and its 
structure will be organized accordingly. The first level of 
this research work deals with improving time-frequency 
energy spectrum using the two-dimensional (2-D) Wie- 
ner masking for de-noising and mitigating any possible 
interferences that will affect the segmentation process. 
Second, is to optimize the time marginal of the masked 
kernel in order to obtain the desired segmentation func- 
tion. For the rest of this introduction, a brief description 

of the short-time Fourier transform (STFT) and the 2-D 
Wiener filter will be provided. In Section 2, we will pro- 
vide complete details of our approach including the 
process of denoising TF kernel and all derivations of the 
signal segmentation. Section 3 has the experimental work 
which illustrates the graphical results as depicted in the 
attached figures.  

1.1. Short-Time Fourier Transform  

In many applications such as speech, biomedical, seismic 
and other similar signals, we are interested in their fre- 
quency contents locally in time since their frequencies 
content evolve over time. These types of signal called 
non-stationary signals and using standard and regular 
Fourier Transform is not useful for analyzing such sig- 
nals. The frequency information who are localized in time 
as the case of spikes and high frequency bursts cannot be 
easily detected from the regular Fourier Transform and 
joint time-frequency analysis becomes the right analysis 
tool. Recently, the time-frequency analysis methods have 
introduced a joint time-frequency energy distribution 
plane displaying the jointly both time and frequency 
information. Time-frequency distribution methods who 
do not show cross terms or negative frequency like 
STFT and the Discrete Evolutionary Transform (DET) 
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provide a time-frequency distribution plane that is 
positive and has no cross term as well [8-10].   

In STFT, time-localization is a achieved first by win- 
dowing the signal by cutting off a slice of it and then 
taking its Fourier Transform using Fast Fourier Trans- 
form (FFT) [9,10]. The magnitude of the STFT kernel is 
known as the Spectrogram. Moving or sliding the win- 
dow along the time axis, the relation between the vari- 
ance of time and frequency can be identified. When the 
time window is sufficiently narrow, each frame extracted 
is viewed as stationary so that Fourier transform can be 
used. The type and length of the sliding window has a 
direct effect on time and frequency resolutions.  

In Continuous-time STFT, the function is multiplied 
by a predefined window function which is nonzero for 
only a short period of time. The Fourier transform of the 
resulting short or windowed signal will have a two-di- 
mensional representation of the signal written as: 

     , dj tX x t t e t   
 


  , 

where  is the  w t window function, commonly Gaussian 
bell shape centered around zero, and  x t  is the signal 
to be transformed.  ,X    is the time-frequency ker- 
nel or the STFT resulted from the Fourier Transform of 
  x t w t  . This kernel is a complex matrix repre- 

senting the magnitude and phase of the transformed sig- 
nal over time and frequency domains.   

For the discrete representation of STFT, the data sig- 
nal is broken up into equal chunks or frames. To reduce 
the artifacts at the boundary, these frames usually overlap 
each other. In similar way, each frame is Fourier trans- 
formed and output complex result will be added to get 
the final matrix representing the signal magnitude and 
phase for each point in time and frequency. This can be 
expressed as:  

     , j n

n

X m x n w n m e 






  , 

where  x n  is the signal and  is the window. 
The shifting m and the frequency ω are discrete since the 
STFT in most typical applications is performed on a 
computers or microprocessors using the Fast Fourier 
Transform algorithm FFT.  

 w n

The magnitude squared of the STFT yields the Spec- 
trogram of the function: 

  2
, ,SP nE X    

which shows the distribution of the power spectral den- 
sity of the signal  x n  [9,10]. The time and frequency 
marginals of STFT were defined as  

and 

   
1 2

0

1
,

M

m
m

P w X
M

 




  , 

where N is the frequency samples and M is the number of 
time frames. 

1.2. Wiener Filtering 

The wiener masking is an estimate that can be found by 
minimizing the mean-square error [11], 

      2
ˆ ,n E x n x n    

where  x̂ n  is the output of a linear time-varying mask.  
In order to minimized the error, the estimator was de- 

fined in [11] to have the following Wold-Cramer repre- 
sentation 

       
π

π

ˆ , , dj n
yx n Y n B n e Z ,  



   

where  ,Y n w  is the evolutionary time-frequency ker- 
nel of the signal  y n , and  is the masking 
function [12-14].  

 ,B n w

According to orthogonality principles the minimiza- 
tion of  n  is 

     *ˆ ˆ 0,E x n x n x n     

and is equivalent to 
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where      , ,G n w Y n w B n w , .  
To minimize the above equation  must equal to  ,G n w
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to give the mask 
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as the ratio of the spectra of the reference signal  x n  
and that of the true received signal  y n . 

2. Signal Segmentation from Improved 
Time-Frequency Plane 

The regular time-frequency kernel obtained from STFT 
or Spectrogram does not completely satisfy the time and 
frequency marginals of the signal. Any further improve- 
ment in terms of kernel’s time and frequency resolution 
will make it possible for the estimated kernel to closely 
satisfy time marginal condition. Theoretically, our scheme 
has the capability of providing the necessary improve- 
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       


ments according to the following:  
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,
, , ,

,
x

m

S n
Y n Y n B n

Y n


  


        (5) 1) For constructing the Spectrogram or STFT, a prober 

window type with optimal length has to occur first in 
order to get the desirable level of time and frequency 
resolution. Furthermore, a high resolution of the power 
spectral or energy density will provide a good estimate of 
both time and frequency marginals who are the key suc- 
cess factors leading to optimal signal segmentation. 

2) Improving the joint time-frequency power spectral 
density by means of Wiener masking scheme will sup- 
press and mitigate any undesired non-stationary noise or 
interference. The wiener masking scheme has to be ap- 
plied into the time-frequency kernel obtained from STFT 
and not directly to the signal itself. 

The block diagram of the proposed system is shown in 
Figure 1 where a white Gaussian noise is added to the 
original signal to give      y n x n n  , as the real 
time signal.  

At the processing side, the STFT algorithm was per- 
formed to compute the time-frequency kernel for both 
received and reference signals as the only two required 
inputs for Wiener masking,  
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The experimental testing of several known windows 
shows that hamming window with a length 4M N , 
and time shift 10m M M   gives the highest desir- 
able time and frequency resolution. 

or  

mY Y B                     (6) 

as an estimate of the original time-frequency kernel of 
the processed signal.  

The time marginal of the improved time-frequency 
spectrum Ym can be obtain as 

   
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,
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and its length equals to the total number of overlapping 
segments or time window frames that comes from 
chunking or windowing the original signal using the 
widow  w n . 

Unfortunately, in STFT the time marginal does not 
satisfy time marginal,     2

P s t   condition and there- 
fore will not give the correct signal segmentation to in- 
dicate the boundary of its amplitude or frequency changes. 
Further signal processing is needed at this stage and non- 
linear interpolation must be employed to interpolate the 
data signal to the original data points. Due to the nonlin- 
earity of the function  P  , a second order Lagrangian 
interpolation polynomial is used as  

     
0

n

n i
i

if P L P f P


                (8) 

where n stands for the nth order polynomial and  
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                 (9) 
The mask  , M n w  defined in (1) then can be cre- 

ated from the two above kernels to be  
is a weighting function that includes a product on 
 1n   terms with terms of j = 1 omitted. The resulted 
interpolated function then has a time samples of length 
equals to the length of the original signal. 

   
 

,
,

,
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y

S n
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



                (4) 

where , and  are the spectrum of the 
reference and received signal respectively.  

 ,xS n w 



 ,yS n w
3. Simulation and Results 

The improved time-frequency spectrum can be ob- 
tained using the mask  to get   ,B n w To prove the validity of our approach we will carry it out 

to a real application and running its algorithms for a 
multi-component signal and therefore, we will be able to 
display the TF kernel and its marginals. Now, let us con- 
sider the following multi-component signal  x n , 
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is composed of three equal segments each with different 
frequency. A white Gaussian noise is added to the total 
signal to give      y n x n n  , and with a signal to 
noise ratio SNR equal to 3 dB, as one of the worst cases Figure 1. Signal segmentation. 
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when the interference noise has a large power. The noise- 
free signal and the corrupted one are shown in Figure 
4(a) and (b) respectively.  

According to our segmentation system shown in Fig- 
ure 1, the STFT is applied for both, the noise-free signal 
 y n , and the reference signal  x n . The two spec- 

trums are computed to be used as the input values for the 
Wiener mask. The TF spectrum of the noisy signal is 
shown in Figure 2 which displays the effect of the Gaus- 
sian noise. We notice that the energy components of the 
noise is spread all over the entire TF plane displaying a 
poor time marginal.  

The Wiener masking scheme is applied according to 
the algorithm defined in (5) (6), and the estimated TF 
kernel obtained from the Wiener masking output is 
shown in Figure 3. Notice that the power of the interfer- 
ence noise has been mitigated allowing to estimate a 
noise-less TF kernel of the processed signal  y n . As 
expected, this estimated/computed kernel provides a bet- 
ter time marginal that will enhance the segmentation 
process.  
 

 

Figure 2. Time-frequency spectrum of noisy signal. 
 

 

Figure 3. Estimated spectrum using wiener masking. 

 

Figure 4. (a) Original non-stationary or multi-component 
signal x(n); (b) Noisy signal y(n); (c) Time marginal without 
Wiener masking, and finally (d) is the processed time mar-
ginal computed from the estimated kernel. 
 

In fact, the estimated function which represents the 
time marginal defined in (7) has a length equals to the 
total number of signal frames or windows and is less than 
the signal length. Therefore, this segmentation function 
needs to be interpolated to equal length of the original 
signal as defined in (8) and (9). Figures 4(a)-(d) displays 
the results starting from the noise-free signal  x n , noisy 
signal  y n , poor time marginal function  P n  ob- 
tained from the noisy TF kernel, and finally the esti- 
mated time marginal function  computed from 
the improved TF kernel. The computed time marginal 
function 

 mP n

 nmP  shown in Figure 4(d) provides the de- 
sired segmentations of the signal which identifies the 
boundaries between any two candidate segments. 

4. Conclusion 

We have shown that with an efficient windowing for 
Short-time Fourier transform followed by 2-D Wiener 
filtering will provide a strong segmentation scheme which 
separates the multi-segments of non-stationary signals. In 
this work we have considered the 2-D Wiener masking or 
filtering to improve the resolution of the time-frequency 
kernel as crucial step which provides a good estimate of 
the time marginal. We should also mention that this ap- 
proach depends mainly on the prober selection of the 
sliding window and its length for the STFT. 
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