
Journal of Software Engineering and Applications, 2017, 10, 483-499
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.106027 June 16, 2017

Toward Quality Attribute Driven Approach to
Software Architectural Design

Payel Bajpayee, Hassan Reza

Department of Computer Science, University of North Dakota, Grand Forks, USA

Abstract
It has been well-documented that the software architecture of any system
plays a critical role in success or failure of software intensive systems. In this
paper, a method has been proposed to evaluate the software architecture’s fit-
ness with respect to key quality attributes for a web-based system. To the end,
a comparative analysis based on quality attributes scenarios and tactics is car-
ried out to select an optimal software architecture that meets the system level
requirements of a web-based system, namely, Student and Course Evaluation
System (SCES). The comparative study was driven by study of quality
attributes and tactics with the selected architectures to select the optimal one.

Keywords
Architectural Tactics, Quality Attributes, Software Architecture, Architectural
Styles

1. Introduction

A useful system can achieve the functional requirements with the analysis and
coding structure but the non-functional qualities such as availability, perfor-
mance, modifiability, security can be accomplished with the proper architecture.
However, design will remain the focus of software engineering. Herb Simon, in
his classic, The Sciences of the Artificial [1], includes a discussion of design in
the context of “artificial” fields, such as software development, saying: design
will remain the center of any development process.

Put in software engineering parlance, the outer environment is the world of
requirements, goals, and wants; the inner environment is the set of software
languages, components, and tools that have been used for building systems.
Software Engineering pushes the barriers for creation of new echelons of infra-
structure on which new developments may be constructed. In Simon’s terms, the

How to cite this paper: Bajpayee, P. and
Reza, H. (2017) Toward Quality Attribute
Driven Approach to Software Architectural
Design. Journal of Software Engineering
and Applications, 10, 483-499.
https://doi.org/10.4236/jsea.2017.106027

Received: November 25, 2016
Accepted: June 13, 2017
Published: June 16, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.106027
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.106027
http://creativecommons.org/licenses/by/4.0/

P. Bajpayee, H. Reza

484

“inner environment” or the “means” is constantly evolving. A design method
not only provides a systematic approach to organize and structure action, but
also to cater towards making choices based on criteria.

Among the myriads of methods available for determining the existence of a
specific quality, they can be determined individually. In reality the attributes of a
system are interactive and dependent on each other. Availability impacts securi-
ty, which in turn affects performance, which bears upon modifiability. While
still on the planning stage, the designer needs to keep in mind that all the
attributes are interlinked and prioritizing may have an adverse effect as testing
the quality attributes is difficult once the system is built.

To start with the architectural trade-off for web based systems, this paper has
taken Student Grading and Evaluation System (SGES) as a simple example.
Based on the requirement gathering and analysis for the mentioned system, the
suitable candidate architectural design will be analyzed with respect to its availa-
bility, security, and performance attributes.

Student and Course Evaluation System (SCES) is a unified system that pro-
vides a single point of access to all secure registered students in Higher educa-
tion sector. The system includes student registration and enrolment, student da-
ta, course work, exam information, program information, student growth rate,
grade history and course evaluation. The objective is to build a transaction
processing system that serves at the operational level of course evaluation in the
colleges and universities. Though the campus or course information system tra-
ditionally being mainframe applications, they have been evolving since the late
90s and are widely adopted through the presence of a web-based medium as a
hassle-free arrangement for viewing relevant information.

As cited following, construction of standalone software is challenging due to
several constraints. There are considerable amount of issues with these systems
based on design principles and tactics like security, maintainability, performance
and most importantly usability. These issues include, but are not limited to,
• User specific accessibility of a generic web system.
• Degradation of the performance of the system while handling of high volume

transactions.
• Expensive and complex upgrades for continued support, which maybe im-

probable for the required improvement of the system.
• Inflexibility partly due to monolithic design, requiring someone to be in-

volved with each change in the system requirements.
• Involvement of large logical comprehensions to support key business activi-

ties.
• Non-compliance with other software applications used by the same client or

user.
Final and foremost is the usability of the system. The interactive nature of the

system will determine the ease at which the user will be able to accomplish the
desired tasks and function.

In order to address the above issues, this paper will evaluate different archi-

P. Bajpayee, H. Reza

485

tectural models by analyzing the quality attributes, the tactics and the compara-
tive study on the tactics to implement the quality attributes to achieve the most
suitable architecture for the software. It will identify the pros and cons of all un-
iversally accepted and suitable architectural styles and patterns and propose the
most suitable one. To perform trade-off analysis of architectures for Student
Grading and Evaluation web based System, this paper will analyze the usability
and security attributes of the system and come to conclude on a suitable archi-
tectural style.

The design will be such that, by subsequent modification it will be limited as
far as possible to least cost effect components and would not result in chain
reaction of compensating modification. This will make it easier to add more
functionality for future requirements. This paper describes a prototype imple-
mentation and software architecture. It furthermore discusses the key properties
of the system and compares it with other available systems and finally outlines
the plans for future research.

Background
Building an enterprise-scale software system is a complex undertaking. De-

spite wide scale technological advancements, the demands of present day infor-
mation systems often stretch the limits of a company’s ability to design, con-
struct, and evolve its mission-critical software solutions. Noteworthy is the fact
that a few systems in particular, are designed from the ground up. Rather, a
software architect’s task is that of extending the life of an existing solution by
describing new business logic that manipulates an existing repository of data,
presenting existing data and transactions through new channels such as an In-
ternet browser or handheld devices, integrating previously disconnected systems
supporting overlapping business activities [2].

The web based grade evaluation system provides the instructor with a re-
sponse to the level of understanding for the students and also the standard of
course distribution. This will provide a standard for the entire education system
and make it process accurate. Thus, the usability and security of the system plays
a key role in this case. The success of the system entirely depends upon how ef-
fortlessly the user can handle the software and make the most use of it.

Related work
Before making a comparative analysis of the system architecture, an elaborate

study on the diverse architectural methods and various web based educational
software is essential.

Kazman et al. developed the architectural trade off analysis method (ATAM)
which evaluates quality attribute requirements by examining the consequences
of architectural decisions [3]. Bengtsson et al. introduced the architectural level
modifiability analysis (ALMA), a scenario based software architecture analysis
that focuses on the modifiability quality attribute [4]. Knodel [1] proposed Rapid
Architecture Evaluation (RATE) that works on architectural scenarios that are
used to identify risk, severity points, strengths, weakness, and tradeoff.

Design decisions are often made for non-technical reasons, viz. strategic

P. Bajpayee, H. Reza

486

business concerns, and meeting the required cost and scheduling, optimal use of
manpower, and so on. Having a structured method helps to ensure questioning
in the initial requirement and design stages when discovered problems can be
solved in an inexpensive manner. It guides users about the method—the stake-
holders—to look for conflicts in the requirements and for resolutions of these
conflicts in the software architecture. In realizing the method, assumption is that
attribute-specific analyses are interdependent, and that each quality attribute has
connections with other attributes, through specific architectural elements. An
architectural element is a component, a property of the component, or a prop-
erty of the relationship between components that affects some quality attribute.
For example, the priority of a process is an architectural element that could af-
fect performance. The tradeoff analysis, often regarded as trade off points, helps
to identify these interdependencies [3].

 Among the myriad of Student Management Systems available, most are
based on client server architecture and a few on cloud computing for easier sto-
rage and manipulation of data. In addition to understanding the demand of the
educational system, the analytical study also provides a better perspective of the
requirement, which is one of the main criteria for the tradeoff analysis suggested
by Kazman [5]. Among the widely used and various grade evaluation systems, a
few can be shortlisted:
• Moodle: It is a free and open-source software learning management system

written in PHP and distributed under the GNU General Public License
[Source: Wikipedia.org]. Developed on educational principles, Moodle is
widely used for blended learning, distance education, and other e-learning
projects in various institutions.

• Renweb: It is complete web based software providing integrated solutions to
automate school administration and classroom management. This web-based
solution also offers data conversion and setup process, comprehensive train-
ing, as well as live Customer Support.

• ACTIVE Educate: ACTIVE Network provides web-based registration and
management solutions. It enhances efficiency with online registration, pro-
cess tuition and fees including credit card processing and manages private
lessons, streamline administration and staff management.

• Blackboard: It is independent school management software, which provides
its customer to share student records across admissions and registrars. It also
helps in organizing the admission process, store detailed student informa-
tion, create schedules, produce demographic/analytical reports, and print
report cards and transcripts. Likewise, it shares student grades, attendance,
and exchange information securely via the web.

Based on the above mentioned study and the entire collected scenario, the
main features provided by almost all the above mentioned software and other
software(s) available widely are:

Academic Reporting, Admission Management, Attendance Tracking, Event
Calendar, Grade Management and Display, Scheduling and Maintaining Record.

P. Bajpayee, H. Reza

487

This paper tries to provide a manner that will help in improvement of the
course, making the coursework easier for the students’ understandability and
make the instructor aware of the students’ capabilities and most importantly
in-capabilities. Based on the principal approach and essential requirements of a
web based grade evaluation system as per the identified quality attributes, the
following section will not only identify the candidate architectural designs but
also will trade off them based on the identified quality attributes.

2. Research Approach

To build an efficient and useful web based system, the following section will
analyze existing architectural design approaches. The section provides a com-
parative study of the various systems such as Blackboard architectural, Mod-
el-View-Controller, Client/Server architectural styles and their variations.

2.1. Architectural Designs

Blackboard Design:
The blackboard architectural pattern provides a computational framework for

the design and implementation of systems that must integrate large and diverse
specialized modules, and implement complex, non-deterministic control strate-
gies. Using this style, several specialized subsystems known as agents are assem-
bled to build a possibly partial or approximate solution [2].

As shown in Figure 1, the blackboard model consists of three main compo-
nents as follow:
• The blackboard is a structured global memory containing objects from the

solution space. These objects, also called blackboard nodes (or hypotheses),
are hierarchically organized into several levels of analysis and can be linked
with each other.

• Knowledge sources can be seen as highly specialized modules with their own
representation. They are characterized by a set of triggering conditions and
an executable code that retrieves data from the blackboard, which in turn
contributes to the problem solving process.

• The control component selects, configures and executes knowledge sources.
Determination of executable knowledge sources is based on the state of the
problem solving process as expressed in the blackboard.

The blackboard model originally emerged in the domain of artificial intelli-

Figure 1. Blackboard architecture.

P. Bajpayee, H. Reza

488

gence [6]. It is based on a metaphor where a group of specialists gathers around
a blackboard and solves a particular problem in cooperation. The blackboard is a
shared repository containing the data from various problem solving states [7].
The domain knowledge is partitioned into knowledge sources which read data
from and write data to a blackboard. Knowledge sources are independent be-
cause they don’t communicate with each other directly or are unaware of the
presence of other sources [1].

Model-View-Controller Design:
The structure of the MVC pattern consists of three components namely the

Model, View, and Controller. The Model provides functional core of an applica-
tion and notifies views about the data change. Views retrieve information from
the Model and display it to the user. Controllers translate events into requests to
perform operations on View and Model elements [8].

The following are the three stereotypes from the existing set of design ele-
ments:
• Model: A stereotype that extends the Component metaclass of UML and at-

taches ports for interaction with the Controller and View components.
• Controller: A stereotype that extends the Component metaclass of UML and

attaches ports for interaction with the Model and View components.
• View: A stereotype that extends the Component metaclass of UML and at-

taches ports for interaction with the Model and Controller components.
As shown in Figure 2, the Controller receives input and translates it into re-

quests to the associated model using the Control primitive, while the Model calls
back View when a specific data change occurs.

Client Server Design:
The Client/Server computing is an environment that satisfies the business

need by appropriately allocating the application processing between the client
and the server processors. The protocol is that the client requests the services
from the server; the server processes the request and returns the result to the
client:
• Client: A client is a single-user workstation that provides presentation ser-

vices and the appropriate computing, connectivity and the database services
and the interfaces relevant to the business need.

• Server: A server is one or more multi-user processors with shared memory

Figure 2. Display the three tier architecture of MVC pattern.

P. Bajpayee, H. Reza

489

providing computing, connectivity, database services and the interfaces rele-
vant to the business need.

The client/server computing is fundamentally platform independent. The user
of an application wants the functionality (business) it provides, while the com-
puting platform provides access to this business functionality. There are no ben-
efits but poses a considerable amount of risk of exposure of the platform to the
users. It is also easily demonstrable, i.e. the developers become aware of the tar-
get platform and development will be bound to that platform. They will use spe-
cial tricks and features found in that specific platform.

Further discussion is on architectural designs like Cloud Computing, Web de-
sign and Service oriented architectures. These architectures have been built on
the concept of Client-Server Design but are either different or advanced from
Client server basic design or one another. What follows is brief discussion on
these architectural designs and later the differences.

1) Cloud Computing Design:
Cloud computing system can be divided into two sections [9]: The front end

and the back end. Both sections relate to each other through a network, usually
the internet. Front end is what the client (user) sees whereas the back end is the
cloud of the system. Front end has the client’s computer and the application re-
quired to access the cloud and the back has the cloud computing services like
various computers, servers and data storage.

Monitoring of traffic, administering the system and client demands are admi-
nistered by a central server. It follows certain rules and protocols and uses spe-
cial software called the middleware [9]. Middleware allows networked comput-
ers to communicate with each other. A cloud client consists of computer hard-
ware and/or computer software which relies on cloud computing for application
delivery, or specifically designed for required cloud services [5].

A cloud application delivers “Software as a Service (SaaS)” over the internet,
thus eliminating the need to install and run the application on the users’ system
[6]. Important characteristics of this are: [6] Network-based access and man-
agement of commercially available software that are managed from centralized
locations and enable customers to access these applications remotely through the
internet. Examples of the key providers are SalesForce.com (SFDC), NetSuite,
Oracle, IBM and Microsoft [10]. Google Apps is the most widely used SaaS.

Platform services or “Platform as a Service (PaaS)” provide a computing plat-
form using the cloud infrastructure. It has all the applications deployed on it
which are typically required by the client. Thus the client need not go through
the hassles of buying and installing the software and hardware required for it.
Through this service developers can get a hold of all the systems and environ-
ments required for the life cycle of the software, be it developing, testing, dep-
loying or hosting of web applications. Key examples are GAE, Microsoft’s Azure
[10].

Infrastructure services or “Infrastructure as a Service (IaaS)” provides the re-
quired infrastructure as a service. There is no need to purchase the required

P. Bajpayee, H. Reza

490

Figure 3. Display of the architecture of Cloud Computing.

servers, data center or the network resources by the client. Also, the key advan-
tage of this application is that, customers need to pay only for the time duration
of using the service. As a result they can achieve a faster service delivery with
reduced cost. Examples are GoGrid, Flexiscale, Layered Technologies, Joyent
and Mosso/Rackspace. Find the cloud computing architecture in Figure 3 [10].

Difference with Client Server: It is a type of Client Server architecture where
the server is in cloud and can be accessed by various clients. This characteristic
makes the integration most effective and geographically independent. Hence for
the course evaluation system, cloud computing architecture separately from CS
architecture has higher consideration.

2) Web based Design:
A web-based application is any application that uses a website as the interface

(i.e., front-end). Users access the application from any computer connected to
the Internet using a standard browser, instead of using an application that has
been installed on their local computer [4].

Almost any desktop software can be developed as a web-based application. To
build a bridge between Web and enterprise database, a number of alternative
technologies and architectures have been available. These technologies include:
• CGI (Common Gateway Interface), a Web standard for accessing external

programs to integrate databases with Web servers. The CGI dynamically ge-
nerates HTML documents from back-end databases;

• Web server APIs, such as Microsoft’s Information Server API (ISAPI), Nets-
cape API (NSAPI), are invoked by third party software to access remote da-
tabases;

• Web-ODBC (Open Database Connectivity) gateways rely on an open API
(Application Programming Interface) to access database systems;

• Vendor-specific Web browser/data warehousing interfaces are in response to
the inherent advantages of the two technologies;

• JDBC (Java Database Connectivity) is used in its Java programming language
to program Java applets to access back-end databases [1].

P. Bajpayee, H. Reza

491

Difference with Client Server: Again this architecture is an advancement of CS
architecture where the web application works as client from where user can
access data. The server side applications get installed on the local computer
which access the database and provide response to the web base users. Web base
applications are simple, user-friendly and widely used for small, cost effective
applications. This is the main reason for considering this architecture as an im-
portant option for the application.

Service-Oriented Architectural (SOA) Design:
A way of designing a software system is to provide services to either end-user

applications or other services through published and discoverable interfaces. In
many cases, services provide a better way to expose discrete business functions
and therefore an excellent way to develop applications that support business
processes. Service-oriented architecture is not a new notion; it is important now
because of the emerging Web services technology.

For the purposes of this document, consider the following definition of a ser-
vice: “A service is generally implemented as a course-grained, discoverable soft-
ware entity that exists as a single instance and interacts with applications and
other services through a loosely coupled (often asynchronous), message-based
communication model.” In many ways, the terminology for services is much the
same as the terminology used to describe component-based development; how-
ever, there are terms used to define elements within Web services, as shown in
Figure 4 [2].

2.2. Approach to Select the Architecture for Student Grade System

Based on widely used architectural designs and features, the following section

Figure 4. The service oriented architectural pattern.

P. Bajpayee, H. Reza

492

will elaborately discuss on the candidate architectural systems (like, Black Board
Architecture, Client Server Architecture, and the Service-oriented Architecture)
with respect to usability and security quality attributes and their tactics. The next
section will do a comparative analysis on the above described candidate archi-
tectural systems to come to a conclusion for the most suited architecture of a
specific web based system by following the steps below:
• Requirement analysis and prioritization with help of Utility tree inspired by

Bass et al.
• QA-Tactics table to study particular quality attribute based problems and the

how Tactics can be used to identify probable solutions.
• QA vs. QA analysis to identify the issues may occur to achieve multiple qual-

ity attributes all together.
• QA vs Tactics table to identify the compatibilities for the tactics with identi-

fied QAs for the Student grading and evaluation system.
• Tactics vs Tactics table to identify the compatibility and difficulties to achieve

several tactics at same point of time.
• Finally the Software Architecture vs Tactics table to identify the difficulty

level to achieve the identified tactics for the candidate architectures, based on
each SA’s design and limitations.

3. Comparative Study and Results

The functionalities (or capability) of a system under construction does play a key
role in the selection of appropriate design [3]. For example in a grade evaluation
system, the system provide a blue login button in the home page. This functional
requirement can be achieved even with one html page and direct calling of the
database to store or retrieve the login detail of the user. The architecture comes
in place when there is a need to provide answered to the following design ques-
tions that impact overall quality and integrity of a system. Examples of questions
may include:
• How much time it should take for a user to log in?
• What if in the browser another user is already logged in and again hit the lo-

gin button with another user detail?
• What if system crashed on clicking on the login button, how long should it

take to repair?
• How easy will it be for one new user to find and understand the functionality

of it?
Thus the quality attributes are called upon. For one web based education ap-

plication it is really important to make the system:
• Easy to use, really secured as the system deals with sensitive data like grades.
• It will always be accessed either by the students or instructors or the admin-

istrators—hence maintainable.
The following section will study on the quality attributes for scenarios that

may occur to the system and the tactics that can be used to implement them. The
utility tree on Security and Usability attributes and the requirements scenario

P. Bajpayee, H. Reza

493

L: Low, H: High, M: Medium

Figure 5. Utility tree on usability and security QAs inspired by Bass et al. [3].

under the mentioned QAs is shown in Figure 5. The parameters (L, M) indicate
that (Difficulty level identified during design, Actual difficulty level during im-
plementation). So the Data confidentiality achievement for a secured application
though seems achievable for Student grade system, but the secured connection,
user validation, data confidentiality management is time and effort consuming
during implementation [3].

3.1. Usability Tactic Analysis

Usability is concerned with how comfortable it is for the user to accomplish a
desired task and the kind of user support the system provides. The Table 1 dis-
cusses about the usability tactic scenario and the tactics that can help to over-
come specific situations.

Tables in this section are structured to analyze the issues may occur to a cer-
tain type of users while using the application. Further, the tables propose the ex-

P. Bajpayee, H. Reza

494

pected response, tactics, which can be used to implement the solution. For Usa-
bility and Security QAs, the tables have been created to identify the problem and
feasible solution of the problem using certain tactics [3]. For example, the ad-
ministrator might get disconnected while adding new entry at runtime. The sys-
tem should have mechanism to cancel, undo the process if the entries are not
completed and it also should reuse the previous entered data to better assist the
user (see Table 1).

Like the template presented in Table 1, Table 2 captures another design
problem that may occur while using the system and how the usability attribute
and its associated tactics can help to mitigate this usability problem.

3.2. Security Tactic Analysis

Another very important quality attribute is Security. As the system is Grade
Evaluation web based system which deals with highly sensitive data like grades,
the security is a big challenge. Based on the overview of security tactics intro-
duced by Bass [3], they are divided into three distinct categories:
• Resisting attacks covers security measures which can be applied in order to

prevent attacks. This tactic addresses the confidentiality and integrity securi-
ty attributes of a system.

• Detecting Attacks and Recovering from an Attack aim at handling successful.

Table 1. Usability tactics analysis on user entered data reuse.

Usability QA

User Administrator of the system

Problem Disconnected while adding new entry

Environment Runtime

Artifact System

Response Reuse of already entered data

Tactic Cancel, Undo, User Model

Rationale
The user may cancel or undo the previous entered data and the

system should assist the user

Table 2. Usability tactics analysis on aggregation.

Usability QA

User Instructor of the course

Problem Issue while comparing the grades of students in one class

Environment Runtime

Artifact System

Response Interface is familiar/usable to the user

Tactic Aggregation, Show multiple views, task model

Rational
Provide a clear interface to the user along with some helps so that

new user should know how to use and do.

P. Bajpayee, H. Reza

495

attacks, where recovering from an attack focuses on availability issues of a
system.

• User authentication, authorization, providing well-defined, authorized data,
protection of data, Session termination, Limited Access, Protected Access
play a vital and essential role for such kind of web based system.

Table 3 represents a scenario in which the system administrator addresses
security risks issues such as, attempt to change grades and attempt to read the
assignments before final exam. The system should provide mechanisms to con-
trol access to the sensitive data. These safeguards include authentication to sup-
port confidentiality of data and authorization to support integrity of data.

Table 4 captures yet another problem that can occur while using the system
and how the security attribute and associated tactics like limited exposure, li-
mited access can help the system to overcome the problem:
• Restoration may conflict with maintaining Data Confidentiality if multiple

copies of a system are to be maintained.
• Limit Access can be applied in that case to provide limitation to the attack

surface.
Quality vs. Quality
Many tactics can be replicated using the architectures that are available and

vastly used in software engineering. To draw a firm conclusion on suitable arc-
hitectural design, Table 5 will do the next level of comparative study to analyze

Table 3. Security tactics analysis on unauthorized access.

Security QA

User System Administrator/Students/Hacker

Problem Attempt to change the grades, attempt to check the assignments

Environment Normal Operation

Artifact System’s database

Response Grant or withdraw permission to modify the data

Tactic
Authenticate user, Authorize the user, Maintain Data

Confidentiality, Maintain Integrity

Rationale Modification can only be done by authorized users

Table 4. Security tactics analysis on an unauthorized access.

Security QA

User Hackers

Problem Making the system unresponsive

Environment Normal Operation

Artifact System

Response
Detect attack, notify administrator, make some service disable to

make the system stable

Tactic Limit Exposure, Limit Access, Intrusion Detection

Rational Detect the attack, prevent the attack

P. Bajpayee, H. Reza

496

Table 5. Quality vs. Quality.

QAs Usability Security

Usability NA 2

Security 2 NA

4-5: Very Strong, 3: average, 2: low, 1: poor

QAs vs QAs. In case of Student grade evaluation system Usability and Security
has been taken as important QAs, hence Table 5 will check the compatibility of
the mentioned two QAs before doing the comparative study among QAs and
Tactics.

Based on Kazman et al. [3] who proposed the architectural trade off analysis
method (ATAM)—achieving usability and security attributes together is very
difficult; based on the requirement, one can be compromised to achieve another
to some extent. Hence the compatibility is low among the mentioned QAs.

As shown in the Table 5 (compatibility chart) has weighed 2 for Usability-
Security correlation. The sub attributes of the usability are: satisfiability (satis-
factory user experience), memorability (login credentials are easy to memorize).
A Highly secured system will have multiple authorization and authentications
steps to login. Examples of these steps may include RSA encryption login, secret
questions validation, lengthy and complex password which may affects the sub
attributes of usability such as memorability and ease of use.

Similarly, the sub attributes of Security are: confidentiality (data protection
from unauthorized disclosure), Integrity (data and process protection from un-
authorized modification), Availability (protection from denial of service of an
authenticated user)—to maintain the confidentiality and integrity, the satisfia-
bility or enriched user experience of the application get compromised. As such,
the compatibility is below average; this has been represented by the weight in
Table 5.

Quality vs. Tactics
Tactics are a set of well-known and proven design decisions [3]. As the quality

attributes are impossible to achieve in isolation, the same is true for the tactics
because tactics for all the mentioned qualities will similarly correlate each other
in positive or negative ways. The set of important tactics for the grade evaluation
system discussed can be:
• Support User Initiative (SUI)
• Support System Initiative (SSI)
• Modifiability (Mod)
• Understandability (Und)
• Persisting Attacks (PA)
• Detecting Attacks (DA)
• Recovering From Attacks (RFA)

In what follows, we discuss the correlation between the quality attributes and
tactics. As per the Table 5 the Support User Initiative, Support system initiative,
Modifiability tactics defines usability QA, hence in Table 6 the weightage is very

P. Bajpayee, H. Reza

497

strong (4 or 5), whereas as the Security tactics like: Persisting attacks, detecting
attack and recovering attack has low or poor weightage with usability (1 or 2).
Similarly the usability tactics get below average (1 or 2) with security attributes
whereas Persisting attacks, detecting attack and recovering attack has strong
weightage (4 or 5) with security.

Making a system secure requires (at least) considering tactics such as detect-
ing or persisting attacks. But making the system usable at the same time to sup-
port user initiative is where the problem lies.

Tactics vs. Tactics
Based on analysis so far: To achieve “Support user initiative” tactics along

with Supporting system initiative will be easier since both are usability tactics
and achievable in isolation, hence in Table 6 the weightage shown as very strong
(4-5). “Similarly User initiative support”, modifiability and understandability
goes hand in hand as the more the system supports the initiative taken by the
user the more the system is understandable to the user and also can be en-
hanced- hence the correlation among them shown as very strong (4 or 5).

Table 7 will discuss the correlation between these tactics. In Table 7, we used
the same scale used in the Table 6. Understandability is achievable even when
the system is highly secured or the system is easily usable hence the weightage
for understandability with other tactics mentioned as 3. Whereas the SUI direct-
ly opposes the attacks persistence, detection and recovery as to make the system
highly secure, user initiation has to be restricted and closely monitored. So in
Table 6 the correlation among them are below average (1-2).

Table 6. QAs vs. Tactics.

QA vs. Tactics SUI SSI Mod Und PA DA RFA Total (35)

Usability 4 5 4 5 2 2 1 23

Security 2 2 1 3 4 4 5 21

4-5: Very Strong, 3: average, 2: low, 1: poor; Support User Initiative(SUI), Support System Initiative (SSI),
Modifiability (Mod), Understandability (Und), Persisting Attacks (PA), Detecting Attacks (DA), Recover-
ing From Attacks(RFA).

Table 7. Tactics vs. Tactics.

Tactics SUI SSI Mod Und PA DA RFA Total (35)

SUI NA 4 4 4 2 2 1 20

SSI 5 NA 4 4 2 1 1 17

Mod 4 4 NA 4 1 2 2 17

Und 4 4 3 NA 3 3 3 20

PA 2 1 1 3 NA 4 4 15

DA 1 2 1 4 5 NA 3 16

RA 1 1 1 3 5 5 NA 16

4-5: Very Strong, 3: average, 2: low, 1: poor; Support User Initiative(SUI), Support System Initiative (SSI),
Modifiability (Mod), Understandability (Und), Persisting Attacks (PA), Detecting Attacks (DA), Recover-
ing From Attacks(RFA).

P. Bajpayee, H. Reza

498

Tactics vs. Architectural Designs
As per Bass [3] and Cysneiro [7], the tactics can be utilized to build the quality

attributes of a system and can be utilized to achieve the most suitable architec-
ture. Hence the Table 8 will finally do a comparative study on tactics as has been
discussed in this paper with the architectural designs and will search for suitable
design achievable:

Blackboard architecture [7] allows the progressive definition and implementa-
tion of the different agents, which can also be reused hence achieving modifia-
bility and understandability tactics is achievable, hence weighted as 3 and 4. As a
drawback, the centralization of the data in the Blackboard [Figure 1] can nega-
tively affect the security, performance, and maintainability. Hence for security
QAs tactics weightage is low (1 or 2) for blackboard architecture in Table 8.

MVC [8] has more to do with reducing code complexity, increase reusability
hence achieving the user or system initiative support or making the system un-
derstandable or modifiable is achievable with MVC and therefore weighted be-
tween average to good (3 or 4) but security is a drawback of MVC hence in Ta-
ble 8, security related tactics rated low (1 or 2) for this architecture.

Client Server Architecture [9] centralized, back-up and data recovery is
achievable, scalable, and accessible. Hence the user initiative, system initiative,
understandability and modifiability have been weighted as average or above av-
erage (3 or 4). Whereas on the other hand CS is: moderately secure, congestion
prone not so robust and highly expensive. The tactics for security are rated low
(2) per the mentioned behavior of the architecture.

Finally as per the last row of the Table 8, SOA [2] receives high score on reu-
sability, maintainability, greater reliability, location independence, scalability,
availability and most effectively on platform independence but the major draw-
backs are increased overhead and high investment costs. Therefore, the tactics
weightage has been provided on the plus points of this architecture, because av-
erage or above average (3 or 4) were used.

4. Conclusion and Future Works

In this work, a desire motivated the architectural study to make rational choices
among competing architectural designs based on well-documented analyses of
system attributes, and tactics [3]. This analysis also serves as a means of trans-

Table 8. Tactics vs. Architectural design.

Tactics vs SA SUI SSI Mod Und PA DA RFA Total (35)

Blackboard 2 2 3 4 2 1 1 15

MVC 3 3 4 3 2 1 1 17

CS 3 3 4 4 2 2 2 20

SOA 3 3 4 3 3 3 3 22

4-5: Very Strong, 3: average, 2: low, 1: poor; Support User Initiative(SUI), Support System Initiative (SSI),
Modifiability (Mod), Understandability (Und), Persisting Attacks (PA), Detecting Attacks (DA), Recover-
ing From Attacks(RFA)

P. Bajpayee, H. Reza

499

portation for the early clarification of requirements.
Considering the comparative study on the grade evaluation system, it began

with vague requirements and enumerated few architectural alternatives. The
analytical framework and study of the quality attributes together with tactics
helped to identify the essential features of each of design alternative and hig-
hlighted the costs and benefits associated with the architectural features. In this
work, we applied the modified version of quality attribute scenario and tactics to
identify the optimal architectural style [10] [11] to develop a user-friendly
web-based system. Toward this end, the paper has identified Usability and Secu-
rity as one of the key quality attributes. Other attributes like Deploy ability, Sca-
lability, and Maintainability are also equally important.

Currently the further evaluation of Service Oriented Architecture is in pro-
gress to find out and validate the usefulness of the approach. More experimenta-
tions and case studies are needed to establish the practicality of attribute driven
and tactic to select the proper design.

References
[1] Knodel, J. and Naab, M. (2014) Mitigating the Risk of Software Change in Prac-

tice—Retrospective on More Than 50 Architecture Evaluations in Industry. IEEE
CSMR-18/WCRE-21 Software Evolution Week, Antwerp, 3-6 February 2014, 2-17.

[2] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996) Pat-
tern-Oriented Software Architecture Volume 1: A System of Patterns, Wiley &
Sons, New York.

[3] Bass, L., Clements, P. and Kazman, R. (2012) Software Architecture in Practice. 2nd
Edition, Addison-Wesley Professional, Boston.

[4] Zhao, W. (1999) A Study of Web-Based Application Architecture and Performance
Measurements. School of Information Systems Curtin University, Perth.

[5] Giesecke, S., Marwede, F., Rohr, M. and Hasselbring, W. (2007) A Style-Based Ar-
chitecture Modeling Approach for UML 2 Component Diagrams. IASTED Interna-
tional Conference Software Engineering and Applications. Cambridge, 19-21 Nove-
mber 2007, 530-538.

[6] Barr, A., Cohen, P. and Feigebaum, E.A. (1989) Handbook of Artificial Intelligence.
Addison-Wesley, Boston.

[7] Simon, H.A. (1981) The Sciences of the Artificial. 2nd Edition, The MIT Press,
Cambridge.

[8] Garlan, D. (1995) Architectures for Software Systems. Proceedings of the 1st Inter-
national Workshop CMU, 20, No. 3.

[9] Monroe, R., Wile, D. and Garlan, A.D. (1997) CME: An Architecture Description
Interchange Language. The Centre for Advanced Studies on Collaborative Research.
IBM Press, Indianapolis.

[10] Reza, H. and Grant, E. (2005) Quality-Oriented Software Architecture. Internation-
al Conference on Information Technology, Las Vegas, 4-6 April 2005, 140-145.
https://doi.org/10.1109/itcc.2005.237

[11] Shaw, M. and Garland, D. (1996) Software Architecture. Perspective on an Emerg-
ing Discipline, Prentice Hall, Upper Saddle River.

https://doi.org/10.1109/itcc.2005.237

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Toward Quality Attribute Driven Approach to Software Architectural Design
	Abstract
	Keywords
	1. Introduction
	2. Research Approach
	2.1. Architectural Designs
	2.2. Approach to Select the Architecture for Student Grade System

	3. Comparative Study and Results
	3.1. Usability Tactic Analysis
	3.2. Security Tactic Analysis

	4. Conclusion and Future Works
	References

