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ABSTRACT 

This paper considers the guaranteed cost control problem for a class of two-dimensional (2-D) uncertain discrete sys- 
tems described by the Fornasini-Marchesini (FM) first model with norm-bounded uncertainties. New linear matrix ine- 
quality (LMI) based characterizations are presented for the existence of static-state feedback guaranteed cost controller 
which guarantees not only the asymptotic stability of closed loop systems, but also an adequate performance bound over 
all the admissible parameter uncertainties. Moreover, a convex optimization problem is formulated to select the subop- 
timal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. 
 
Keywords: Guaranteed Cost Control; Linear Matrix Inequality; Lyapunov Methods; Robust Stability; 2-D Discrete 
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1. Introduction 

In recent years, due to theoretical as well as application 
importance in the fields such as digital filtering, image 
processing, seismographic data processing, thermal 
processes, gas absorption, water stream heating etc. [1-8], 
the two-dimensional (2-D) systems have received con- 
siderable attention. The stability analysis of 2-D discrete 
systems described the Fornasini-Marchesini (FM) first 
model [9] have been investigated extensively [10-20]. In 
[10-12,20], the method of nonnegative matrix theory has 
been proposed for the investigation of stability of 2-D 
systems described by the FM first model. Sufficient con- 
ditions for the asymptotic stability of 2-D systems de- 
scribed by the FM first model have been presented in 
[11-13]. In [12], it has been shown with the help of a 
counterexample that condition for the asymptotic stabil- 
ity given in [11] is incorrect and its corrected version is 
proposed. An improved Lyapunov based sufficient con- 
dition for the stability of 2-D linear systems described by 
the FM first model has been proposed in [14], and it is 
shown that the criterion given in [14] is less restrictive 
than those reported in [11,12]. A computationally attrac- 
tive necessary and sufficient condition for the asymptotic 
stability of the FM first model has been derived in [15]. 
On the basis of the results given in [15], a connection has 
been established among structured singular value of a 
constant matrix and the stability, as well as the stability  

margin of the FM first model. Based on this connection, 
a novel sufficient condition for the asymptotic stability of 
the FM first model is obtained and it is shown by nu- 
merical simulations that the condition given in [15] is 
usually less conservative than that of [14]. In [16], the 
stability of 2-D periodically shift variant system repre- 
sented by the FM first model has been studied. In [19], 
based on the sum-of-squares polynomials with matrix 
coefficients, an LMI based sufficient condition for as- 
ymptotic stability of 2-D systems described by the FM 
first model has been derived. Furthermore, it has been 
shown that the criterion given in [19] is more relaxed 
than those presented in [15,18]. In [20], necessary and 
sufficient conditions for the asymptotic stability of the 
FM first model using non-negative matrix theory have 
been proposed, and it has been shown that the conditions 
are sharper than those reported in [10,11,17]. Further, a 
survey of the existing literature on the stability of the 2-D 
discrete systems described by FM first model has been 
presented in [21]. 

The guaranteed cost control of uncertain 2-D discrete 
systems aims to design a robust controller to stabilize the 
closed loop system and mean while guarantee a specified 
level of performance index for all the admissible uncer- 
tainties. This issue has been discussed for uncertain 2-D 
discrete systems described by the FM second model 
[22-26] and Roesser model [27]. The guaranteed cost con- 
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trol problem for uncertain 2-D discrete systems described 
by the FM first model is an important and challenging 
problem. However to the best of authors’ knowledge, the 
guaranteed cost control problem for 2-D discrete uncer- 
tain systems described by the FM first model which is 
structurally distinct from FM second model and Roesser 
model has not been reported so far in the literature. 

This paper, therefore, deals with the guaranteed cost 
control problem for uncertain 2-D discrete systems de- 
scribed by the FM first model with norm bounded uncer- 
tainties. The paper is organized as follows. The problem 
of robust guaranteed cost control for 2-D discrete uncer- 
tain systems described by the FM first model is formu- 
lated in Section 2. Some useful related results are also 
recalled in this section. In Section 3, we relate the notion 
of cost matrix to the quadratic stability and an upper 
bound on the closed-loop cost function. Sufficient condi- 
tions for the existence of static-state feedback guaranteed 
cost controllers are derived based on LMI approach. The 
static-state feedback guaranteed cost controllers are cha- 
racterized by the feasible solution to a certain LMI. Fur- 
ther, a convex optimization problem is introduced to se- 
lect the suboptimal guaranteed cost controller which 
minimizes the upper bound of the closed-loop cost func- 
tion. An illustrative example showing the potential of the 
proposed technique is given in Section 4. 

2. Problem Formulation and Preliminaries 

Throughout the paper the following notations are used: 
nR
n m

 real vector space of dimension n; 
R  set of n  m real matrices; 
0 null matrix or null vector of appropriate dimension; 
I  identity matrix of appropriate dimension; 

TG  transpose of matrix G; 
G > 0 matrix G is positive definite symmetric; 
G < 0 matrix G is positive definite symmetric; 

 max G
 diag 

 maximum eigenvalue of matrix G; 
 block diagonal matrix. 

This paper deals with the problem of guaranteed cost 
control for a class of 2-D uncertain discrete systems de- 
scribed by the FM first model [9]. Specifically, the sys- 
tem under consideration is given by  

     
   
   
   

1 1

2 2

3 3

1, 1 , 1

1,

,

,                     (1a)

i j i j

i j

i j

i j

     

   

  

  

x A A x

A A x

A A x

B B u

 

 1 2 3A A A A ,           (1b) 

where  is an  state vector, 1 ,i jx 1n  n nR A , 
, 3 ,  is  input vector, 

. The matrices  (k = 1, 2, 3) and 
2 RA

RB

n n A
n m

nR  n ( ,u
A

)i j

k

1m 
B  

represents parameter uncertainties which are assumed to 
be of the form 

    1 2,i j  A B L F E E ,    (1c)  

where 

 1 2 3    A A A A ,       (1d) 

 1 11 12 1 3E E E E

n p

.         (1e) 

In the above, R L , 11 , 12
q nRE q nR E , 

13
q nR E  and 2

q mR E  can be regarded as known 
structural matrices of uncertainty and  , p qi j R F  is 
an unknown matrix representing parameter uncertainty 
which satisfies 

   
  

, ,

or equivalently, , 1 .

T i j i j

i j





F F I

F
      (1f) 

Note that the uncertainty of (1c) satisfying (1f) has 
been widely adopted in robust control and filtering for 
2-D uncertain systems [22-27]. 

It is assumed that the system (1a) has a finite set of 
initial conditions [24,25] i.e., there exist two positive 
integers r1 and r2 such that 

   1 2,0 0, ; 0, 0,i i r j j r  x x       (1g) 

and the initial conditions are arbitrary, but belong to the 
set [22-26] 

     
  

1 1

2 2

,0 , 0, : ,0 ,    0

0, ,    0 , 1 ( 1,  2)

n

T
k k

S i j R i i r

j j r k

   

    

x x x M N

x M N N N



)

  

(1h) 

where  is a given matrix. Note that the vector M
( 1,2k k N  can always be restricted as 1T

k k N N  
(k 1,2)  by appropriately choosing . In other words, 
there is no loss of generality by choosing initial condi- 
tions as in (1h). 

M

Associated with the uncertain system (1a) is the cost 
function: 

    1
0 0

, ,T
ij ij

i j

J i j i j
 

 

T    u R u W  ,    (2a) 

where 

     , 1 1, ,
TT T T

ij i j i j i j    x x x ,  (2b) 

T mR   R R0 m ,            (2c) 

 1 1 2diag , ,W Q Q 3Q

)

,         (2d) 

( 1, 2,3T n n
k k R k   Q Q0 .      (2e) 

We are interested in designing a static-state feedback 
control law 
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       1 2 3, , 1 1,i j i j i j i j    u K x K x K x ,



, (3)  

for the system (1) and the cost function (2), such that for 
all  satisfying (1f), the resulting closed-loop sys- 
tem 

 ,i jF

       
    
     

1 1 1

2 2 2

3 3 3

1, 1 , 1

1,

, ,

i j i j

i j

i j

          
        
     

x A A B B K x

A A B B K x

A A B B K x




(4) 

is asymptotically stable and the closed loop value of the 
cost function 

2
0 0

T
ij ij

i j

J
 

 

  ξ W ξ ,          (5a) 

where 

2 1
T W W K R K ,         (5b) 

and 

 1 2 3K K K K ,        (5c) 

satisfies J J  , where J   is some specified constant. 
Definition 2.1. Consider the system (1) and cost func- 

tion (2), if there exist a control law  and a posi- 
tive scalar 

( , )i ju
J   such that for all admissible uncertainties, 

the closed-loop system (4) is asymptotically stable and 
the closed-loop value of the cost function (5) satisfies 
J J  , then J   is said to be a guaranteed cost and 

 is said to be a guaranteed cost control law for 
the uncertain system (1). 

( , )i ju

Now, we recall the following results. 
Lemma 2.1. [4,9,14] The 2-D discrete uncertain sys- 

tem (1) is globally asymptotically stable if and only if 

     
  

  

1 1 11 2 2 12

1 2 3 13

2
1 2

det , ,

, 0

for , , , ,

z i j z i j

z z i j

z z i j U

   

  



I A L F E A L F E

A L F E

F

(6) 

where  

     2
1 2 1 2, , , : 1, 1, , 1U z z i j z z i j   F F . 

Remark 2.1. With   11 12 13,i j   0A L F E E E , 
(6) is identified as global asymptotic stability condition 
([14], Equation (3)) of the nominal system described by 
FM first model.  

Now, as an extension of the result for the global as- 
ymptotic stability condition of the 2-D discrete FM first 
model given in [14], one can easily arrive at the follow- 
ing lemma. 

Lemma 2.2. [14]. The uncertain system (4) is globally 
asymptotically stable, provided there exist n n  posi- 
tive definite symmetric matrices ,  and  such 
that 

P 1P 2P

 
 

 

1 1 2 2 3 3

1 1 2 2 3

1

2

1 2

for all , 1,

T

i j

     

     

   

   

 
   
   



Γ

0 0

0 0 0

0 0

A B K A B K A B K

P A B K A B K A B K

P

P

P P P

F

3

   (7) 

where 1 1 1  A A A , , 2 2   A A A2 3 3 3  A A A , 
and    B B B . 

On the basis of the above lemma, we have the follow- 
ing definition. 

Definition 2.2. A state feedback controller.  
      1 2 3, , 1 1,i j i j i j i j    u K x K x K x

T n nR   P P0

W

,  is said 
to define a quadratic guaranteed cost control associated 
with cost matrix  for the system (4) 
and cost function (5) if there exist a 3n  3n positive 
definite symmetric matrix 2  given by (5b) and n  n 
positive definite symmetric matrices P1 and P2 such that 

 2 for all , 1i j  0Γ W F .        (8) 

The following well-known lemma is needed in the 
proof of our main results. 

Lemma 2.3. [22,25,27] Let n nR A , n kR H ,  
l nR E  and  be given matrices. Then 

there exists a positive definite matrix P such that 

T nR  Q Q n

   T  A H F E P A H F E Q 0      (9) 

for all F  satisfying T F F I , if and only if there ex- 
ists a scalar 0   such that 

1

1

T

T T








  
  

0
P H H A

A E E Q
.     (10) 

3. Main Results 

In the following, we aim to relate the notion of cost ma- 
trix to the quadratic stability and an upper bound on the 
closed-loop cost function. 

Lemma 3.1. Suppose there exists a cost matrix.  
T nR n  P P0  for the system (4) with initial condi- 

tions (1g), (1h) and cost function (5) such that (8) holds. 
Then, (i) system (4) is quadratically stable and (ii) the 
cost function satisfies the bound 

1 2 max( 1) ( TJ J r r     M P M )      (11) 

for all admissible parameter uncertainties. 
Proof. Proof of (i) directly follows from Lemma 2.2 

and Definition 2.2. 
To prove (ii), consider a quadratic 2-D Lyapunov 

function: 

      , ,Tv i j i j i jx x P x ,        (12) 

Let   ,v i j x  is defined as 

Copyright © 2012 SciRes.                                                                                 JSIP 



Robust Suboptimal Guaranteed Cost Control for 2-D Discrete Systems Described by  
Fornasini-Marchesini First Model 

Copyright © 2012 SciRes.                                                                                 JSIP 

255

 
         

      
1

2 1

1, 1 1, 1 , 1 , 1( , )

  1, 1, , ( ) , .

T T

T T

v i j i j i j ii j

i j i j i j i j

        

     

x P x x P xx

x P x x P P P x 2

j
                (13) 

 
Along the trajectory of the closed-loop system (4), we 

obtain 
 2 0T

ij ijξ Γ W ξ 



.         (15) 

From (14) and (15) we have 
( ( , )) T

ij ijv i j x ξ Γ ξ ,         (14) 
2 ( , )T

ij ij v i j ξ W ξ x .         (16) 
where  and T

ijξ Γ  are defined in (2b) and (7), respec- 
tively. Since  is a cost matrix, it follows from Defini- 
tion 2.2 that 

P Summing both sides of the above inequality over 
, 0i j     yields 

 

 

                

               

   

0 0

1 2 1
0 0

1 1 2 2
0 0 0 0

( , )

1, 1 1, 1 , 1 , 1 1, 1, , ,

, 1 , 1 , , 1, 1, , ,

, ,

i j

T T T T

i j

T T T T

i j i j

T

J v i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

i j i j

 

 
 

 
   

   

  

               

           







 

x

x P x x P x x P x x P P P x

x P x x P x x P x x P x

x Px    

              

              

   

1 2

0 0

1 2 1 2
1 1
1 1

1 2 1 2
1 1

1 max 1 2 max 2 max

1, 1 1, 1

,0 ,0 0, 0, 0,0 0,0

,0 ,0 0, 0, 0,0 0,0

( 1) ( ) ( 1) ( ) (

T

i j

T T T

i j
r r

T T T

i j

T T T

i j i j

i i j j

i i j j

r r  

 

 
 

 
 

 

     

      

      

       



 

 

x P x

x P P x x P P x x P P P x

x P P x x P P x x P P P x

M P P M M P P M M P 1 2 ) ,                            (17) P P M

2



1

 

 
where use has been made of (5), (1g) and (1h) and the 
relation . Note that if (8) holds, we have   lim ,

i j
i j

 
 0x

The following theorem establishes that the problem of 
determining guaranteed cost control for system (4) and 
the cost function (5) can be recast to an LMI feasibility 
problem. 1 2 0  P P P  which implies that 

Theorem 3.1. Consider system (4) with initial condi- 
tions (1g), (1h) and cost function (5), then there exists a 
static-state feedback controller  
      , , 1 1,i j i j i j i j    u K x K x K x 1 2 3  that so- 

lves the addressed robust guaranteed cost control prob- 
lem if there exist a positive scalar 

1
T T  P P M P M M P M ,    (18a) 

2 2
T T  P P M P M M P M ,     (18b) 

,

 ,  matrices 

1 , 2 ,  and 
m n

U U 3U n n  positive definite symmetric 
matrices , ,  such that the following LMI is 
feasible: 

V 1R 2R

and 

1 2 1 2( ) ( )T T    P P P M P M M P P M .  (18c) 

Therefore, the upper bound in (11) can be obtained by 
applying (18) in (17). This completes the proof of the 
Lemma 3.1. 

 

 
 
 

1 1 2 2 3 3

1 2 1 2
1 1 11 1

1 2 1 2
2 2 22 2

1 2 1 2
3 3 1 2 3 3 13

2
1

2 2 2
1 2 3

2
2

2
3

11

T

T T T

T T T

T T T

T

T T T

T

T

R







    





   







0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0

V L L A V BU A V BU A V BU

R V Q U RA V BU

U R V Q EA V BU

A V BU V R R U R V Q E

Q V I

R U R U R U I

Q V I

Q V I

E E

11

12

0

0 0 0

E

12 13

,

 
 
 
 
 
 
 

 
 
 
 
 
 
  

0

0 0 0 0E I

    (19) 
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where  

     11 12 13 13 2 311 2 1 12 2 2  ,       E E E E VE V E U E V E U, E U . 

 
In this situation, the suitable control laws are given by 

1
1 1

K U V ,              (20a) 
1

2 2
K U V ,             (20b) 

and 
1

3 3
K U V .              (20c) 

Moreover, the closed-loop cost function satisfies the 
following bound 

   1
max1 2 1 TJ r r      M V M  .    (21) 

Proof. Using 1(c)-1(f), 5(b) and Lemma 2.3, (8) can 
be rearranged as 

 

 
     
     
     

 
   

   

1 1
1 1

1 1 1 11 1 11 2 1 11 2 1

2 12 2 12 2 2 11 2 1

3 3 3 1 13 2 3 11 2 1

2 2

1 2 11 2 1 12 2 2

2 2 2 2 12 2 2 12 2 2

3 2

T

T TT

T TT

T TT

TT

TT

T















   


     


  


   


  

     



P L L A B K

P Q K R KA B K E E K E E K

K R KA B K E E K E E K

A B K K R K E E K E E K

A B K

K R K E E K E E K

P Q K R K E E K E E K

K R K E   

 
   
   

   

3 3

1 3 13 2 311 2 1

2 3 13 2 312 2 2

13 2 3 12 2 2 1 2 3 3 3 13 2 3 13 2 3

.

TT

TT

T TT










  


  
          

0

A B K

K R K E E KE E K

K R K E E KE E K

E K E E K P P P Q K R K E E K E E K

  

(22) 
 

Pre- and post-multiplying (22) by the  1 2 1 2 1 1 2 1 1 2 1diag , , ,     I P P P  yields  

 
 
 
 

 

 

1 1
2 2

1 1 1
1 1 1 1 11 111 1 1 2 11 12

1 11
2 2 2 2 12 121 12 112 2

1
1 3 2 13 12

3 3 3 1 13 11

3 3
1

1 3 11

T

T T T T T

T T TT

T TT T T

T T

V U V
V U

V U

V U

  
 





  

 






    
    


   

  




T
2

V L L A B A BU
R V Q V U R U E EA B U R U E E

R V Q V U R U E EU R U E EA B
U R U E EA B U R U E E

A V B U

U R U E E13
1

2 3 12 13
1 1

1 2 3 3 3 13 13

,
T T

T T


 



 



 



      

0
U R U E E

V R R V Q V U R U E E

  (23) 

 
where 

1 V P ,               (24) 
and 

1 1
1 1 2 2,     V P V R V P V R0 0 .   (25) 

The equivalence of (23) and (19) follows trivially from 
the schur complements. Using (24), the bound of cost 
function can be easily obtained from (11). This com- 
pletes the proof of the Theorem 3.1. 

Remark 3.1. Note that the matrix inequality (19) is 
linear in variables 1 2 3 1, , , , , U U U V R  and 2  which 
can be easily solved using Matlab LMI Toolbox [28,29]. 

R

Remark 3.2. It is clear that the upper bound on the 
closed-loop cost function is dependent on the choice of 
the guaranteed cost controllers. In particular, the guaran- 

teed cost controller that renders the corresponding guar- 
anteed cost upper bound as small as possible is more in- 
teresting; such a controller is said to be an optimal guar- 
anteed cost controller. Apparently, the upper bound (21) 
is not a convex function in V and  . Hence, finding the 
minimum of this upper bound cannot be considered as a 
convex optimization problem. Since   and  

 1
max

T M V M  are positive, we may obtain a subopti- 
mal guaranteed cost controller by minimizing  

 M1
max

T   M V . Based on Theorem 3.1, the design 
problem of such a suboptimal guaranteed cost controller 
can be formulated as an optimization problem. 

Theorem 3.2. Consider system (4) with initial condi- 
tions (1g), (1h) and cost function (5), then there exists a 
suboptimal static-state feedback controller  

Copyright © 2012 SciRes.                                                                                 JSIP 
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       1 2 3, , 1 1,i j i j i j i j    u K x K x K x ,  that solves 
the addressed robust guaranteed cost control problem if 
the following optimization problem 

minimize ( )   

s.t.         (26) 

(i). (19),

(ii). ,
T




     
0

I M

M V

has a feasible solution 0  , 0  ,  matrices 

1 , 2 ,  and  positive definite symmetric 
matrices , 1 , . In this situation, the suboptimal 
control laws are 1 1

m n
U U 3U

V
n

2R


n

1
R

K U V , 2 2
1K U V  and 

3 3
1K U V  which ensures the minimization of the 

guaranteed cost in (21). 
Proof. By Theorem 3.1, the control laws (20) con- 

structed in terms of any feasible solution  , , 1 , 

2 , 1 , 2  and 3U  are the guaranteed cost control- 
lers of system (4). To obtain the optimum value of the 
upper bound of guaranteed cost, the term  

V R
R

max

U

T

U

 1  

1
M V

T
M

 
 in (21) is changed to  

max
1T   M V M I

)

 M V

(

M  which, in turn, 
implies the constraint (ii) in (26). Thus, the minimization 
of    implies the minimization of the guaranteed 
cost in (21). This completes the proof of Theorem 3.2. 

4. Illustrative Example 

In this section, we will give a specific example to dem- 
onstrate the effectiveness of Theorem 3.2. Consider a 
2-D discrete uncertain system given by (1) and (2) with 

  

   

 

1 2

3

11 12

13 2

1 2 1

2

0 0.7500 0.2700 0
,  ,

1.0000 0 0 0

0 0.0010 0.1000 0
,  ,  ,

0 0 0.2000 1

0.050 0.007 ,  0.060 0.002 ,

0.1200 0.0010 ,  0.0075 ,

0.0060 ,  2,  diag{6,  6},

d

r r

  
     

     
       
     

     

 

   



A A

A B L

E E

E E

R Q

Q   3iag ,  diag ,0.66,  0.66 0.044,  0.044

0.0100
.

0.0800



 
  
 

Q

M











(27) 

Using Lemma 2.1, it is easy to verify that the above 
system is unstable. We wish to construct a suitable guar- 
anteed cost controller for this system, such that the cor- 
responding cost bound is minimized. To this end, we 
apply our proposed method (Theorem 3.2) to find the 
suboptimal guaranteed cost controller. It is found using 

the Matlab LMI toolbox [28,29] that the optimization 
problem (26) is feasible for the present example and the 
optimal solution is given by 

 

  

1

2 1

2 3

2.0644 1.1173 1.0533 0.5442
,  

1.1173 1.6047 0.5442 1.2592

0.9315 0.5168
,  11.0423 3.1939 ,

0.5168 0.3114

2.0681 1.1193 ,  0.0041 0.0060

34.1593, 0.0056.                             

   
    
   
 

  
 

   

 

V R

R U

U U

                 (28)

  

By Theorem 3.2, the suboptimal guaranteed cost con- 
trollers to this system are 

   
 

1 2

3

6.8548 2.7825 ,   1.0018 0.0000 ,

0.0001 0.0038 ,

   

 

K K

K
 (29) 

and the least upper bound of the corresponding closed 
loop cost function is . 0.5773J  

5. Conclusion 

In this paper, we have presented a solution to the guar- 
anteed cost control problem for a class of uncertain 2-D 
discrete systems described by the FM first model in a 
LMI framework. The existence condition for the static- 
state feedback guaranteed cost controller has been de- 
rived in terms of a certain LMI. The parameterized rep- 
resentation of a set of guaranteed cost controllers (if they 
exist) has been presented in terms of the feasible solu- 
tions to the LMI. Finally, a convex optimization problem 
has been introduced to design the suboptimal guaranteed 
cost controller that minimizes the upper bound of the 
closed-loop cost function. 
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