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ABSTRACT 

This paper studies the problem of the guaranteed cost control via static-state feedback controllers for a class of 
two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space (FMSLSS) 
model with norm bounded uncertainties. A convex optimization problem with linear matrix inequality (LMI) constraints 
is formulated to design the suboptimal guaranteed cost controller which ensures the quadratic stability of the 
closed-loop system and minimizes the associated closed-loop cost function. Application of the proposed controller de-
sign method is illustrated with the help of one example. 
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1. Introduction 

In the past few years, due to the rapid increase of a wide 
variety of applications of two-dimensional (2-D) discrete 
systems in many practical application domains such as 
digital filtering, image and video processing, seismogr- 
aphic data processing, thermal processes, gas absorption, 
water stream heating, control systems etc. [1-10], there 
has emerged a continuously growing interest in the sys- 
tem theoretic problems of 2-D discrete systems. Many 
authors have proposed and analyzed linear state-variable 
models for 2-D discrete systems [11-14]. The more popu- 
lar models are Roesser model [11], Fornasini-Marchesini 
first model [13] and Fornasini-Marchesini second local 
state-space (FMSLSS) model [14]. Many publications 
relating to 2-D Lyapunov equation with constant coeffi-
cients for the Roesser model [11] have appeared [15-22]. 
The stability properties of 2-D discrete systems described 
by the FM first model [13] have been investigated exten-
sively [23-29]. The stability analysis of 2-D discrete sys-
tems described by the FMSLSS model [14] has attracted 
a great deal of interest and many significant results have 
been obtained [22,30-44].  

Due to assumptions in the modeling process and/or the 
changing operating conditions of a real world system, it is 
usually impossible for a mathematical model to describe 
the real world system exactly. The problem of designing  

robust controllers for 2-D uncertain systems has drawn the 
attention of several researchers in recent years [39,40]. 
When controlling a system subject to parameter uncer-
tainty, it is also desirable to design a control system which 
is not only stable but also guarantees an adequate level of 
performance. One approach to this problem is the so- 
called guaranteed cost control approach [45]. This appr- 
oach has the advantage of providing an upper bound on a 
given performance index and thus the system performance 
degradation incurred by the uncertainties is guaranteed to 
be less than this bound. Based on this idea, many signifi- 
cant results have been proposed [42-51]. In [42-44], the 
guaranteed cost control problem for 2-D discrete uncertain 
systems in FMSLSS setting has been considered and a 
robust controller design method has been established. The 
approach of [42] does not provide a true linear matrix ine- 
quality (LMI) based result which is not beneficial in terms 
of numerical complexity. Subsequently, in [43], an LMI 
based criterion for the existence of robust guaranteed cost 
controller has been formulated. Robust suboptimal guar- 
anteed cost control for 2-D discrete uncertain systems in 
FMSLSS setting is an important problem.  

In recent years, LMI has emerged as a powerful tool in 
control design problems [52-58]. The introduction of 
LMI in control theory has given a new direction in the 
area of robust control problems. A widely accepted met- 
hod for solving robust control problems now is to simply 
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reduce them to LMI problems. Since solving LMIs is a 
convex optimization problem, such formulations offer a 
numerically efficient means of attacking problems that 
are difficult to solve analytically. These LMIs can be 
solved effectively by employing the recently developed 
Matlab LMI toolbox [53].  

This paper, therefore, deals with the suboptimal guaran- 
teed cost control problem for 2-D discrete uncertain syst- 
ems described by FMSLSS model with norm-bounded 
uncertainties. The paper is organized as follows. In Section 
2, we formulate the problem of robust guaranteed cost 
control for the uncertain 2-D discrete system described by 
the FMSLSS model and recall some useful results. An 
LMI based approach for the design of suboptimal guaran- 
teed cost controller via static-state feedback is presented in 
Section 3. In Section 4, an application of the presented 
robust guaranteed cost controller design method is given. 
Finally, some concluding remarks are given in Section 5. 

2. Problem Formulation and Preliminaries 

The following notations are used throughout the paper: 
Rn          real vector space of dimension n 
Rnm        set of n  m real matrices 
0           null matrix or null vector of  

appropriate dimension 
I           identity matrix of appropriate  

dimension 
GT          transpose of matrix G 
G > 0       matrix G is positive definite symmetric 
G < 0       matrix G is negative definite symmetric 
det (G)      determinant of matrix G 

max (G)     maximum eigenvalue of matrix G. 
In this paper, we are concerned with the problem of 

guaranteed cost control for 2-D discrete uncertain syst- 
ems described by FMSLSS model [14]. The system un- 
der consideration is given by 

    
  
  
  

1 1

2 2

1 1

2 2

1, 1 1,

, 1

1,

, 1

i j i j

i j

i j

i j

     

   

   

   

x A A x

A A x

B B u

B B u






,     (1a) 

 1 2A A A ,             (1b) 

where  and  are the state and 
control input, respectively. The matrices 

 , ni j Rx  , mi j Ru
n n

k R A  and 

k  (k = 1, 2) are known constant matrices repre-
senting the nominal plant, kA d k

n mR B
 an B  (k = 1, 2) are 

real valued matrix functions representing parameter un-
certainties in the system model. The parameter uncertain-
ties under consideration are assumed to be norm-bounded 
and of the form 

    1 2,i j  A B L F M M ,          (1c) 

where 

 1    2A A A      1   B B B2 ,    (1d) 

 1 11 1M M M 2     2 21 2M M M 2 .    (1e) 

In the above, L , 1  and 2  can be regarded as 
known structural matrices of uncertainty and 

M M
 ,i jF  is 

an unknown matrix representing parameter uncertainty 
which satisfies 

 ,i j F 1 .               (1f) 

It may be mentioned that the uncertainty of (1c) satis-
fying (1f) has been widely adopted in robust control lit-
erature [38,39,42-44,59-62]. The matrices L  and 1  
( 2 ) specify how the elements of the nominal matrices 
A (B) are affected by the uncertain parameters in 

M
M

 ,i jF . Note that  ,i jF  can always be restricted as 
(1f) by appropriately selecting L , 1  and 2 . 
Therefore, there is no loss of generality in choosing 

M M

 ,i jF  as in (1f).  
It is assumed that the system (1a) has a finite set of 

initial conditions [22,34,36,38,43,44] i.e., there exist two 
positive integers p and q such that 

 ,0 ,i  0x  ; , ,   (1g) i p  0, j  0x j q

and the initial conditions are arbitrary, but belong to the 
set [42-44] 

      1,0 , 0, : ,0 ,nS i j R i  x x x M N  

  20, , 1 ( 1,2)T
k kj k x M N N N  ,   (1h) 

where M is a given matrix. 
Associated with the uncertain system (1) is the cost 

function [43, 44]: 

   

   

1
0 0

2

1
0 0

1, 1,

   , 1 , 1

   

T

i j

T

T
ij ij

i j

J i j i j

i j i j

 

 

 

 

 

  

   







u R u

u R u

W

,     (2a) 

where 

 


1,

, 1ij

i j

i j



  

   

x

x
,              (2b) 

T m
k k R   0 R R m    (k =1, 2),      (2c) 

1
1

2

 
  
 

0

0

Q
W

Q
,               (2d) 

T n
k k R   0 Q Q n

objective of this paper is to develop a procedure to de-

   (k =1, 2).       (2e) 

Suppose the system state is available for feedback, the 
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sign a static-state feedback control law 

   , ,i j i ju K x               (3) 

for the system (1) and the cost function (2), such that the 
closed-loop system 

       
    

1 1 1 1

2 2 2 2

1,

, 1

i j

i j

     
      

B K A B K x

A B K A B K x
 





(4) 
is asymptotically stable and the closed-loop cost func

1, 1i j   x A

tion 
J  is minimized where 

2
0 0

T
ij ij

i j

J  
 

 

  W ,          (5a) 




.     (5b) 

Definition 2.1 A control law (3) is said to be an optimal 

lobal asymptotic 
st

2.1 [44] The 2-D discrete uncertain system (1) is 



for all        

1 1
2

2 2

T

T

 
  

0

0

Q K R K
W

Q K R K

quadratic guaranteed cost control if it ensures the quad-
ratic stability of the closed-loop system (4) and mini-
mizes the closed-loop cost function (5). 

As an extension of the result for the g
ability condition of 2-D discrete FMSLSS model given 

in [14,30-33], one can easily arrive at the following 
lemma. 
Lemma 
globally asymptotically stable if and only if 

det    z z   I A L F M A L F2 1 11 1 2 12 0M  

   2
1 2, , Uz z F ,                 (6) 

where   2U = , 1, 1z z z  . 1 2 1 2, : 1,z  F F

ion 2.2 [42-44] Consider the uncertain  (1) 

  (7a) 

where 

 (7b) 

and 

11          (7c) 

12

1

Definit system
and cost function (2), then the static-state feedback con-
troller    , ,i j i ju K x  is said to define a quadratic 
guaranteed cost control associated with cost matrix 

T n nR   0 P P  if there exist a 2n  2n positive defi-
trix 2W  given by (5b) and an n  n 

positive definite symmet  matrix 1P  such that  

2CL   0Γ W ,             

nite symmetric ma
ric

 

 

1 1 2 2

1
1 1 2 2

1

T

CL    

   

  

 
      

0

0

Γ A B K A B K P

P
A B K A B K

P P

1 1 1 1     A A A A L F M ,

2 2 2 2     A A A A L F Μ ,         (7d) 

1 1 1 1 2     B B B B L F M ,          (7e) 

2 2 2 2 2 2    B B B B L F M .         (7f) 

The following lemmas are needed in t
m

2,44,51] Let   

he proof of our 
ain result. 

Lemma 2.2 [4 n n n k,RA ,RH
l nR E  and T nR Q Q

t ts a po matrix P such that  

   T

n  be give
nite 

n matrices. Then 
here exis sitive defi

    0A H F E P A H F E Q       (8) 

for all F satisfying FT F  I, if and only if the


.    (9) 

Lemma 2.3 [52, 63] For real matrices M, L, Q of appro-

re exists a 
scalar   0 such that  

1  P H
1

T

T T 
 

 
0

H A

A E E Q

priate dimensions, where TM M  and  T  0Q Q , 
then T  0M L Q L  if an

TM L

d only if 

1

 
 

 
0

L Q
            (10) 

or equivalently 

            (11) 

Lemma 2.4 [44] Suppose there exists a quadratic guar-

1

T

 
 

 
0

Q L

L M
.

anteed cost matrix T 0 P P  for the uncertain closed- 
loop system (4) with ditions (1g), (1h) and cost 
function (5) such that (7) holds. Then, a) the uncertain 
closed-loop system (4) is quadratically stable and b) the 
cost function satisfies the bound 

 initial con

  max2J p q    M P         (12) 

3. Main Result 

establish that the problem of deter-

 

T M  

In this section, we 
mining quadratic guaranteed cost control for system (1) 
and cost function (2) can be recast to a convex optimiza-
tion problem. The main result may be stated as follows. 
Theorem 3.1 Consider system (1) and cost function (2),
then there exists a suboptimal static-state feedback con-
troller  ,i ju  =  ,i jK x  that solves the addressed 
robust ed c ol problem if the following 
optimization problem 

minimize 

guarante ost contr

    

 ( ). 1 ,

( ).
T

i

ii





  
 

0
I M

M S

3

s.t. 



            (14) 

has a feasible solution 0  , m nR U ,  
n nR   0 TS S  and n n . 

The constraint (13) is give
 0

n by
R  TY Y
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 

1 2
1/2 1/2
1 11 11

1/2 1/2
2 22 12

11 12
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1
/2

2
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1
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2

0

TT
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S A A

A
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T

T T
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T
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


 

  
 
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   

 
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0 0 0 00

0 00 0

0 00 0

0 0 0 00 0 0
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0 0 00 0 0

0 0 00 0 0 0

0 0 00 0 0 0

L

SQ U RY M

SQ U RA S Y M

L I

M M I

IQ S

IQ S

IR U

IR U

,           (13) 

 
where 

1 1 1 A A S B U ,           (15a) 

2 2 2 A A S B U ,           (15b) 

11 11 21
T T M S M U M ,T            (15c) 

12 12 22
T T M S M U M .T            (15d) 

In this situation, a suboptimal control law is  
K = which ensures the minimization of the upper 
boun  for the closed-loop uncertain system.  

Proof: Using (5b) and (7b), matrix Inequality (7a) can 
be expressed as 

 

 

1 1 2 2

1
1 1 2 2

1

1 1

2 2

T

T

T

   

   

 

 
      
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d of (2)

,  (16) 

which, in view of (7c)-(7f), takes the form 


               (17) 

Applying Lemma 2.2, (17) can be rearranged as 
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      (18) 

Premultiplying and postmultiplying (18) by the matrix

1/2

1/2 1

1/2 1









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which can be rewritten as 
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11 12
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
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

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A
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M
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where 
1 S P ,               (20) 

S   

and 

1
1 Y S P ,              (21) 

1A , 2A , 11M  and 12M  
xpress

are de
Equation (19) can be e ed as 
The equivalence of (22) and (13) fo

Lemma 2.3. Using (20), the bound of t
(12) becomes  

 (23) 

fined in (15). 
Equation (22). 
llows trivially from 

he cost function 

   1
max2 TJ p q      M S M .     

Clearly, the upper bound (23) is not a convex function 
1in S  and  . Hence, finding the minimum of this 

per bound can not be considered as a convex optimiza-up
blem Since tion pro .   and  are posi-
 may obtain ubo ost con-

 m i  obtain 
th mum e of teed cost, 

 to  

 1
max

T M S M
ptimal guaranteed c

 1
max

T M S M . To
 bound of guaran

in (23) is changed 

tive, we
troller by

e opti
the term

 
inim
 valu

 a s
zing 

 th
1

 
e upper

 M  max
T M S

 1
max

T  M S M 1T  M S M I  

which, in turn, implies the constraint (ii) in (14). Thus, 
the minimization of     

st in (23).
implies the minimization 

of the guaranteed co  The optimality of the solu-
tion of the optimization problem (14) follows from the 
convexity of the objective function and of the constraints. 
This completes the proof of Theorem 3.1.  

Remark 3.1 It should be pointed out that the optimi- 
zation problem given by (14) is an LMI eigenvalue prob- 
lem [52,53], which provides a procedure to design subo-  
 

ptimal guaranteed cost controller. 

4. Application to the Guaranteed Cost  
Control of Dynamical Processes Described 
by the Darboux Equation 

In this section, we shall demonstrate 
our proposed method (Theorem 3.1) in robust guaranteed 
cost control of processes in the Darboux equation. It is 
known that some dynamical processes in gas absorption, 
water stream heating and air drying can be described by 
the Darboux equation [3,7,8]: 

the application of 

         
2 ,s x t s

a
 

 1 2 0

, ,
, ,

x t s x t
a a s x t b f x t

x t t x


  

   
 

(24) 

with the initial conditions 

   ,0s x p x ,          0,s t q t       (25) 

where  ,s x t  is an unknown function at space  
0, fx x     and time  0,t  , 1a , 2a , 0a

eal constants and 
 and  are  b

r  ,f x t  is the input function. 
Let  

     2

,
, ,

s x t
r x t a s x t

t


 


        (26) 

then (24) can be transformed into a
first-order differential equation of the form: 

n equivalent system of 

 

 
 
   1 1 2 0

2

,
,

,
1 , 0,

r x t
a a a a r x t bx f x t

a s x ts x t

t
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                    
  

. (27) 

It follows from (26) that 
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x
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


    


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(28) 
Taking  
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   , ,r i j r i x j t   ,          (29a) 

   , ,s i j s i x j t   ,          (29b) 

   , ,f x t u i j               (29c) 

and applying the forward difference quotients for both 
derivatives in (27), it is easy to verify that (27) can be ex- 
pressed in the following form: 

,

,

 
 

     
 

 
 
 

   

1 1 2 0

2

, 11

, 10 0

0 0 , 1

1 , 1

0
1, , 1

0 0

r i j r i ja x a a a x

s i j s i j

r i j

t a t s i j

b x
u i j u i j

       
       

   
         

   
      
   





(30) 

with the initial conditions 

   ,0s i p i x ,     0,r j z j t  .      (31) 

By setting 

   
 

,
,

,

r i j
i j

s i j

 
  
 

x ,             (32) 

(30) can be converted into the following FMSLSS 
model: 

  (33) 

with the initial conditions 

,  


   (34) 

Now, consider the problem of suboptimal guaranteed 
cost control of a system represented by (33) with  

     
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j
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x

0

1

15
a  ,                 (35a) 

1

3
1

5
a   ,                (35b) 

2

1

3
a   ,                 (35c) 

                  (35d) 
                (35e) 

                 (35f) 
and the initial conditions (34) satisfy (1g) and (1h) with 

                (36a) 

2b  ,
0.5x  ,

0.9t   

2p q  ,

0.01 0.05

0.006 0.001

 
  
 

M .           (36b) 

It is also assumed that the above system is subjected to 
parameter uncertainties of the form (1c)-( f) with 1

0

1

 
  
 

L ,                (37a) 

 11 0.0005 0M ,           (37b) 

 12 0 0.005M ,           (37c) 

               (37d) 21 0M ,

22 0.007 M .            (37e) 

Associated with the uncertain system (33)-(37), the  
cost function is given by (2) with  

1

0.09 0

0 0.09

 
  
 

Q ,            (38a) 

2

0.9 0

0 0.9

 
  
 

Q ,             (38b) 

1 2 0.0025 R R .            (38c) 

Applying Lemma 2.1, it is easy to verify that the 
above system is unstable. We wish to construct a suitable 
guaranteed cost controller for this system, such that the 
corresponding cost bound is minimized. To this end, we 
apply our proposed method (Theorem 3.1) to find the 
suboptimal guaranteed cost controller. It is found using 
the LMI toolbox in Matlab [53] that the optimization 
problem (14) is feasible for the present example and the 
optimal solution is given by  

5.03810 4.53485

4.53485 7.41531

 
   

S ,          (39a) 

1.22942 0.12961

0.12961 1.19500

 
  
 

Y ,            (39b) 

 0.35283 1.31762 U ,         (39c) 

11.01117  ,             (39d) 

0.00121  .                (39e) 

By Theorem 3.1, the suboptimal guaranteed cost con-
troller for this system is 

     , 0.19999 0.29999 ,u i j i j   x ,    (40) 

and the least upper bound of the corresponding closed- 
loop cost function is 

0.02682J  .              (41) 

5. Conclusions 

In this paper, we have presented a method of designing a 
suboptimal guaranteed cost controller via static-state 
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feedback for a class of 2-D discrete systems described by 
the FMSLSS model with norm bounded uncertainties. A 
suboptimal guaranteed cost controller is obtained through 
a convex optimization problem which can be solved by 
using Matlab LMI Toolbox [53]. Application of pres- 
ented controller design method is demonstrated through 
processes described by a Darboux equation [3,7,8]. The 
presented method can also be applied for the robust 
guaranteed cost controller design for metal rolling con- 
trol problem [4,9,10]. 
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