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ABSTRACT 

In this paper, we present a theoretical analysis of the output signal-to-interference-plus-noise ratio (SINR) for eigen-
space beamformers so as to investigate the performance degradation caused by large pointing errors. For the sake of 
reducing such performance loss, a robust scheme, which consists of two cascaded signal processors, is proposed for 
adaptive beamformers. In the first stage, an algorithm possessing time efficiency is developed to adjust the direc-
tion-of-arrival (DOA) estimate of the desired source. Based the achieved DOA estimate, the second stage provides an 
eigenspace beamformer combined with the spatial derivative constraints (SDC) to further mitigate the cancellation of 
the desired signal. Analysis and numerical results have been conducted to verify that the proposed scheme yields a bet-
ter robustness against pointing errors than the conventional approaches. 
 
Keywords: Beamforming, Large Pointing Error, Output Signal-To-Interference-Plus-Noise Ratio (SINR), Eigenspace 

Beamformer, Two-Stage 

1. Introduction 

It is well known that conventional adaptive beamfomers 
are effective in suppressing strong interferers as long as 
the error in the steering vector due to pointing inaccuracy 
is small [1]. In the presence of steering vector errors, 
these beamformers exhibit severe degradation in per-
formance in that the output signal-to-interference-plus- 
noise ratio (SINR) drops dramatically. Remedies have 
been proposed to lessen the effect of desired signal can-
cellation [2]. In particular, the linearly constrained mini- 
mum variance (LCMV) beamformer uses the spatial de-
rivative constraints (SDC) to alleviate sensitivity to the 
pointing errors by means of a flatter main-lobe response 
[3,4]. Unfortunately, this in turn results in large sidelobes 
and leads to a loss in array gain against noise. Further-
more, the decrement in the beamwidth as the input sig-
nal-to-noise ratio (SNR) increases makes it poor in inter-
ference suppression due to the directional mismatch [5]. 
In the extreme case of high input SNR, since the desired 
signal may fall outside the main-lobe region, the SDC 
beamformer would null out not only the interference but 
also the desired signal. In [6], a robust scheme employs 
the leaky elimination constraint and the interference null 

constraint to preserve the desired signal and to keep nice 
interference nulling simultaneously. This method needs 
to identify the interference subspace for the sake of re-
storing the interference correlation matrix. However, in 
the presence of weak interference, it is difficult to extract 
the interference subspace from the received data. Chang 
and Yeh [7] proposed the eigenspace beamformer, in which 
the weight vector is constrained within the signal sub-
space of the received data correlation matrix. In spite of 
success in dealing with a moderate pointing error, this 
approach cannot completely remove the interference and 
the residual interference impairs the system performance, 
especially for the weak interference (low signal-to-inter- 
ference ratio, SIR). To mitigate the effect of large point 
errors, an iterative searching method [8] is considered for 
constructing the correct constraint vector before beam-
forming. Its low convergence behavior because of a large 
pointing error becomes crucial in practice. This approach, 
at the worst, breaks down when the desired signal falls 
outside the main-beam region in the case of high input 
SNR and/or a large antenna array. 

In this paper, the effect of pointing errors on the ei-
genspace beamformer is first investigated by using the 
theoretical analysis. As a remedy, a robust two-stage 
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scheme for adaptive beamformer is proposed [9]. The 
design of this beamformer involves the following proce-
dure. First, an accuracy direction-of-arrival (DOA) esti-
mate is determined from a few angles-of-interest in ac-
cordance with the fact that the output power of the beam- 
former decreases with the increment in the pointing error. 
By exploiting the refined resultant, an eigenspace beam-
former incorporating with the SDC is used to further 
mitigate the aggregate impacts due to the pointing errors. 
A closed-form approximate SINR expression is given to 
indicate the achievable performance improvement. Nu-
merical results then confirm the efficacy of the proposed 
robust method and corroborate the predicted SINR re-
sults. 

The remainder of the paper is organized as follows: 
Section 2 reviews the array data model and presents the 
SINR performance analysis of the eigenspace beam-
former. The proposed two-stage beamformer and its per-
formance analysis are provided in Section 3. Simulation 
results and conclusion remarks are given in Sections 4 
and 5, respectively. 

The notations used in this paper follow the usually 
conventional-bold capital letters denoting vectors and 
matrices. I  is an identity matrix with a proper dimen-
sion,  diag v  is a diagonal matrix with its entries 
formed by v ,  T  and  H

  are transpose and com-
plex conjugate transpose of   . Also, Re  , E  , 
and   are used to denote real part, ensemble average, 
and absolute operators, respectively. 

2. Preliminary 

The scenario considered herein involves a single desired 
source and 1K   uncorrelated interfering sources, all 
assumed to be narrowband with the same center fre-
quency. These sources are in the far field of a uniform 
linear array consisting of M  identical elements spaced 
by half a wavelength. Adopting the complex envelope 
notation, the array data obtained at a certain sampling 
instant can be put in the 1M   vector form: 

       
1

.
K

k k
k

n s n n


 x a n           (1) 

The random scalars  ks n  for 1, 2, ,k K   repre-
sent the signals with power 2

k . The 1M   vector 

   1 sinsin1, , ,
Tj Mje e M      a   i s  the  array 

steering vector, in which   is the physical angle meas-
ured with respect to the broadside of the array. Finally, 
the vector  nn  is additive white Gaussian noise with 
power 2

n I . Without loss of generality, suppose  1s n  
is the desired signal. 

The LCMV beamformer, which minimizes the array 
output power subject to a unit constraint on the presumed 

vector, is widely used to preserve the desired signal and 
keep interference nulling simultaneously. Mathematically 
speaking, the optimal weight can be obtained by [3]: 

     1 1 ,H
s s s   w R a a R a        (2) 

where  sa  is the steering vector associated with the 
look direction s , and R  is an M M  received data 
correlation matrix given by 

        2 2

1

.
K

H H
k k k n

k

E n n    


  R x x a a I   (3) 

According to the orthogonality between the signal and 
noise subspaces, the eigenspace technique can be used to 
mitigate the effect of desired signal cancellation and its 
corresponding weight vector is given by 

     1 1 ,

H
s s s

H H
s s s s s   





w E E w

E E R a a R a
    (4) 

where the M K  matrix sE  is formed by the K  
principal eigenvectors of R . Under proper conditions, 
the eigenspace beamformer is found to achieve high 
output SINR as long as the pointing error  1s   is 
negligible. Unfortunately, in the case of the large point-
ing error and/or high input SNR, its performance is lim-
ited mostly by the residual interference buried in the 
beamformer output. 

To gain further insights, we will describe the effect of 
the residual interference caused by pointing inaccuracy. 
For a manageable analysis, the scenario is simplified into 
that involving a desired source with power 2

1 1   and 
an interferer with power 2

2  only, i.e., 2K  . Thus the 
received data correlation matrix can be rewritten as  

       2 2
1 1 2 2 2 .H H

n       R a a a a I     (5) 

In addition, for the ease of expression, the following 
notations are defined:  k ka a  and H

k j kja a  for 
, 1,2,k j s . Note that kj  denotes the correlation be-

tween ka  and ja , and is close to zero for a well-sepa- 
rated sources. 

By using some algebraic manipulations, the received 
data correlation matrix can be decomposed as 

2
1 1 1 1 1 2 2 2 2 2

2
1 1 1 1 2 2 2 2 ,

H H H H
n

H H
n

  

    

  

  

R e e e e e e e e I

e e e e I
      (6) 

where 

   
 

2 22 2 2
2 2 2 12

1 1 2 12

1 1 1 4 2;

1 ; 1 , 1, 2.

k

k

H
k k k k k

    

  

        
    e a a e e

  (7) 

Under the simplified scenario, the weight vector for 
the eigenspace beamformer is given by 
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1 1 2 2
1 22 2

1 2

1 1 2 2
1 22 2

1 2

,

H H
s s

s
n n

n n

g g

 
   

 
   

 
 

 
 

e a e a
w e e

e e

         (8) 

where 

 1 2 211 , 1, 2.H
k k s s s kg k       e a     (9) 

Note that we have omitted the normalized scalar since 
it does not affect the analysis result. Using (8), the output 
desired signal power dP  and the output interference- 
plus-noise power inP  are given by 

1 1

2

1 1 2 2
1 1 1 22 2

1 2

2

1 1 1 2 2 2
2 2

1 2

22 2

1 1 2 2 1 1 1 2 2 2
2 2 2 2

1 2 1 2

;

,

H H
d s s

H H

n n

n n

H
in s s d

n n n n

P

g g

g g

P P

g g g g

 
   

   
   

     
       



 
 

 
 

 

   
   

w a a w

a e a e

w Rw

  (10) 

in which we have used the facts that 1
H

k ka e  for 
1, 2k  . Taking the ratio of dP  and inP  with substitu-

tion of (10) yields the output SINR expression: 

1 1 1 2 2 2
2 2

1 2

2 2
1 1 2 2 1 1 1 2 2 2

2 2 2 2
1 2 1 2

1 1

2

2

SINR

.n n

n n n n

H H
d s s

o H
in s s d

P

P P

g g

g g g g

   
   

     
       

 

   

 




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w a a w

w Rw

   (11) 

This result reveals that the output SINR is dependent 
upon the look direction  1s g , which decreases as the 
pointing error increases. 

Under the condition that the interference is far away 
from the desired source, i.e, 12 1  , we have 

 
 

2
1 2 2

2
1 1 2 2 2 12

2
1 1 2 2 2 21

1; ;

; 1 ;

; 1 .s sg g

  

 

   

 

  

  

e a e a       (12) 

Substituting (12) into (11), the output SINR can be 
reduced to 

  

2
2

1 2 12 2
2 2 2 2 12 2

22 2 2
1 2 1 2 12 2

2 2 2 2 2 2 2( )( )2 2 2

1
SINR

1 1 1

s s

n n

o

s s s s

n n n n

   
   

     
      

  


      

 

 

 
 
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2
1
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2 2 2
1 2 1

2 2 2 222

2
1

2 2
1 2

1
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1
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1 INR 1 SNR
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SNR , INR 1 ,

1 & SNR 1

s

n

s s s

n n n

s i
i

s i s i

i s

i i

s
s i

s




  
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
 

  






   


 

 


  

 


a a



 

     (13) 

where 2SNR 1i n  and 2 2
2INR i n   denote the 

input SNR and interference-to-noise ratio (INR), respec-
tively. The results in (13) reveal several intrinsic features 
of the eigenspace beamformer. First of all, as long as the 
look direction is close to the DOA of the desired source 
( 1s a a ), the eigenspace beamformer performs like the 
optimal quiescent beamformer, which can offer the 
maximum output SINR equal to SNR i . The second one 
is that the eigenspace beamformer can achieve a reliable 
performance without severe desired signal cancellation 
for INR 1i  . On the contrary, in presence of weak in-
terference, the beamformer fails to completely remove 
the interference and the residual interference cannot be 
negligible when compared with the output noise power, 
leading to a substantial degradation in output SINR. Fi-
nally, in the case of high input SNR ( SNR 1i  ) and/or 
large pointing errors ( 1 1s  ), the second term of the 
denominator becomes large and cannot be negligible 
when compared with the first term. This significantly 
drops the performance of the eigenspace beamformer. To 
make matters worse, the eigenspace beamformer reaches 
a “saturation region”, in which the output SINR is inde-
pendent upon the input SNR. 

3. Proposed Robust Two-Stage 
Beamforming 

As mentioned above, the eigenspace beamformer cannot 
offer a reliable SINR performance as the error in DOA 
estimate is large and/or the input SNR is high, especially 
for weak interference. An alternative to enhancing ro-
bustness is to adjust the DOA estimate before beam-
forming. This prompts us to propose a two-stage scheme. 
In the first stage, we determine an accuracy DOA esti-
mate based on the fact that the output power of the 
LCMV beamformer decreases with the increment in the 
pointing error. In the second stage, to mitigate desired 
signal cancellation, we further leverage the spatial de-
rivative technique to incorporate the refined DOA esti-
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mate into the eigenspace beamformer. 

3.1. Proposed Two-Stage Beamformer 

According to (2), the output power of the LCMV beam-
former is given by  

     
11 ,H

o s s sP   
   a R a         (14) 

which achieves a maximum output SINR when the 
steering vector  sa  coincides with that of the desired 
signal  1a  [8]. This suggests that an accuracy DOA 
estimate can be chosen from the candidate angle set, 

 : 2m sS mB N     for , 1, ,m N N N      in 
accordance with maximizing the array output power: 

   

   

11

1

ˆ max

min ,

m

m

H
s m m

S

H
m m

S









  

 









   



a R a

a R a
        (15) 

where B  denotes the presumed angle region of inter-
esting. The choosing of N  is a trade-off between accu-
racy in DOA estimate and computational load. A small 
value of N  leads to time-saving in searching ŝ , but 
poor performance in beamforming, and vice versa. Since 
the major consideration in the first stage is to get rid of 
desired signal cancellation due to a large pointing error, a 
small value of N  is preferred. 

In order to further improve robustness against the error 
in DOA estimation, an eigenspace beamformer is to in-
corporate a first-order SDC in the direction ŝ . We have 
the weight vector given by  

  11 1

1 1

1 1

1
1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ
ˆ ,

ˆ ˆ

H H
s s

H H
s s s s s

H H
s s s s s

H
H s s

s s sH
s s

 

 

 








 

 

 
  

 

w E E R C C R C f

a DR Da E E R a

a DR a E E R Da

a DR a
E E R I D a

a DR Da

     (16) 

where  1,0
Tf ,  ˆˆ s sa a , and  ˆ ˆ,s sC a Da  with 

  0,1, , 1
T

diag M D  . With the uses of 1ŝ   

and the Taylor’s series expansion [10], we have 

1 1ˆ s j a a Da , where    1
ˆsin sin s       , such 

that the weight vector in (16) reduces to 

  

   

1
1

1 2 1 2
1 1

2
1

ˆ, sin sin

H
s s

H H
s s s s

o s

j j   


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

 

   

 

    

w E E R I D I D a

E E R a E E R D a

w Γb

     (17) 

where 1H
s s

Γ E E R , 2
1b D a , and 1

1
H

o s s
w E E R a  

denotes the optimal weight vector for the eigenspace 
beamformer without pointing error. The second term in 

(17) is due to the estimation error in the first stage, which 
is insignificant when compared with ow  because of the 
fact that 1  . 

3.2. Algorithm Summary for the Proposed 
Two-Stage Beamformer 

The overall procedure of the proposed robust beam-
former can be summarized as below. 

(1) Obtain the sample averaged version of the re-
ceived data correlation matrix R̂  given by 

   
1

ˆ ,
sN

H
s

n

n n N


 R x x        (18) 

where sN  denotes the number of the data sam-
ples. 

(2) Obtain the preliminary DOA estimate s  for the 
desired source [11]. 

(3) Compute the refined DOA estimate ŝ  according 
to (15) with R  replaced with R̂  in (18). 

(4) Compute the weight vector w  according to (16). 

3.3. Theoretical Analysis on the Output SINR 

In this subsection, the analysis expression of the output 
SINR associated with the proposed beamformer is pre-
sented. For a manageable analysis, we only consider a 
two-source system again. Substituting (6) and (17) into 
(11), along with some algebraic manipulations, the ex-
pansion of the output SINR for the proposed beamformer 
is approximately expressed by 

 
 

 
 

24
1 1 1

1 1
2

1 1 1 1 1 1

24
1 1 1

2

1 1 1 1

SINR
1 1

SINR ,
1

H H H
H

o H H H

H H H

opt
H H






 

 


 



a Γa b Γb b Γaa Γa

a Γa a Γa a Γa

a Γa b Γb b Γa

a Γa a Γa

 (19) 

where 

2 2
1 1 1 2 2 2

2 2
1 21 1

2 2
1 1 1 2 2 21 1

2 2
1 2

SINR .
1 1

H H

H
n n

opt H H H

n n

 
   
 
   

 
 

   

e e e e
a Γa

e e e ea Γa
   (20) 

Note that SINRopt  in (20) denotes the maximum out-
put SINR obtained by the optimal beamformer (without 
pointing error). The result in (19) indicates that the pro-
posed beamformer performs like the optimal LCMV 
beamformer with a slight degradation in output SINR, 
which is proportional to 4 1  . 

4. Computer Simulations 
Computer simulations were conducted to ascertain the 
performance of the proposed two-stage beamformer. The 
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array employed was a sixteen-element ( 16M  ) uni-
formly linear array. All elements were assumed to be 
identical and omnidirectional. The scenario involved a 
desired source at 1 0    with power 2

1 1  , and 
1K   uncorrelated interferers uniformly distributed over 

the angle range ( 30 , 50 ) with a varied signal power 
2
2 . The input SNR and SIR were defined as 

2
10SNR 10logi n   and 2

10 2SIR 10logi   , respec-
tively. Unless otherwise mentioned, the set of standard 
parameters 

SNR 20 dB; SIR 0 dB;

2; 5.3 ;

i i

s sK N

 

            (21) 

will be used throughout the section. It is noteworthy that 
5.3s   , which led to an error in DOA estimate of 0.3  

at the first stage, was chosen to investigate robustness 
against estimate error. Furthermore, the angle region of 
interesting was 20B    ( 10s   ) and 10N   was 
used to determine the refined DOA estimate, which led 
to a DOA estimation error of 0.5  . For comparison, we 
also included the results obtained with the eigenspace [7], 
eigenspace with a first-order SDC (denoted by SDC- 
eigenspace), and optimal beamformers, in which the op-
timal one utilized the correct look direction 1s   to 
compute the weight vector. Furthermore, the analysis 
results in (13) and (19) for the eigenspace and proposed 
beamformers, respectively, were also shown to ascertain 
their correctness. 

The first set of simulations examines the output SINR 
of the proposed two-stage beamformer against white 
noise (input SNR). The corresponding results were shown 
in Figure 1. It is found that the output SINR values of 
the proposed scheme are close to those of the optimal 
one, confirming that the desired signal can be success-
fully retained and the interference can be effectively 
suppressed even in case of a large pointing error. Under a 
proper condition ( SNR 5i   dB), the eigenspace beam-
former achieved a comparable performance as the optimal 
 

 

Figure 1. Output SINR performance versus input SNR with 
16M  , SIRi = 0 dB, 5.3s   , 2K  , and sN   . 

one. Unfortunately, for high input SNR (> 20 dB), both 
the eigenspace-based beamformers, as expected, pro-
duced a significant degradation in output SINR. Fur-
thermore, these beamformers reached the “saturation 
region” when the input SNR was larger than 20 dB. This 
is because that the residual interference buried in the 
beamformer output cannot be negligible when compared 
with the output noise power, leading to a limitation in 
performance. It is noteworthy that the analyzed output 
SINR close to the simulated results confirms correctness 
of the theoretical analysis. 

The second set of simulations investigates the effect of 
input SIR. Figure 2 shows the output SINR versus input 
SIR. It is observed that the proposed beamformer pos-
sessed an excellent robustness by effectively cancelling 
weak interference. On the contrary, the eigenspace beam- 
former failed to offer a reliable performance, especially 
for low input SIR (< -10 dB). Again, the reason for the 
significant discrepancy is that the pointing error effect 
induces a correlation between signals and makes the 
beamformer put less emphasis on suppressing interfer-
ence. The analysis results approaching performance of 
the proposed beamformer confirm that the analysis re-
sults are correct. 

The third set of simulations evaluates the effect of 
pointing errors on the proposed beamformer. In this case, 
the look direction s  was varied from 10   to 10 , 
corresponding to a maximum pointing error of 10  (the 
null-to-null beamwidth of the broadside array is ap-
proximately 14.4 ). Figure 3 shows the curves of output 
SINR versus s . The results indicate that desired signal 
cancellation does not occur even with the desired source 
located out of the “main-beam”. On the other hand, both 
the conventional beamformers exhibit a significant deg-
radation in SINR performance. Again, the correctness of 
the theoretical analysis was ascertained by achieving the 
similar results as the simulation results. 

The fourth set of simulations examines the capability 
 

 

Figure 2. Output SINR performance versus input SIR with 
16M  , SNRi = 20 dB, 5.3s   , 2K  , and sN   . 
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Figure 3. Output SINR performance versus pointing error 
with 16M  , SNRi = 20 dB, SIRi = 0 dB, 2K  , and sN  . 
 
in interference suppression by varying the number of 
signal sources K . The resulting SINR plotted in Figure 
4 indicates that desired signal cancellation did not occur 
with pointing error (no performance degradation) for 

5K  . In an interference-rich environment (large values 
of K ), the non-zero cross correlation between signals 
makes the proposed scheme exhibit a certain degradation 
in performance due to the beam squint effect. The con-
ventional eigenspace-based beamformers are sensitive to 
the number of interferers. These are confirmed by the 
beam patterns shown in Figure 5(a) and Figure 5(b) 
obtained with 5K   and 10, respectively. Clearly, all 
the beamformers successfully suppress interference even 
with a large pointing error. In the case of 5K  , the 
proposed beamformer can resteer the beam back to the 
desired source direction to compensate for the error in 
the DOA estimate at the first stage. This did not happen 
with 10K   (an interference-rich environment). In ad-
dition, the conventional beamformers put a null in the 
direction of the desired signal, leading to a failure in 
beamforming. 

The final set of simulations investigates the conver-
gence behavior by varying the data sample size sN  for 
computing the time-averaged version of the received data 
correlation matrix in (18). The results given in Figure 6 
demonstrate that the proposed beamformer with a similar 
performance as the optimal one converges in about 

310sN   data samples, which is only about 0.37 dB away 
from the optimal case ( sN   ). On the contrary, the other 
beamformers cannot collect the desired signal and com-
pletely suppress the interference even in the case of 5000 
data samples due to the pointing error. To gain further 
insights, we show in Figure 7 the beam patterns obtained 
with 310sN  . We note that although the interferer was 
not perfectly cancelled, the proposed beamformer was 
still able to impose sufficient attenuation on it to prevent 
performance breakdown. On the other hand, the conven-
tional beamformers cannot eliminate the interferer due to 
both the effects of pointing error and finite sample. 

 

Figure 4. Output SINR performance versus K  with 16M  , 
SNRi = 20 dB, SIRi = 0 dB, 5.3s   , and sN   . 
 

 
(a) k = 5 

 
(b) k = 10 

Figure 5. Beam pattern obtained with 16M  , SNRi = 20 dB, 
SIRi = 0 dB, 5.3s   , and sN   . (a) 5K  ; (b) 10K  . 
 

 

Figure 6. Output SINR performance versus sample size sN  
with 16M  , SNRi = 20 dB, SIRi = 0 dB, 2K  , and 5.3s  . 
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Figure 7. Beam pattern obtained with 16M  , SNRi = 20 

dB, SIRi = 0 dB, 2K  , 5.3s   , and 310sN  . 

5. Conclusions 

In this paper, we have derived an output SINR closed- 
form expression of the eigenspace beamformer in terms 
of three important parameters including pointing errors, 
input SNR, and SIR. According to these analytical results, 
we find some intrinsic constraints imposed on the eigen-
space beamformer. These constraints inspire us to de-
velop a new beamforming scheme for combating large 
pointing errors. Computer simulations are presented to 
verify the derivation of the corresponding analysis. It is 
shown that the proposed beamformer possesses a better 
resistance to the pointing errors and excellent capability 
of suppressing weak interference in comparison with the 
conventional techniques, especially at a low input SIR. 
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