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ABSTRACT 

This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin 
carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that 
minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies 
of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied; it exploits a Particle 
Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure 
(NRSMP); the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four 
engineering constants of the two-dimensional elasticity are the most influent.  
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1. Introduction 

During the last three decades, composite materials are 
widely used in modern structures for high performance 
and reliability because of their high strength, specific 
stiffness, light weight and adjustable properties. However, 
before using this type of material with confidence in in- 
dustrial applications such as marine, automotive or aero- 
space structural components, a thorough characterization 
of the constituent material properties is needed. Because 
of the number and the inherent variability of the constitu- 
tive properties of composite materials, the experimental 
characterization is quite cumbersome and requires a large 
number of specimens to be tested. 

To circumvent this lack, an effective procedure consists 
in using mixed numerical-experimental methods which 
constitute powerful tools for estimating unknown consti- 
tutive coefficients in a numerical model of a composite 
structure from static and/or dynamic experimental data 
collected on the real structure. 

Starting from the measurement of quantities such as the 
natural frequencies and mode shapes, these methods allow, 
by comparing numerical and experimental observations, 
the progressive refinement of the estimated material 
properties in the corresponding numerical model. In this 

domain, dynamic mixed techniques have gained in im- 
portance owing to their simplicity and efficiency [1,2]. 

In this work, a new mixed numerical-experimental 
identification method based on the use of a multi-objec- 
tive optimization procedure. It exploits a Particle Swarm 
Optimizer algorithm (PSO) [3-5] that is coupled to a 
meta-modeling by the new response surfaces method 
procedure (NRSMP) based on Droesbeke et al. and Myers 
et al. works [6,7]; this procedure is applied to estimate 
unknown constitutive parameters from a numerical model 
of a composite plate and its experimental data of dynamic 
tests. 

This method is based on a technique for minimizing the 
differences between the first eight numerical frequencies 
of the composite structure and the corresponding ex- 
perimental modal values [8].  

In our case, the constitutive parameters that can be 
identified are three in-plane Young’s moduli E1, E2 and E3 
and the in-plane and transverse shear moduli G12, G13 and 
G23, the Poisson’s ratios v12, v13 and v23.  

This optimization procedure is preceded by a sensitivity 
analysis using ANOVA [7] in order to eliminate non- 
influent parameters on the behavior of the composite 
structure. 

The multi-objective problem to be solved is of eight 
cost functions and nine design parameters which are: E1, *Corresponding author. 
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E2, E3, G12, G13, G23, v12, v13 and v23. 

2. Elastic Behavior of Composites 

The macroscopic mechanical properties of composite 
materials depend on their microstructure. The micro 
structural organization that is generally not regular, often 
leads to anisotropy at the macroscopic level. This anisot- 
ropy can be explained mechanically as a dependency of 
the elastic response vis-à-vis the direction of stress.  

However, for most of the industrial composites, this 
behavior is often orthotropic, described by the stress- 
strain relationship:  

i ijC j                   (2.1) 

where the terms i  and j  represent components of the 
stress and strain tensors, respectively. ij  is the matrix of 
elastic coefficients. The matrix of elastic coefficients for 
an orthotropic material is written as follows:  
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There are twelve non-zero components of which nine 
are independent. (2.1) can be rewritten in terms of the 
compliance matrix, :  ijS

j ij iS                  (2.3) 

The compliance matrix for an orthotropic material ex- 
pressed in terms of elastic properties such as Young’s 
modulus, shear modulus and Poisson’s ratio and is:  
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where Ei are the Young’s moduli in the i direction, vij are 
Poisson’s ratio for strain in the j direction with stress 
applied in the i direction, and Gij are the shear moduli in 

the i-j plane (i, j = 1, 2 or 3). Since the matrix of elastic 
coefficients and the compliance matrix are symmetric, 
hence  

ij ji

i jE E

 
                 (2.5) 

3. Problem Data 

We studied a composite plate that was cut by the manu- 
facturer from a large panel of length 1.56 m, width 1.06 m, 
4.16 mm in thickness and density of 1512 kg/m3. The 
panel material is of IMS/977-2 type (Figure 1).  

The panel consists of 16 layers with the stacking sym- 
metric sequence of [90/45/0/-45]2S: its elastic properties 
are provided by the manufacturer (modulus in GPa):  
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  (3.1) 

The plate was provided by the manufacturer with the 
following nominal dimensions : 300 mm in length (y axis) 
and 200 mm wide (x axis); however, the checks in the 
laboratory, provides [8] a width of 200.3 mm, an average 
thickness of 4.2 mm and a density of 1521 kg/m3. It is 
these data that were used to make a first simulation of the 
free plate configuration using 3D solid elements Quad- 
ratic hexahedral ABAQUS® element C3D20R: to 17303 
nodes, 2400 elements: 51909 dof.  

Figure 2 shows the first eight modes of the plate to be 
studied.  

The measured frequencies [8] and simulated, are pro- 
vided in Table 1 for the first eight modes of vibration free. 
We note that numerical frequencies greatly overestimate  
 

 

X

Y

Z

                              
(a)                            (b) 

Figure 1. Tested plate (a) and 3D FE model (b). (a) Tested 
omposite plate [8]; (b) 3D FE model.  c  
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Table 1. Experimental frequencies (Hz) and simulated by FE of the composite plate. 

Modes 1 2 3 4 5 6 7 8 

Exp. Freq. [8] 229.3 310.9 554.6 581 724.7 889.1 1068.4 1163.7 

FE Freq. with Equation (3.1) 246.24 345.43 596.68 608.49 775.66 972.84 1142.7 1264.6 

Error (%) 7.39 11.11 7.59 4.73 7.03 9.42 6.95 8.67 

FE Freq. with Equation (3.2) 234.86 319.51 568.54 594.66 740.27 912.01 1095.3 1194.3 

Error (%) 2.42 2.76 2.51 2.35 2.14 2.57 2.51 2.62 

 
Mode shapes of plate 

 
Mode 1 Mode 2 

 

Mode 3 Mode 4 

 
Mode 5 Mode 6 

 
Mode 7 Mode 8 

Figure 2. First eight modes of the composite plate. 
 
those measured, suggesting that elastic properties of the 
plate, given by manufacturer, overestimate those of the 
plate tested. Measurements on another plate of the same 
nominal size, also cut by the manufacturer from the same 
large panel, provided an average thickness of 4.13 mm 
and a density of 1547 kg/m3, these new data confirm that 
the material of panel is not uniform and identification of 

its elastic properties is required; this plate gave the fol- 
lowing constants (modulus in GPa) [9]: 
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 (3.2) 

These results confirm that the design parameters pro- 
vided by the manufacturer are generally largely overes- 
timated or underestimated.  

The obtained frequencies are shown in Table 1. We 
denote this time that correlation between experiment and 
calculation is satisfactory; the residual errors indicate that 
they are probably due to differences in the dimensions 
(width and thickness) and densities of the two plates.  

It is therefore proposed, in what follows, to identify 
elastic constants of this plate by updating the experimental 
frequencies [8] and simulated by ABAQUS® 3D FE using 
a proposed multi-objective optimization procedure re- 
taining the data (Equation (7)) as initial values and we 
take as variations on the parameters ±20% around their 
mean values.  

4. Identification by Multi-Objective  
Optimization Procedure 

Figure 3 presents the proposed methodology for the 
identification of mechanical properties of the composite 
plate (Figure 1).  

Its three main steps are detailed in the following. 

4.1. Sensitivity Analyze 

Sensitivity analysis studies the “sensitivity” of the outputs 
of a system to changes in the parameters, inputs or initial 
conditions which are often poorly known. Its goal is to 
show the effects of changing parameter values and their 
interactive effects and then eliminate those that are not 
significant on the output.  

Sensitivity analysis is based on the use of Numerical 
Design of Experimental (NDOE) which enables design- 
ers to determine simultaneously the individual and inter- 
active effects of many factors that could affect the output 
results in any design. NDOE also provides a full insight of 
interaction between design el ents; therefore, it helps  em  
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Initial estimate of 
parameters 

Calculation of solution Snum of the 
numerical model 

Sensitivity analysis 

Metamodeling 

Multi-objective Optimization 
(Standard error: ε(Snum, Sexp)) 

Experimental data Sexp 
(Reference for comparison)  

End of identification 
Parameters identified x 

 

Figure 3. Proposed procedure of identification. 
 
turn any standard design into a robust one. 

4.2. Metmodeling by New Response Surface 
Method Procedure 

The metamodeling is based on the use of NRSMP which 
is based on the use of numerical design of experiments. 
The aim is to represent each frequency by a polynomial 
which will be easier to use in the optimization phase.  

The linear models used here are second-order regres- 
sion models (4.1). A RSM for k input variables can be 
stated as:  
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(4.1) 

This model requires at least 2n + 1 + n(n − 1)/2 simu- 
lations to be completely defined. Where y is the response 
variable, x are the input variables, and the β’s are the 

coefficients to be estimated.  
Equation (4.1) may be written in matrix notation as: 
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In general, Y is an n × 1 vector of the observations, X is 
an n × p the matrix of the levels of the independent vari- 
ables, β is a p × 1 vector of the regression coefficients, 
and ε is an n × 1 vector of random errors. 
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Use of only one configuration (a metamodel) which 
considers the real response appears in sufficient owing to 
the fact that it can be statistically far from the most precise 
polynomial which can be considered as the exact response. 
To surmount this disadvantage, we propose a method 
which aims to obtain the met model (polynomial) nearest 
to the reference. The components stages of the method 
suggested for obtaining the adequate met model are 
summarized as follows:  

1) Number of design parameters (n);  
2) Complete factorial design; 
3) Random generation of “k” polynomials; 
4) Statistical and frequency criteria satisfied or go to 

step 2;  
5) Calculation of the polynomial average Pm: where 

nrest is the number of the noted remaining polynomials 
Prest: 

1
restn

resti
m

rest

P
P

n
                (4.3) 

Note: The designer generates randomly several poly- 
nomials of the function to estimate. Each polynomial 
obtained is evaluated statistically (MSE criterion for 
example). The set of polynomials that did not meet the 
criteria for evaluation constitute: Prest.  

6) Generation of several samples of size “p” by Latin 
hypercube method (LHC);  

7) Acceptable error of prediction εm or go to step 2. 
The statistical criteria of selection are: 

 The error MSE which is defined by : 
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where exact  is the standard deviation of exact response 
yi. 

In practice, to satisfy of a process of the 6 sigma crite- 
rion an error MSE should not exceed value 0.09028 [10].  
 The coefficient of determination R2 is defined by:  
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where i  is the exact response;  is the estimated 
response and 

y ˆiy

iy  is the mean value of the exact response. 
This coefficient must be as close as possible to value 1 (0 
< R2 <1) [6,7].  

4.3. Multi-Objective Particle Swarm  
Optimization  

In mechanical engineering, the optimization problems are 
often multi-objective. The cost functions are complex 
(multimodal, non-convex, etc.) and there are generally 

conflicts between them. Therefore, it is necessary to 
choose a multi-objective optimization strategy which can 
lead to the best alternatives among several.  

Generally, a multi-objective optimization problem is 
expressed by:  
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where      1 2, , , nf x f x f x
T

 are cost functions,  

 1 2, , , n x x x x 
nS R

 is the vector of n optimization pa- 
rameters,  represent the set of realizable solutions 
and  F x  is the vector of the functions to be optimized.  

In this study, we exploit the multi-objective Particle 
Swarm Optimization algorithm (PSO). This is justified by 
several reasons. In fact, Particle swarm optimization (PSO) 
is a stochastic optimization method often used to solve 
complex engineering where the solution may be repre- 
sented as a hyper dimensional vector (such as 3D space). 
The method’s strength lies in its simplicity, being easy to 
code and requiring few algorithm parameters to define 
convergence behavior.  

Similar to evolutionary optimization methods, PSO is a 
derivative-free, population-based global search algorithm. 
PSO uses a population of solutions, called particles, which 
fly through the search space with directed velocity vectors 
to find better solutions. These velocity vectors have sto- 
chastic components and are dynamically adjusted based 
on historical and inter-particle information [11,12].  

5. Identification of Elastic Behavior of the 
Composite Plate 

The proposed identification procedure, which based of 
multi-objective optimization, is applied here to this com- 
posite plate described above. Multi-objective problem to 
be solved is in eight cost functions (5.1).  
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  (5.1) 

5.1. Sensitivity Analysis 

A 2k factorial design of experiments was used. The use of 
nine design parameters (factors), each at two levels lead- 
ing to a total of 29 = 512 numerical experiments to be 
performed. These parameters vary in fields of ±20% 
around their mean values given by (3.2). To make this 
analysis, an ANOVA was performed for a significance 
level of 5%, that is to say, for a confidence level of 95%.  

There is a significant variation of E1, which is the most 
influential factor on the behavior of the composite plate 
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and a slight variation on each of the parameters E2, E3, G12, 
G23, v12, v13 and v23 (Figure 4). The transverse parameters 
E3, G13, G23, v13 and v23 have no significant effect. Three 
in-plane parameters, E1, E2, G12, are most influential, 
especially E1. From this analysis we find that the E1, E2, 
G12, v12 factors.  

This problem replaces the multi-objective problem of 
Equation (5.1). 

The application of multi-objective optimization pro- 
cedure, with coupling PSO algorithm with metamodels 
(cost functions) of Table 2, led to the optimal values of 
design parameters that are given (after rounding) in Ta- 
bles 3 and 4.  

5.2. Metamodeling by Response Surface Method Table 3 shows the values of design parameters pro- 
vided by the manufacturer and those given by optimiza- 
tion. These values are compared each time by the mean 
values of design parameters. The variations of parame- 
ters (Table 3) show that the manufacturer has underesti- 
mated the parameters E2, E3, G12, v12, v13 and v23 and 
overestimated parameters E2 and G23.  

In this phase, we consider the results of sensitivity analy- 
sis above. The new problem is thus to four design pa- 
rameters (significant parameters), each at two levels 
leading to a total of 24 = 16 numerical experiments to be 
performed. These parameters vary in fields of ±20% 
around their mean values given by (3.2).  

Table 4 presents the eight frequencies from this opti- 
mization and residual errors (both rounded). Note that 
these errors are very satisfactory. 

The non significant factors are frozen in their mean 
values. 

The metamodels for each of the frequencies of the first 
eight vibration modes of free composite plate are given 
by the equations in Table 2.  6. Conclusions 

Each polynomial is statistically validated by a factor of 
determination R², which should be as close as possible to 
1, and an MSE (Mean Square Error), which must be less 
than 0.09028 [10].  

The updating-based identification of the three-dimen- 
sional orthotropic elastic behavior of a thin carbon fiber 
reinforced plastic multilayer composite plate is pre- 
sented.  

Note that the metamodels (polynomials) of Table 2 
meet all these criteria. This allows us to use these poly- 
nomials in the optimization phase.  

This consists in identifying the engineering constants 
that minimize the relative deviations between the first 
eight experimental and three-dimensional finite element 
frequencies of the vibrating free plate.  

5.3. Multi-Objective Optimization Procedure For this purpose, a new multi-objective optimization 
procedure is applied; it exploits a Particle Swarm Opti- 
mization algorithm that is coupled to a meta-modeling by 
new response surfaces method procedure; the latter is 
based on numerical design experiments. The conducted 
sensitivity analyses indicate that the four engineering 
constants of two-dimensional elasticity are the most in- 
fluent.   

The multi-objective optimization is achieved by coupling 
the PSO algorithm to the metamodel. Taking into ac-  
count of the results of sensitivity analysis, the new multi- 
objective problem to be solved is:   
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The proposed identification procedure confirms that 

the design parameters provided by manufacturer are gen-  
 

Table 2. Estimated frequencies. 

Freq. Polynomials R2 MSE (10−7) 

f1 1 1 2 3
ˆ 234,5325 17,5412 1.1412 4.5950 0.5600 4f x x x     x  0.9995 4.22 × 10−4 

f2 2 1 2 3
ˆ 318,3456 28,7331 1.2069 2.0594 0.0631 4f x x x     x

4

 0.9999 5.28 × 10−5 

f3 3 1 2 3
ˆ 567,9181 44,3219 3.3556 8.5244 0.4769f x x x     x

4

 0.9997 2.56 × 10−4 

f4 4 1 2 3
ˆ 593,4081 47,9044 8.4056 3.1606 2.1481f x x x     x

4

 0.9997 3.26 × 10−4 

f5 5 1 2 3
ˆ 739,2506 58,8194 5.3531 9.1206 0.7331f x x x     x

4

 0.9998 2.07 × 10−4 

f6 6 1 2 3
ˆ 909,8025 80,4700 6.6500 3.2987 3.1963f x x x     x

4

 0.9998 1.75 × 10−4 

f7 7 1 2 3
ˆ 194.3 86.3 8.3 13 0.6f x x x     x

4

 0.9998 1.44 × 10−4 

f8 8 1 2 3
ˆ 1194.6 95.2 6.6 15.1 0.5f x x x     x  0.9997 2.58 × 10−4 



Numerical-Experimental Updating Identification of Elastic Behavior of a Composite  
Plate Using New Multi-Objective Optimization Procedure 

19

    
(a)                                                      (b) 

    
(c)                                                      (d) 

    
(e)                                                      (f) 

    
(g)                                                      (h) 

Figure 4. Effects of design parameters on eight eigenfrequencies. (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; 
(f) Mode 6; (g) Mode 7; (h) Mode 8. 
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Table 3. Optimal values and variations of design parameters. 

Parameters E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ν13 ν23 

Mean Values (M.M) (3.2)  129.8 10.9 10.9 5.7 4.4 3.2 0.37 0.37 0.55 

Manufacturer (M) 160 8.6 8.6 4.85 4.85 3.2 0.32 0.32 0.40 

Variation M/M.M (%) 23.27 −21.10 −21.10 −14.91 10.28 0 −13.51 −13.51 −6.27 

After Optimization (A.O)  120.1 11.6 9.6 5.9 4.3 3.8 0.37 0.44 0.59 

Variation A.O/M.M (%) −7.45 6.42 −11.93 3.50 −2.27 18.75 0 18.92 7.27 

 
Table 4. Frequencies (Hz) after optimization and residual errors (%). 

Modes 1 2 3 4 5 6 7 8 

Exp. Freq. [8] 229.3 310.9 554.6 581 724.7 889.1 1068.4 1163.7 

Opt. Freq. 229.87 310.36 555.99 580.37 723.14 887.54 1071.2 1168.2 

Error (%) 0.25 0.17 0.25 0.11 0.21 0.17 0.26 0.39 

 
erally largely overestimated or underestimated. Therefore, 
before using mechanical structures like composite plates, 
it makes sense to correctly identify their mechanical 
properties to avoid any further risks, hence the interest of 
our proposed identification procedure.  
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