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ABSTRACT 

A fast algorithm for DOA estimation without eigendecomposition is proposed. Unlike the available propagation method 
(PM), the proposed method need only use partial cross-correlation of array output data, and hence the computational 
complexity is further reduced. Moreover, the proposed method is suitable for the case of spatially nonuniform colored 
noise. Simulation results show the performance of the proposed method is comparable to those of the existing PM 
method and the standard MUSIC method. 
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1. Introduction 

DOA estimation of spatial signal source with an array of 
sensors has been an active research problem in array sig- 
nal processing due to its wide applications in radar, sonar 
and so on. Many classical algorithms have been devel- 
oped in the past thirties years [1-3], in particular, a class 
of subspace-based methods such as MUSIC [1], Root- 
MUSIC [2], and ESPRIT [3] are drawn more attractive 
due to its higher resolution performance but without mul- 
tiple-dimension search computation. However, most of 
the subspace-based methods are required to compute the 
eigendecomposition of covariance matrix of array output 
data in order to obtain the so-called signal subspace or 
noise subspace, which its application is limited in case of 
larger number of array sensors. To avoid the computa- 
tional load of the eigendecomposition of covariance ma- 
trix, in recent years, some fast algorithms for DOA esti- 
mation have been proposed for certain condition in the 
literature [4-7]. In particular, the propagation method (PM) 
[6,7] without eigendecomposition has been discussed due 
to lower computational load. However, the available PM 
method need use the whole covariance of array output 
data to obtain the propagation operator, therefore, the 
PM-based algorithm is only suitable to the presence of 
white Gaussian noise, and its performance will be de-
graded in spatial nonuniform colored noise [8]. 

In this paper, we present a modified PM algorithm for 
DOA estimation with an ULA, a different computation 
method for the propagation operator is given, which is 
only obtained by the partially cross-correlation of array 
output data. As a result, the proposed algorithm is com- 
putationally simpler than the available PM method [6]. 
Moreover, the proposed algorithm is suitable for the case 
of spatially nonuniform colored noise due to using the 
off-diagonal elements of array covariance matrix. 

2. Proposed Method 

The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may 
note peculiarities. For example, the head margin in this 
template measures proportionately more than is custom- 
ary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the 
entire proceedings, and not as an independent document. 
Please do not revise any of the current designations. 

Let an uniform linear array of N sensors receive P 
narrow band signals impinging from the sources with 
unknown spatial DOA’s  1, , P  . The sensor array 
outputs can be expressed as: 

        , 1, 2, ,t t t t  x A s n  L      (1) 
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where and  

 denote the received  

array data vector and the array manifold matrix, respec-

tively.  and  

 stand for the source wave-

form vector and sensor noise vector.  
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is the steering vector and  denotes the transposition 
of a matrix. The sensors noise is assumed to be a zero 
mean spatially and temporally white Gaussian process. 

 T

The following assumptions are made in the subsequent 
developments: 
(A1) The number of sources P is known a priori and the 
number of sensors satisfies N > 2P. 
(A2) The set of P steering vectors is linearly independent 
and the P signal sources are statistically independent of 
each other. 

Under the assumption of N > 2P, the array manifold 
matrix A can be partitioned as follows: 

1 2 3, ,
TT T T A A A A               (2) 

where i , i=1,2,3 is a matrix with dimension P × P, P × 
P, (N – 2P) × P, respectively. 

A

Based on the above partition of A and using Equation 
(1), the following partially cross-correlation matrices of 
the array output are defined as: 

       12 1 21: ,: 1 : 2 ,:H H
ssE t P t P P  R x x A R  A  

(3) 

       31 3 12 1 : ,: 1: ,:H H
ssE t P N t P  R x x A R A  

(4) 

         32
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

R x x

A R A

  (5) 

where takes the i-th to j-th row of   : ,:t i jx  tx ,  H  

denotes the Hermitian transpose and    tsH
ss  E tR s   

is the source signal covariance matrix. 
Under the assumption of (A2), both ss  and i ,  

i = 1,2 are invertible matrices, therefore, the following 
equation holds: 

R A

  11 1
32 12 1 3 2 2 1 1 3

H H
ss ss

 R R A A R A A R A A A1 



    (6) 

Similarly, the following equation can also be obtained: 
1

31 21 2 3
 R R A A                (7) 

Combines Equation (6) and Equation (7) and yields: 
1 1

32 12 1 31 21 2 32  R R A R R A A           (8) 

Equivalently, the above equation can be written as: 
1 1

32 12 31 21 22 N P
 

  R R R R I A 0        (9) 

where 2N PI

2

 is an identical matrix with dimension N – 
2P and N P0

H

 a zero matrix, respectively. 

Let 1 1
32 12 31 21 22 N P

 
   Q R R R R I  and we have 

H Q A 0                   (10) 

which implies that the columns of HQ  form a basis of 
the null space of A, i.e., 

   1, 2, ,H
k k P  Q a 0   

Using the estimated matrix  from the finite array 
output data in real application, similar to the MUSIC- 
based method, we may form the following spatial spec-
trum function and obtain the estimates of  

Q̂

( 1,2, ,k k }P    from P spectrum peaks: 
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Alternately, using the Root-MUSIC-based method [2] 
to get the estimation value of k  directly. 

It is worthy to note that the estimation of  need not 
any eigendecomposition, and the noise information is not 
involved in , therefore, the proposed method can be 
used in the case of spatial non-uniform noise or spatial 
band limited noise [8]. 

Q̂

Q̂

Regarding major computational complexity, the num-
ber of multiplications for calculating  includes P(N - 
P)L in the cross-correlation computation in Equations 
(3)-(4) and O(P3) for the inversion of 12  in Equations 
(6)-(7), respectively, while the MUSIC method [1] in-
volves N2L for covariance matrix computation and O(N3) 
for the eigenvalue decomposition of the resultant covari-
ance matrix. On the other hand, the number of multipli-
cations for computing the propagation operator  in 
the available PM method [6] is NPL + O(P3). Apparently, 
the computational complexity of the proposed algorithm 
is lower than those of the MUSIC method and the pro- 
pagation method. 

Q̂

R

Q

3. Simulation Results 

In the first simulation, the experiments are performed 
with an uniform linear array (ULA) with N = 10 sensors 
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and half-wavelength inter-element spacing. Two equally 
powered narrow-band sources with DOA’s 1 7     
and 2  impinge on the array and the two sources 
are statistically independent of each other. Let L = 100 
and the average results for 200 independent runs are used 
to evaluate the estimation performance of different meth-
ods. 

8  

Figures 1-2 show the RMSEs (root-mean-square error) 
for DOA estimation versus different SNR conditions. 
The results using the conventional MUSIC algorithm [1], 
the Standard ESPRIT method [3] and the available or- 
thonormalisation PM (OPM) [7] method are also in- 
cluded to contrast the performance of the proposed algo- 
rithm. It is seen that the estimation accuracy of the pro- 
posed method is comparable to those of the subspace- 
based MUSIC method, ESPRIT and OPM method at all 
the SNRs. 

In the second experiment, we assume  

   1 2, 5 ,     6  and other parameters is same as the  

above experiment, however, the spatially nonuniform 
independent sensor noise has the following covariance 
matrix:  2 diag 1,1.2,4,12,11,3,0.4,10, 2nQ . 

The definition of signal-noise-ratio (SNR) is the same 
as that in [8]. The estimation results of the proposed 
method for 10 independent runs in the case of SNR = 
5dB are ploted in Figure 3. It is seen that the proposed 
method can resolve accurately two closely spatial sources 
in the presence of spatially nonuniform noise. 

4. Conclusions 

A computationally efficient algorithm for DOA estimation 
with an uniform linear array has been presented. The par-
tial cross-correlation of array outputs is utilized to compute 
the propagation operator, and hence the proposed method 
is suitable to the case of spatially non-uniform noise. Fi-
nally, it is shown that the estimation performance of the  
 

 

Figure 1. RMSEs of θ1 versus SNR. 

 

Figure 2. RMSEs of θ2 versus SNR. 
 

 

Figure 3. Spectrum of proposed method in spatially non- 
uniform colored noise. 
 
proposed algorithm is comparable to those of the available 
PM method as well the conventional MUSIC method at 
sufficiently higher SNR conditions. 
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