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Abstract 
This paper presents the application of recurrence plots (RPs) and recurrence 
quantification analysis (RQA) in the diagnostics of various faults in a 
gear-train system. For this study, multiple test gears with different health con-
ditions (such as a healthy gear, and defective gears with a root crack on one 
tooth, multiple cracks on five teeth and missing tooth) are studied. The vibra-
tion data of a gear-train is measured by a triaxial accelerometer installed on 
the test. Two different support vector machine classifiers are trained and 
compared. Mutual information is used to rank the extracted features in order 
to select an optimal subset that provides as much information as possible 
about the intrinsic dynamics of the system. Results indicate that our approach 
is quite efficient in diagnosing the status of the health of the gear system and 
characterizing the dynamic behavior. 
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1. Introduction 

Machine condition monitoring techniques have generated considerable recent 
research interest due to their important role in preventing consequential 
damages before they develop into a catastrophic failure. Furthermore, condition 
monitoring techniques increase lifespans of systems and decrease maintenance 
costs by shifting maintenance from time-based to event-driven procedures, 
which offer significant economic benefits. Hence, it is important to develop 
efficient algorithms and techniques to monitor the status of machines and 
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identify abnormalities. 
A major current focus in fault diagnostics of gears is vibration and acoustic 

methods due to the valuable information they contain about the condition of 
rotating machines such as gears [1] [2] [3] [4]. Yet, gear fault diagnostics is still a 
challenging task because of the highly nonlinear characteristics of faults and its 
complex nonstationary dynamics [5] [6] [7] [8]. Multi-periodic, quasi-periodic 
and chaotic responses, as well as bifurcation and limit cycles are some 
phenomena that can be observed in nonlinear dynamic systems and are reported 
in industrial machinery [9] [10] [11]. This motivates the use of recurrence plots 
(RPs) and recurrence quantification analysis (RQA) because of their advantages 
in dealing with nonlinear dynamical responses and non-stationary data. RPs and 
RQA have received much attention in recent years in miscellaneous fields of 
science. In this paper, we introduce the application of RPs and RQA in 
gear-train transmission systems. The RP is a two-dimensional visualization 
technique to investigate high-dimensional dynamical systems. It identifies the 
times when the state space trajectory of the dynamical system visits roughly the 
same area in the state space. On the other hand, RQA offers a more objective 
and quantitative method for the investigation of dynamical systems. Thus, RPs 
and RQA combine and employ higher dimensional phase space trajectories, i.e., 
all available data (vibrational acceleration in three directions), in which RPs 
provide a visualization and RQA quantifies these plots and measures their 
complexity. In addition, RPs and RQA are a modern tool for nonlinear data 
analysis, which enables us to investigate the various responses of the system (i.e., 
periodic, quasi periodic and chaotic) and provides valuable information about 
the dynamics of the system. 

Various techniques have been developed to study gear fault detection and 
diagnostics [12]-[19] and can be time domain, frequency domain, or 
time-frequency domain methods. However, these methods do not always 
guarantee stable classification and/or lack generalizability for systems with 
complex nonlinear responses. For example, time domain techniques such as 
Time Synchronous Averaging (TSA) are inefficient in different gear faults, 
especially in the case of multiple simultaneous faults in different gears or in the 
early phase of faults [20] [21]. In addition, the TSA technique can be 
time-consuming and is often computationally expensive [22]. Although 
sideband frequencies analysis (in frequency domain techniques) detects faults in 
the gearbox, it falls short of distinguishing gear faults, as they may be located in 
other components of the gearbox [23] [24]. 

In previous work [25], Recurrence Plots were effectively applied to detect 
healthy and faulty gear systems. However, the the problem of multiple fault 
detection was not addressed. The Extended Phase Space Topology (EPST) based 
on characterizing the phase space topology, developed in our research laboratory, 
was applied on the same system used in this study [26] [27] [28] [29]. The results 
indicate that EPST is efficient in diagnosing the status of the health of the gear 
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system and characterizing the dynamic behavior. However, the EPST features 
are based on orthogonal functions coefficients that are not well understood and 
it is a challenging task to track back these coefficients in order to find their 
physical meaning in the dynamical system. 

The present work investigated vibration data of a helicopter gearbox mock-up 
system (5 m long). For this study, multiple test gears with different health 
conditions such as healthy gears (H) and defective gears with root crack on one 
tooth (SCD), multiple cracks on five teeth (MCD) and missing tooth (MTD) are 
studied. The vibrational signals are recorded using a triaxial accelerometer 
installed on the test gearbox. 

The rest of this paper is organized as follows. In Section 2, the mathematical 
details of the RPs and RQA are introduced. Section 3 represents the 
experimental setup of the gear-train and measurement of data. Section 4 
discusses the analysis process of the RPs and RQA. In Section 5, different fault 
classification models are compared and the feature ranking technique is 
explained. Finally, Section 6 summarizes and concludes the paper. 

2. Recurrence Plots and Recurrence Quantification Analysis  

The recurrence plot analysis for time series is based on the analysis of a matrix R 
whose elements are defined as: 

1, ,
    , 1, , ,

0, ,
i j

ij
i j

i j N
≈= = ≠

R 

Φ Φ
Φ Φ

                 
(1) 

where ( )1 2, , ,i i i miφ φ φ= Φ  is a m-dimensional state vector, N is the length of 
the time series, i and j are the row and column indices of the matrix respectively, 
and i j≈Φ Φ  means equality up to an error  . In this paper, the vibrational 
acceleration of the test gearbox in x, y and z directions is considered as the state 
vector as follows:  

( ) ( ) ( )( ), ,i x y za i a i a i=Φ
                    

(2) 

The elements of the matrix R are thus obtained by comparing the state of the 
system at time i and j with a threshold precision  . Thus, formally, one has:  

( ) ,ij i jθ= − −R  Φ Φ
                      

(3) 

with .  being the Euclidian norm (L2-norm) and ( )yθ  is the heaviside 
function defined as:  

( ) ( )1  for 0  and  0  for 0y y y yθ θ= > = <  

The threshold precision   is a crucial parameter in RP analysis. The 5% 
maximal phase space diameter rule of thumb is used to select the optimal 
threshold. 

Once the R matrix is constructed, the RP graph is obtained by plotting the 

ijR  points in the i and j plane with different colors. By definition, RP graphs are 
always symmetric ( ij jiR R= ) and always have a central diagonal. 
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In order to go beyond the qualitative impression given by RPs, complexity 
measures have been developed that quantify the structures of RPs and are called 
recurrence quantification analysis (RQA) [30]. In this paper, the following six 
RQA parameters were used to quantify the RP of the system under various fault 
conditions. 
• Recurrence rate (RR) 

The recurrence rate is the simplest RQA parameter and measures the density 
of recurrence points in a recurrence plot. In other words, RR indicates the 
percentage of the plot occupied by points.  

( ),2
, 1

1 N

i j
i j

RR
N =

= ∑R 
                       

(4) 

• Determinism (DET) 
The determinism is the percentage of recurrence points that form diagonal 

lines in the recurrence plot of minimal length min .  

( )
( )

min

1

N

N

P
DET

P
=

=

=
∑
∑
 



 

 

                      
(5) 

where ( )P   is the frequency distribution of the lengths   of the diagonal 
lines. In this work, min 2=  is used. This measure is critical in determining the 
nature of the process (deterministic vs. stochastic). Recurrence plots of a 
deterministic process usually contain more and longer diagonal lines compared 
to a stochastic process. 
• Laminarity (LAM) 

In the same way, the amount of recurrence points forming vertical lines can 
be quantified by laminarity.  

( )
( )

min

1

N
v v

N
v

vP v
LAM

vP v
=

=

=
∑
∑                       

(6) 

where ( )P v  is the frequency distribution of the lengths v of the vertical lines, 
which have at least a length of minv . In this work, min 2v =  is used. 
• Longest Diagonal Line (LMAX) 

LMAX is the length of the longest diagonal line. 

{ }( )max ; 1, ,iLMAX l i N= = 

                  
(7) 

• Trapping Time (TT) 
The trapping time measures the average length of the vertical lines. 

( )
( )

min

min

N
v v
N
v v

vP v
TT

P v
=

=

=
∑
∑                        

(8) 

• Entropy (ENTR) 
The probability that a diagonal line has exactly length   can be estimated 

with ( ) ( )
( )

min

N

P
p

P
=

=
∑

 







. ENTR is the Shannon entropy of this probability, 
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which reflects the complexity of the RP in respect to the diagonal lines.  

( ) ( )
min

ln
N

ENTR p p
=

= − ∑
 

 

                   
(9) 

Two RQA parameters were excluded from the study. The divergence 
parameter which is the inverse of the longest diagonal line 1DIV LMAX=  was 
not included in the study to avoid any redundancy because of it is direct relation 
with LMAX parameter which is included. Also, trend parameter was not 
included because of the constant operating speed condition we have in this study 
where trend has valuable information about the stationarity of the system and 
that is already considered. 

3. Experimental Setup and Data Collection 

The current work involved investigating a mock-up of a helicopter gear box 
system. All of the test data was acquired by collaboration with the United 
Technologies Research Center (UTRC). The gear-train experimental setup 
(shown in Figure 1) is a large scale machine (5 m long) consisting of a motor, 
dynamometer and four gearboxes, where each gearbox contains four spur gears. 
The schematic of the gear-train illustrating the four gear boxes and their 
components is shown in Figure 2. For this study, multiple test gears with 
different health conditions were studied. The study was implemented by 
replacing the gear located in gearbox number 3 and shown in green color in 
Figure 2 with different test gears while the remaining setup components were 
kept unchanged. The test gears with 23 teeth that were used in the experiment 
include one healthy gear (H) and three defective gears with root crack on one 
tooth (SCD), multiple cracks on five teeth (MCD) and missing tooth (MTD). 
Figure 3 illustrates the various gear cracks: a) shows the single root crack of 2 
mm, b) shows the locations of the five root cracks on teeth numbers 1, 6, 10, 15, 
and 19, and c) shows the sizes of the five root cracks ranging from 0.5 mm to 2.5 
mm. Figure 4 shows the test gear with a missing tooth condition that is used in 
this study. 

The vibrational signals were recorded using a triaxial accelerometer installed 
on gearbox number 3. The vibrational data was measured at the sampling 

 

 
Figure 1. Gear-train experimental setup. 
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Figure 2. Gear-train schematic. 

 

 

Figure 3. Gear defects: (a) crack on one tooth; (b) crack on 5 teeth; (c) crack sizes on 5 teeth. 
 

 

Figure 4. Test gear with a missing tooth. 
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frequency of 102,400 Hz. The rotational speeds of shafts A, C, and B were 
measured using two encoders and a tachometer. Two encoders were installed at 
shaft “A” (input shaft) and shaft “C” (output shaft) to measure their rotational 
speeds with a 360 pulse/rev resolution. The tachometer on shaft “B” was used to 
measure the shaft rotational speed at a rate of 1 pulse/rev. Due to the gear teeth 
ratio, the test gear shaft operates at the same speed as shaft “B”. In this study, the 
motor was operating at a rotational speed of 900 rpm while the test gear shaft 
was running at 94 rpm for the different gear conditions. The vibrational signals 
of gearbox number 3 were recorded for 64 seconds for healthy, single crack 
tooth and multiple crack teeth conditions, and for 3.2 seconds for the missing 
tooth condition. Samples of the measured vibration for different gear conditions 
in the three directions are shown in Figure 5. 

4. Recurrence Analysis and Discussion 

An overview of the fault detection method used in this paper is summarized in 
Figure 6 and is described as follows. Vibration data were recorded using a 
triaxial accelometer in three space directions for different gear conditions such 
as healthy, single crack defect, multiple crack defect and missing tooth defect. 
Vibration data was divided into multiple segments in order to analyze it. Since 
the rotational speed of gears typically varies slightly during normal operation, 
the tachometer signal was used to divide the vibrational data into segments of 
revolutions. The tachometer provides the phase information of the shaft in the 
form of pulses synchronized to the rotation of the test gear. An example 
illustrates the segmentation process for the healthy gear data shown in Figure 7.  

 

 
Figure 5. Samples of the gear vibration data for each configuration and direction. 
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Figure 6. The process of the diagnostics method. 

 

 
Figure 7. Segmentation preprocess (top plot: tachometer signal; bottom plot: vibrational 
signal for healthy gear condition). 
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The red vertical lines mark the locations of the pulses in the tachometer signal 
and their corresponding locations in the acceleration signal. 

The segment ( )kx i , for 1,2, ,i N=   is the vibration data of revolution k of 
a total number of K revolutions. The total number of data segments that were 
obtained is 341 segments including 98 data segments each for healthy, single 
crack defect, and multiple crack defect conditions while 47 data segments were 
obtained for the missing tooth defect condition. 

In order to obtain the recurrence matrix and plots, we need to reconstruct the 
state space from the acceleration time series. As discussed earlier, the vibrational 
acceleration of the test gearbox in x, y and z directions is considered as the state 
vector as indicated in Equation (2). By application of the method explained in 
section 2, the RP of the state vector for each data segmentation is constructed. 
Samples of the RPs of the same state vector length (6000 points) for different 
gear conditions are presented in Figure 8. This visualization represents points in 
time series that are visited more than once. 

By inspecting the RPs, the following observations are made. First, diagonal 
segments of varied lengths that are parallel to the main diagonal (line of identity 
LOI) are the main pattern of the plots. A diagonal line occurs when the 
trajectory visits the same region of the phase space at different times. This is also 
true for diagonal segments that are orthogonal to the LOI but with reversed time 
sequence. These orthogonal segments appear in the multiple crack (state points 
within the range of 5000 - 6000) and missing tooth (randomly distributed) gear 
conditions. Second, small vertical segments are observed in some recurrence 
plots, i.e., the gear with the missing tooth condition. This indicates that the state 
at that location changes slowly or does not change. Third, white bands with 
different widths appear in the RPs at different locations i.e., in the missing tooth 
condition (state points within the range of 4500 - 5000). These white bands 
appear to form a rectangle in the center of the healthy RP and an upper right 
edge of a rectangle in the single crack RP, which usually develops when some 
states are rare to occur. Finally, the missing tooth condition is easily 
distinguished from the other gear conditions. It has a higher density of points 
compared to the other gear conditions. Other than that, the plots consist of 
complicated patterns which are hard to interpret. Hence, quantitative measures 
are necessary to obtain a more objective way to investigate the plots. 

Figure 9 presents a comparison between the computed RQA parameters for 
all four gear conditions. The calculated RQA for the four cases are first 
normalized to make the comparison coherent. A measure with a zero value 
implies that the quantity is close to the average of the corresponding quantities 
for the four gear conditions. A positive measure indicates a magnitude higher 
than the average and vice versa for a negative measure. It is evident from the 
results of the analysis that RQA parameters can easily distinguish the differences 
and detect the alterations in the signal, even though the difference of the 
recurrence plots for the four cases is challenging to detect by the naked eye. For 
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Figure 8. Recurrence plots for different gear conditions. (a) Healthy gear; (b) Gear with a single crack defect; (c) Gear with mul-
tiple crack defect; (d) Gear with a missing tooth. 
 

 
Figure 9. Recurrence quantification analysis for different gear conditions. 

 

DOI: 10.4236/jsea.2018.115012 190 Journal of Software Engineering and Applications 
 

https://doi.org/10.4236/jsea.2018.115012


T. H. Mohamad et al. 
 

instance, the following can be observed. The healthy gear condition has positive 
RQA parameters relative to other gear conditions, which indicates higher RQA 
parameters than the average of all four gear conditions. On the other hand, the 
multiple crack condition has negative RQA parameters implying lower RQA 
parameters than average. A closer inspection of the figure reveals interesting 
characteristics of the individual RQA parameters. First, RR for the missing tooth 
condition has the highest magnitude compared to other gear conditions. This 
supports the results discussed previously when the RP was analyzed (missing 
tooth RP is the most dense). Second, inspecting the trapping time and the 
entropy leads to the same conclusion; the lowest values of the TT and ENTR 
correspond to a gear system with multiple cracks and the highest values 
corresponds to a healthy gear system. 

5. Fault Classification and SVM 

In the previous section, we have illustrated how the condition of the gear system 
can be detected using the RQA parameters. We were able to measure and 
represent these influences by quantitative criteria. In contrast to this, the 
diagnostics procedure is the inverse, where the system status will be predicted 
using its dynamic response. In order to do that, support vector machine will be 
used as a classifier. 

Support vector machine (SVM) is a supervised learning model used for 
classification and regression. This classification technique exploits training data 
in order to define a hyperplane that maximizes the separation distance between 
different classes in the feature space [31]. Support vectors are the data points 
that lie closest to the hyperplane or the decision surface. The optimum 
hyperplane can be determined by solving the following optimization problem.  

( ) ( )
1 1 1

1

1max ,
2

subject to 0 and 0

N N N

i i j i j i j
i i j

N

i i i
i

Q K

C

α α α α γ γ

α α γ

= = =

=

= −

≤ ≤ =

∑ ∑∑

∑

x x

           

(10) 

where iα  is the Lagrangian multiplier, x and γ are the training feature set and 
the desired output set, respectively. N is number of training samples and 

( ),i jK x x  is the kernel function which maps the input features to a higher 
dimension space in order to change the features representation and to capture 
nonlinear patterns. For this study, two kernel functions are investigated: linear 
kernel, which can be expressed as:  

( ) T,i j i jK =x x x x  

and radial basis (Gaussian) kernel, defined as the following:  

( ) ( )2
, expi j i jK ζ= − −x x x x  

where 0ζ >  is the kernel scale which determines the width of the kernel 
function. A small ζ value defines a kernel function with a wide width. Finally C is 
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the box constraint that controls the values of the Lagrangian multipliers. A 
higher value indicates a higher missclassification cost, leading to a more strict 
separation. 

After solving the optimization problem and obtaining the optimal parameters 

iα , a new test example can be classified using:  

( ) ( ),i i i
i

g K b
σ
α γ

∈

= +∑x x x
                   

(11) 

where σ denotes the set of indices of the support vectors. Note that only the 
supports vectors play a role in making predictions for new data points. This 
stems from the fact that 0iα =  for data points that are not corresponding to 
support vectors. The bias b in Equation (11) can be calculated as follows:  

( )1 ,n m m n m
n m

b K
N ν σν

γ α γ
∈ ∈

= −∑ ∑ x x
                

(12) 

where ν denotes the set of indices of the points that have 0 n Cα≤ ≤ . 
Originally, SVM was formulated for binary classification problems [32]. SVM 

applicability was then expanded to multi-class classification problems by performing 
a series of binary classification [33] [34] using various coding schemes such as 
one-versus-all (OVA) and one-versus-one (OVO). In this paper, OVO approach 
was used because of its ability to train quickly [35]. OVO performs ( )1 2k k −  
individual binary classifiers to evaluate all possible pairwise classifiers. When 
testing a new example, each classifier will contribute with one vote and the class 
with the most votes will be assigned as the predicted class. 

The RQA parameters, which represent the feature vector, are used as input to 
the SVM classifier. For each set of data, six parameters are used in the feature set 
for training. Various SVMs were trained using 60% of the data samples (202 
cases) and a cross validation algorithm with five folds. 40% of the data samples 
(139 cases) were used for testing the classifier. To find an optimal hyperplane, an 
optimization problem needs to be solved, as mentioned above. However, 
another optimization problem is encountered in tuning some of the SVM 
parameters such as box constraint and kernel scale. To solve this problem, the 
k-fold cross validation loss was minimized by searching on a given range of each 
optimized parameter. Box constraint was optimized for the two SVMs (linear 
and Gaussian). Meanwhile, kernel scale parameter was optimized for Gaussian 
SVMs. 

The fault classification process is divided into three parts: 1) Anomaly 
detection 2) Defect classification 3) The effect of ranked RQA parameters. The 
detailed description of the above mentioned procedures is provided in the 
sequel. 

5.1. Anomaly Detection 

Anomaly detection is a technique used to identify abnormal classes or irregular 
behavior from what is defined as a normal standard. This has a lot of practical 
advantages in system condition monitoring applications such as the ability to 
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distinguish defective classes from healthy. In this part of the study, two-class 
(normal or fault) detection was performed where all gear defects were grouped 
in one class (D) and the healthy gear condition was used to define the second 
class (H). Two SVMs were optimized (Linear and Gaussian) and trained using 
all RQA parameters. The effectiveness of the classification models for the 
training data is presented by means of confusion matrix plots. The test 
confusion matrices of the linear and Gaussian SVMs are shown in Table 1 and 
Table 2. 

In the confusion matrix, the diagonal cells show the number and percentage 
of correct classifications by the trained classifier, while the off diagonal cells 
represent the misclassified predictions. For example, in Table 1, the linear SVM 
correctly predicted 38 cases as a healthy gear condition and 97 cases as a 
defective condition. It also misclassified 4 cases out of the 139 total test samples. 
On the other hand, the trained Gaussian SVM was slightly superior compared to 
the linear SVM and misclassified 3 cases as defective conditions. 

Analyzing the confusion matrix is an important step in building a 
classification model. It gives strong clues as to where the classification model is 
going wrong. However, the number of misclassifications is not adequate to 
evaluate the performance of the SVM classifier. Taking only one performance 
metric is sometimes misleading. For example, a classifier with a relatively low 
misclassification rate might predict some of the classes fairly accurately but 
performs poorly for other classes, which might be critical to a certain application. 
Thus, to describe the performance of the classifier for the fault detection 
application, some metric rates are calculated from the confusion matrix such as 
precision (P), recall (R) and overall accuracy. 

For each class, precision measures the rate of correct predictions out of all  
 

Table 1. Confusion matrix of the linear SVM classifier for anomaly detection. 

 
 

Table 2. Confusion matrix of the Gaussian SVM classifier for anomaly detection. 
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predictions that were made by the classifier. In other words, when the classifier 
predicts a class, precision indicates how often the prediction is correct. Recall 
measures the correctly predicted rate of the actual samples for a given class. If 
the classifier has high recall and low precision for a certain class, this means that 
the classifier is biased to that class. A high precision and low recall classifier for a 
given class indicates that the classifier is too conservative. When the classifier 
predicts that given class, it is usually correct but it is highly unlikely to predict it 
because of its low recall rate. Ideally, a classifier with high recall and high 
precision is what we seek. Finally, the overall accuracy of the classier is the rate 
of the correct prediction. 

For a binary confusion matrix, healthy condition is designated as negative 
class and defective condition is designated as positive class. True positive (TP) is 
correctly classified as a defective condition, false positive (FP) is incorrectly 
classified as a defective condition. In contrast, true negative (TN) is correctly 
classified as healthy condition and false negative (FN) is incorrectly classified as 
healthy condition. For example in the confusion matrix (Table 1) 38TN = , 

97TP = , 2FN = , and 2FP = . 
The generalized formulas of false negative iFN , false positive iFP , true 

negative iTN , true positive iTP , precision iP , recall iR  and overall accuracy 
for a given class i are presented below. Note that ijM  is the element ( ),i j  in 
the confusion matrix. This generalization is presented here so it can be applied 
later for multiple class confusion matrix problems. 

( )1
i ji

j j i
FN M

= ≠

= ∑
                       

(13) 

( )1
i ij

j j i
FP M

= ≠

= ∑
                        

(14) 

( ) ( )1 1
i jk

j j i k k i
TN M

= ≠ = ≠

= ∑ ∑
                     

(15) 

i iiTP M=                           (16) 

i
i

i i

TPR
TP FN

=
+                         

(17) 

i
i

i i

TPP
TP FP

=
+                         (18) 

allOverall Accuracy
Total test samples

TP
=

              
(19) 

where all 1 jjTP TP
=

= ∑  is the total number of true positives and represents the 
summation of the confusion matrix diagonal. Now, by inspecting the confusion 
matrices in Table 1 and Table 2, the recall and precision are calculated for each 
gear condition and the overall accuracy is calculated for each classifier. For 
linear SVM, the healthy condition has 95.0% for both recall and precision 
whereas the defective condition has 98.0% for both recall and precision. The 
overall accuracy of the linear SVM classifier is 97.1%. In contrast, Gaussian SVM 
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has better precision in predicting the healthy condition (97.4%) and a better 
recall rate in predicting the defective condition (99.0%). The overall accuracy of 
the Gaussian SVM is 97.8%. 

This result is remarkable for several reasons. First, employing RQA 
parameters as SVM features can provide valuable information in characterizing 
the dynamics of various gear faults. This helps to discriminate healthy gear 
condition from defective conditions. Second, both SVMs have high recall and 
high precision for each gear condition, which indicates an accurate prediction 
for detecting the health status and identifying any abnormality including the 
three defective gear conditions (SCD, MCD, and MTD). Finally, no a priori 
knowledge of the system was included in the features. This implies that the RQA 
approach can be conveniently applied to diverse dynamical systems in an 
automated process, with minimal need for adaptation and reliance on expert 
knowledge about the system. 

5.2. Defect Classification 

In this subsection, we studied the effectiveness of RQA parameters as features to 
classify different gear conditions including healthy gear and defective gears with 
single crack, multiple crack and missing tooth conditions. Two SVMs (linear 
and Gaussian) were trained as indicated previously by using optimal parameters 
then tested on a new set. 

The test confusion matrices for the linear and Gaussian SVMs are shown in 
Table 3 and Table 4, respectively. Out of 139 test samples, 4 cases were misclassifed, 
which corresponds to 2.9% of all test samples. The misclassified cases are divided 
equally between the healthy and the single crack gear conditions. Moreover, the 
classifier is successful in identifying multiple crack and missing tooth conditions 
with zero misclassifications. Similarly, the Gaussian SVM performed well, with 5 
misclassifications in total, in which 4 healthy cases were incorrectly classified as 
a single crack condition. This corresponds to 2.9% of all samples. In addition, 
one case of the single crack defect was misclassifed as a healthy gear condition. 
Furthermore, multiple crack and missing tooth conditions were correctly 
classified with zero misclassifcations. 

 
Table 3. Confusion matrix of the linear SVM classifier. 
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Table 4. Confusion matrix of the Gaussian SVM classifier. 

 
 

Performance metrics such as recall, precision and overall accuracy were 
calculated for the linear and Gaussian SVMs. First, linear SVM shows a more 
balanced precision/recall trade-off for healthy and single crack defect conditions. 
Meanwhile, Gaussian SVM is more biased to the single crack condition over the 
healthy condition. Second, both linear and Gaussian SVMs have virtually perfect 
recall and precision for multiple crack and missing tooth conditions. Finally, the 
overall accuracies of linear SVM (97.1%) and Gaussian SVM (96.4%) are fairly 
close. The linear SVM is chosen to continue further analysis in the next 
subsection. 

In general, RQA parameters and optimized SVMs seem to achieve significant 
results in identifying various gear conditions in a mock-up of a helicopter 
gearbox. Outstanding performance was achieved with 100% accuracy, 100% 
recall and 100% precision in detecting multiple crack and missing tooth 
conditions. The most challenging problem was distinguishing between healthy 
and single crack defect conditions where RQA parameters were capable of 
capturing the differences. A balanced classifier with 95.0% recall and 95.0% 
precision was achieved. In summary, the classifier is extraordinarily effective in 
predicting all gear conditions using the RQA parameters as features. 

5.3. The Effect of Ranked RQA Parameters 

As previously indicated, different kinds of information were extracted from the 
RPs using the RQA parameters. For each gear condition, some of the RQA 
parameters are more correlated and informative than others. A robust and 
accurate prediction is achieved by extracting an efficient set of features that can 
characterize the system response in a unique way. The feature set should also 
provide as much information as possible about the intrinsic dynamics of the 
system. This motivates ranking and selecting a subset of relevant features to 
maximize the correlation between the extracted features and the predicted 
classes. Furthermore, this aids in understanding the contribution of each ranked 
feature to the classification process and to which gear condition the feature 
information contributes. To do so, mutual information is used as a feature 
ranking technique. This technique was developed in our past work [36] [37] [38] 
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to diagnose rolling bearings with various health conditions. 
The features are ranked based on the mutual information content between the 

feature subset and the gear condition using a greedy search algorithm [39]. The 
feature with the highest mutual information will be assigned to another set. 
Along with that, an evaluation measure (prediction accuracy) that scores the 
different feature subsets is determined. This process will be repeated until the 
whole feature set is covered. The new set that corresponds to the highest mutual 
information is the ranked feature set. The feature subset with the highest 
prediction accuracy is the selected feature subset. 

Figure 10 depicts the mutual information relationship with the ranked feature 
set. As illustrated by the figure, LAM parameter has the highest mutual 
information with the four gear conditions under study, then followed by ENT, 
RR, LMAX, TT and lastly, DET. This important result is summarized in Table 5. 
To test these results, a linear SVM is trained using a subset of the ranked feature 
set. The first subset is the highest ranked feature. Then, in an iterative fashion, a 
new feature will be added from the ranked feature set to form a new subset. For 
clarification, Table 6 lists the feature subset indices and their corresponding 
features. Recall and precision were calculated for each gear condition to examine 
the effect of the new added feature. The overall accuracy and the F1 score are 
calculated for each subset. F1 score is the harmonic mean of recall and precision, 
which compares both measures in one metric and is calculated as follows:  

1
2

F score t t

t t

PR
P R

=
+                       

(20) 

 

 
Figure 10. Ranked features with their corresponding mutual information contribution. 

 
Table 5. Ranked features. 
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Table 6. Ranked feature subsets and their corresponding features. 

 
 

where tR  and tP  denote the overall recall and precision which can be 
calculated by averaging all the individual values of recall and precision. 

Figure 11 presents various performance metrics for each feature subset: a) 
and b) show the change of recall and precision for each gear condition at each 
feature subset. Meanwhile, c) presents the overall accuracy and F1 score for each 
feature subset. A detailed discussion of the effect of adding each of the ranked 
RQA parameters to the feature subset is presented below. 
• The effect of laminarity (LAM) 

Laminarity provides a high correlation to the multiple crack condition with 
high recall and precision rates. Detection of the healthy condition is in an 
acceptable range but it does not give decisive information. Furthermore, 
laminarity’s information content regarding the single crack condition can be 
considered unreliable. It has low precision, which makes the classifier biased to 
that condition. Finally, laminarity does not help in detecting the missing tooth 
condition because of its poor recall rate, which makes the classifier too 
conservative to make any missing tooth predictions. Even though the overall 
accuracy is 75.0%, this represents an example of relying only on the accuracy of 
the classifier. The classifier failed in predicting an entire gear condition, i.e., the 
missing tooth condition. Moreover, F1 score can not be determined due to the 
lack of the precision metric for the missing tooth condition (no prediction was 
made). 
• The effect of entropy (ENT) 

Entropy adds an evident value for detecting the missing tooth condition. For 
example, 100.0% precision and 78.0% recall was achieved for the missing tooth 
condition. Also, entropy highly contributes to the prediction accuracy of the 
single crack condition by increasing the precision. This leads to a reduction in 
the classifier’s bias toward the single crack condition. Adding the entropy feature 
has enhanced the classifier’s ability to distinguish both the healthy condition and 
the multiple crack condition. The quality of detection has improved due to the 
information relevance contributed by the entropy with 92.0% overall accuracy 
and 92.0% F1 score. 
• The effect of recurrence rate (RR) 

The recurrence rate’s effect is significant due to a notable improvement in 
detecting the multiple crack and missing tooth conditions. The quality of  
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(a)                                                          (b) 

 
(c) 

Figure 11. Performance metrics for ranked feature subsets. (a) Recall for each gear condition; (b) Precision for each gear condi-
tion; (c) Accuracy and F1 score. 
 

classification of the multiple crack and the missing tooth conditions is virtually 
perfect. It can be seen that the recall of the healthy condition decreased while the 
precision increased. This is reflected in the improvement in detection of the 
single crack condition. 
• The effect of the longest diagonal line (LMAX) 

No change is noticed on the performance metrics by adding the LMAX 
parameter. However, changing the order and trying different RQA parameters 
affects the performance negatively. This supports the order of features that was 
determined by the mutual information ranking technique. Additionally, features 
work together in a nonlinear fashion, where a certain feature might not give 
enough information but combining it with another can add more value. 
• The effect of trapping time (TT) 

Trapping time has a positive effect on the healthy condition that is 
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represented by an increase the recall rate. It also has a positive effect on the 
single crack condition represented by an increase the prediction precision. This 
is reflected in the overall accuracy and the F1 score, which reaches the highest 
values thus far with 97.8% and 98.0%, respectively. 
• The effect of determinism (DET) 

In this particular configuration, determinism gave no information. Moreover, 
the recall and the precision of the healthy and the single crack conditions are 
decreased.  

The optimal subset is subset number 5, which contains all RQA parameters 
except determinism, which adds no additional information for classifying the 
gear conditions in the study. Laminarity provides valuable information about the 
multiple crack condition. The entropy parameter correlates to the missing tooth 
condition. Only by using three features LAM, ENT and RR, the accuracy of 95.6% 
is achieved (0.16% from using all features). 

6. Conclusion 

In this paper, a mock-up of a helicopter gear box system was studied in order to 
detect and identify various gear faults. Four gear conditions including healthy, 
single crack, multiple cracks, and missing tooth were investigated under a 
constant operating condition. The RP method, which is based on visualizing 
high-dimensional dynamical systems using a two-dimensional plot, was applied. 
The RQA parameters were then used as an input into two SVMs. The fault 
classification process was divided into three parts: 1) Anomaly detection, 2) 
Defect classification and 3) The effect of ranked RQA parameters. Results 
indicate that RQA parameters provide valuable information in characterizing 
the dynamics of various gear faults in order to discriminate the healthy gear 
condition from defective conditions. Also, an outstanding performance was 
achieved using RQA parameters to identify various gear conditions with 100% 
accuracy, 100% recall and 100% precision in detecting multiple cracks and missing 
tooth conditions. In general, the classifier is extraordinarily effective in predicting 
all gear conditions using the RQA parameters. Finally, mutual information is used 
to rank the extracted features. An optimal feature subset was determined using 
LAM, ENT, RR, LMAX, and TT. A correlation between the RQA parameters 
used in the study and the different gear conditions was discussed. 
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