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Abstract 
TCPSO (Two-swarm Cooperative Particle Swarm Optimization) has been pro-
posed by Sun and Li in 2014. TCPSO divides the swarms into two groups with 
different migration rules, and it has higher performance for high-dimensional 
nonlinear optimization problems than traditional PSO and other modified 
method of PSO. This paper proposes a particle swarm optimization by mod-
ifying TCPSO to avoid inappropriate convergence onto local optima. The 
quite feature of the proposed method is that two kinds of subpopulations con-
structed based on the scheme of TCPSO are divided into some clusters based 
on distance measure, k -means clustering method, to maintain both diversity 
and centralization of search process are maintained. This paper conducts nu-
merical experiments using several types of functions, and the experimental 
results indicate that the proposed method has higher performance than the 
TCPSO for large-scale optimization problems. 
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1. Introduction 

PSO (Particle Swarm Optimization) is one of the most famous evolutionary 
computation methods that emulate the swarm behavior of some kinds of birds 
[1]. This evolutionary computation method interprets that the feature of the 
corresponding problem is not independently recorded on each individual of the 
swarm, but the whole population share the information for smart search. In the 
search process of PSO, each individual gets closer to an individual with highest 
evaluation value, by updating the current solution of each individual. A variety 
of PSO are applied to a number of problems in engineering discipline, because 
the updating method of the solution is very simple and computationally cheap 
[2] [3] [4]. 
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However, search process of PSO rarely converges a local optimum solution 
depending on the initial solution and the parameter settings due to the simple-
ness of the search procedure. To avoid the convergence problem several im-
proved PSOs are proposed. For example, fully informed PSO (FIPSO) that sev-
eral subgroups of particles (individuals) can communicate to each other by in-
termediary of the link between the subgroups [5] [6], linearly decreasing weight 
PSO (LDWPSO) such that the value of the parameters in regard to search 
process are adapted to actualize a global search in the first part of the search 
process and a local search toward the end of the process [7], FAPSO-ACO-K, a 
hybrid algorithm of fuzzy adaptive PSO (FAPSO), ant colony optimization 
(ACO), and k -means clustering, is combined search procedure of hybrid of 
FAPSO and ACO for local search and k -means clustering method for global 
search [8], two-swarm cooperative PSO (TCPSO) which maintains the diversity 
of the population by division of the population into two kinds of subgroups [9], 
and so forth. 

The manner of division in TCPSO is not always suitable for the corresponding 
problems, thus the search process of TCPSO is not always appropriate. This 
study improves TCPSO by applying a statical clustering method for effective di-
vision of the population. The clustering is applied several times in process of 
search based on the degree of convergence of search. The experimental results 
indicate that the proposed method has higher performance for some high-    
dimensional problems than the existing methods relevant to PSO. 

The rest of this paper is structured as follows: In Section 2, several works re-
lated to PSO, the original PSO, FIPSO, and TCPSO are briefly introduced. In 
Section 3, the proposed method using distance-based clustering method is con-
structed. In Section 4, numerical experiments using multiple benchmark prob-
lems are conducted, and finally Section 5 concludes this paper. 

2. Related Works 

In this section, some related works, PSO, FIPSO, and TCPSO are briefly described. 

2.1. Particle Swarm Optimization (PSO) 

Let n  be the number of swarms (individuals), and a swarm i , 1, 2, ,i n=   
retains its positional information vector at time t , ( )ix t , and its velocity 
vector, ( )iv t , where ( ) ( ) ( ) ( )( )1 2, , ,i i i iJx t x t x t x t= 

 and  
( ) ( ) ( ) ( )( )1 2, , ,i i i iJv t v t v t v t= 

, here J  indicates number of dimension of the 
corresponding problem. Here, let jx  and jx  be the minimum and maximum 
values of the j -th dimensional value, respectively, i.e., , , ,ij j jx x x i j ∈ ∀   is 
satisfied. Additionally, a swarm i  retains a positional information vector  

( ) ( ) ( ) ( )( )1 2, , ,i i i iJx t x t x t x t∗ ∗ ∗ ∗= 
 of which has the highest evaluation value in 

which the swarm experienced from time 0 to t . In similar way, whole swarms 
in the population shares a positional information vector  

( ) ( ) ( ) ( )( )* * *
1 2, , , JX t X t X t X t∗ = 

 of which has the highest evaluation value in 
which whole swarms experienced from time 0 to t . The position information 
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vector ( )ix t  and velocity vector ( )iv t  of a swarm i  is updated by using 
following equation. 

( ) ( ) ( )1 1ij ij ijx t x t v t+ = + +                    (1) 

( ) ( ) ( ) ( )( )
( ) ( )( )
1 1

2 2

1

 ,

ij ij ij ij

j ij

v t wv t C r x t x t

C r X t x t

∗

∗

+ = + −

+ −
              (2) 

where 1C  and 2C  are parameters, w  indicates inertia coefficient, and  
[ ]1 2, 0,1r r ∈  are random numbers which are determined before each updating. 

From (1) and (2), the performance of PSO depends in a large part on values of 
there parameters. The positions of all swarms are updated depending also on the 
common position information vector X ∗ , therefore it is difficult to deviate 
from a local optima if the search process converges near the local optima. 

2.2. Fully Informed PSO (FIPSO) 

Whereas whole swarms in the population share the common position information 
in PSO, a pair of swarms which located at nearest in whole swarms each other 
share personal best position information with the highest evaluation ix∗  in 
FIPSO. The nearest swarm of a swarm is called neighbor of her/him, and let 
( )b i  be a neighbor of a swarm i . FIPSO updates the position information 

vector ( )ijx t  by using following (1) and the velocity vector ( )ijv t  by using 
following equation. 

( ) ( ) ( )( ) ( )( )1 1
1

11 : ,
in

ij ij ij ij
ii

v t v t C r x t b i x t
n

χ ∗

=

 
+ = + − 

 
∑          (3) 

where χ  is a learning parameter. 

2.3. Two-Swarm Cooperative PSO (TCPSO) 

TCPSO divides population into two subgroups, master swarms and slave 
swarms. As shown in Figure 1, the master swarms are assigned to wide search 
and the slave swarms are assigned to intensive local search. 
 

 
Figure 1. The distribution of swarms: TCPSO. 
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The position information vector ( )M
ix t  and the velocity vector ( )M

iv t  of 
swarm i  belonging to master swarms are updated by following equations. 

( ) ( ) ( )1 1M M M
ij ij ijx t x t v t+ = + +                      (4) 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

1 1

2 2

3 3

1

 

 

M M M M M
ij ij ij ij

M S M
j ij

M M
j ij

v t wv t C r x t x t

C r X t x t

C r X t x t

∗

∗

∗

+ = + −

+ −

+ −

               (5) 

The position information vector ( )S
ix t  and the velocity vector ( )S

iv t  of 
swarm i  belonging to slave swarms are updated by following equations. 

( ) ( ) ( )1 1S S S
ij ij ijx t x t v t+ = + +                       (6) 

( ) ( ) ( ) ( )( )
( ) ( )( )
1 1

2 2

1

 

S S S S
ij ij ij ij

S
j ij

v t wv t C r x t x t

C r X t x t

∗

∗

+ = + −

+ −
                (7) 

In Equations (4)-(7), “ M ” and “ S ” indicate the master and the slave swarms 
in order, respectively. From Equation (7), a slave swarm updates the velocity 
vector ( )S

iv t  based only on the position information, but the last velocity. This 
updating mechanism without inertia term leads that search regions of the slave 
swarms becomes more narrow than of the master swarms. The difference of 
search area between the master and the slave swarms are due to updating 
mechanism differences such whether it refers another kind of swarms or not. On 
the other hand, the term including ( )S

jX t∗  in the updating mechanism of the 
velocity of a master slave refers the search efforts of the slave swarms. Several 
kinds of experimental results using TCPSO indicate that it has satisfying 
performance in many types of optimization problems. However, it does not have 
satisfying performance in high dimensional maps. 

3. Distance-Based Divided Groups and Cooperative PSO 

As described in the above section, TCPSO divides the population into two 
groups with different migration rules. However, the master swarms cannot 
always maintain the search area widely, because, a master swam updates its 
velocity in refer not only to master swarms but also the best solution in the slave 
swarms as Equations (4) and (5). This is a reason of which the searching process 
of TCPSO rarely converges on the local optima of the target optimization 
problem which is not the global optima of it, depending on the future of target 
problems. 

This paper revises TCPSO to avoid the convergence of the swarms on the local 
optima by dividing the master swarms into multiple groups based on Euclidean 
distance. This is the main feature of the proposed method. Similarly, the slave 
swarms are divided into same number of groups and each group is connected a 
group of divided master swarms. For distance-based clustering, k -means 
clustering method is applied for dividing the swarms. 

3.1. k -Means Clustering 

The proposed method applies k -means clustering method to the population. 
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k -means clustering is a non-hierarchical clustering algorithm, the whole 
swarms in the population are divided into k  groups based on the distance 
measure. Here, let xκ  be a median point of the positional information vector of 
the swarms belonging to a cluster κ . Revise the division of the population into 
cluster to satisfy following condition. 

1 , , 1
arg min min

k

n

i
V V i

x xκκ=

−∑


                     (8) 

3.2. Algorithms 

Let MX κ∗  and SX κ∗  indicate the locational information vector of which has 
the highest evaluation value in which the master and slave swarms in a cluster 
κ  experienced from time 0 to t . This study revises update procedure of the 
velocity vector of a swarm as follows, differing depending on the kind whether 
the swarm is master or slave swarm as following equations. 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1

2 2

3 3

4 4

1

                   

                   

                   

M M M M M
ij ij ij ij

M S M
j ij

M M M
j ij

M M
j ij

v t wv t C r x t x t

C r X t x t

C r X t x t

C r X t x t

κ

∗

∗

∗

∗

+ = + −

+ −

+ −

+ −

             (9) 

( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )

1 1

2 2

3 3
1

1

                  

                  ,

S S S S
ij ij ij

S S
j ij

k
S M S

j ij

v t C r x t x t

C r X t x t

C r X t x tκ

κ

∗

∗

∗

=

+ = −

+ −

+ −∑

              (10) 

where, [ ]1 2 3 4, , , 0,1r r r r ∈  are the random variables as employed in Equations 
(2), (5), and (7). The positional information vector is updated based on 
Equations (4) and (6). Equation (9) maintains or increases diversity of search 
process of TCPSO by referring the positional information vector ( )MX tκ∗  with 
the highest evaluation value in the belonging cluster, and Equation (10) avoids 
excessive convergence. 

The outline of the proposed method is briefly summarized as follows. 
Step 0 Initialize the parameter temp 2k k= = . 
Step 3 Generate initial population of the master and the slave swarms. 
Step 2 If 1k > , execute k -means clustering to the population of master and 

the slave swarms. 
Step 3 Calculate the evaluation value of each swarm, based on the positional 

information vector. 
Step 4 Update the positional information and velocity vector by Equations 

(4), (6), (9), and (10). If the largest evaluation value in the population is larger 
than predetermined value, it remains unchanged during for a given period, or 
number of updating of the positional information and the velocity vector 
approaches predetermined number, then terminate the search process. If a 
convergence condition satisfied, then go to Step 3, otherwise go to Step 5. 

Step 5 If 1k = , then let temp 1k k= +  and go to Step 2. If 1k > , then let  
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temp ,  1k k k= =  and go to Step 2. 
A quite feature of the proposed method is applying k -means clustering to 

population of the master swarms and the slave swarms, respectively, with 
changing number of clusters k . Note that there exists a hybrid algorithm using 
k -means clustering, FAPSO-ACO-K [8], the algorithm divides the all swarms in 
the population into clusters. Our method has stronger tendency to avoid the 
convergence of swarms on the local optima, because the number of clusters k  
periodically changes in our method as 2,1,3,1, 4,1, . Whereas FAPSO-ACO-K 
uses predetermined number of clusters. The desired effect of the proposed 
method is that population repeats widespread migrations and convergences 
when the number of k  changes at Step 5. It is expected to discover another 
better solutions by the widespread migration, and intensive local search by the 
convergence of the search process. 

4. Numerical Experiments 

In this section, numerical experiments using some kinds of nonlinear functions. 
The terminate conditions are set as that the function values ( )f x  is less than 

101.0 10−×  or the number of iterations without change of the largest evaluation 
values of solution. 10 discrete trail runs are executed for each problem by 
changing number of the dimensions of the problems as 2,10,30,50D = . The 
values of parameters are set as Table 1. 

The numerical experiments which conduct in this study use 11 kinds of 
functions shown in Table 2 and Table 3. 
 
Table 1. Parameter settings. 

Number of dimensions D  2/10/30/50/100 

Inertia coefficient w  0.9 

Number of swarms n  60 

Parameters ( )1 2 1 2 3, , , ,S S M M MC C C C C  (1.6, 1.6, 2.2, 2.2, 2.2) 

Number of initial cluster 2 

Maximum number of clusters 5 

 
Table 2. Benchmark problems (unimodal functions). 

Name Function ( )1 2, , , Df x x x  Optimal solution 

Sphere 2

1

D

i
i

x
=
∑  ( )0,0, ,0 0f =  

Quadric 4

1

D

i
i

ix
=
∑  ( )0,0, ,0 0f =  

Schwefel’s Problem 1.2 
2

1 1

D i

j
i j

x
= =

 
 
 

∑ ∑  ( )0,0, ,0 0f =  

Rosenbrock ( ) ( )
1 2 22

1
1

100 1
D

i i i
i

x x x
−

+
=

 − + − ∑  ( )1,1, ,1 0f =  

Schwefel’s problem 2.22 2

1 1

DD

i i
i i

x x
= =

+∑ ∏  ( )0,0, ,0 0f =  
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Table 3. Benchmark problems (multi-modal functions). 

Name Function ( )1 2, , , Df x x x  

Ackley 2

1 1

1 120exp 0.2 exp cos 2π 10
D D

i i
i i

x x e
D D= =

    − − − + +   
   

∑ ∑  

 Optimal solution: ( )0,0, ,0 0f =  

Generalized Rastrigin ( )2

1

10cos 2π 10
D

i i
i

x x
=

− +  ∑  

 Optimal solution: ( )0,0, ,0 0f =  

Generalized Schwefel’s ( )
1

sin
D

i i
i

x x
=
∑  

problem 2.26 Optimal solution: ( ), , , GSf a a a f ∗= , ( )420.9687, 12569.5GSa f ∗= = −  

Generalized Griewank 2

1 1

1 cos 1
4000

DD
i

i
i i

x
x

i= =

 
− + 

 
∑ ∏  Optimal solution: ( )0,0, ,0 0f =  

Generalized Penalized 1 

( ) ( ) ( )( ){ } ( )

( ) ( )

( )
( )

( )

1
2 22 2

1 1
1

1

π 10sin π 1 1 10sin π 1

1,10,100,4 , 1 1
4

, , , 0,

D

i i D
i

D

i i i i
i

m

i i

i i

m

i i

y y y y
D

u x y x

k x a x a
u x a k m a x a

k x a x a

−

+
=

=

 + − + + −  

+ = + +

 − >
= − ≤ ≤


− − < −

∑

∑  

 Optimal solution: ( )1, 1, , 1 0f − − − =  

Generalized Penalized 2 

( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( )
( )

( )

1
22 2

1 1
1

2 2

1

0.1 sin π3 1 1 10sin 3π

11 1 sin 2π ,5,100,4 ,  1 1 ,
4

, , , 0,

D

i i
i

D

D D i i i i
i

m

i i

i i

m

i i

x x x

x x u x y x

k x a x a
u x a k m a x a

k x a x a

−

+
=

=

 − +    

− + + = + +  

 − >
= − ≤ ≤


− − < −

∑

∑  

 Optimal solution: ( )1,1, ,1 0f =  

 
The aim of these optimization problem is finding the solution vector  
( )1 2, , , Dx x x x=   which minimizes each target function. The functions are 

classified in terms of unimodal or multi-modal. D  indicates number of 
dimensions. In Appendix, some functions with number of dimensions is 2  
( )2D =  are shown in Figures 6-15 for example. 

The error per number of dimensions D  and termination term per D  are 
shown in Table 4 and Table 5 as experimental result. Figures 2-5 summarizes 
these results. 

From the experimental result shown in Table 4, Figure 2 and Figure 3, the 
proposed method has higher or approximately equivalent performance relative 
to TCPSO in the optimization problem of unimodal functions. In other words, 
the proposed method is more helpful than the comparative approach, TCPSO. 
In the case of Rosenbrock, it is a unimodal function, though the gradient around  
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Table 4. Experimental results (unimodal functions). 

  Proposed method TCPSO [9] 

Target function D Error/D Termination term/D Error/D Termination term/D 

Sphere 
(Unimodal) 

2 0 11.0 0 10.7 

10 0 71.3 0 73.0 

30 0 50.8 0 53.1 

50 0 47.9 0 52.1 

100 0 53.6 0 64.4 

Quadric 
(Unimodal) 

2 0 6.7 0 6.6 

10 0 39.8 0 42.0 

30 0 40.7 0 44.3 

50 0 49.2 0 53.8 

100 0 68.3 0 74.0 

Schwefel’s Problem 1.2 
(Unimodal) 

2 0 11.6 0 10.9 

10 0 81.7 0 79.2 

30 0 59.9 0 62.8 

50 0 55.9 63.6  

100 0 64.5 0 75.8 

Rosenbrock 
(Unimodal) 

2 0 228.4 0 235.8 

10 0 3827.8 0 3307.2 

30 0 3935.8 0 4801.0 

50 0 3152.2 0 3320.5 

100 0.00644 2032.0 0.00399 2125.6 

Schwefel’s problem 2.22 
(Unimodal) 

2 0 17.9 0 20.8 

10 0 561.4 0 592.4 

30 0.627 1276.0 0.693 1102.4 

50 1.228 894.6 1.216 730.0 

100 1.719 1028.0 1.708 679.0 

 
the optimal solution is very small, and it is very difficult to find the optimal 
solution of such problems by heuristic approaches. 

As shown in Table 5, Figure 4 and Figure 5, the proposed method has higher 
performance relative to TCPSO also in almost types of multi-modal functions. 
However, the function “Generalized penalized 2” with the number of demensions 
is 100D = , the amount of error by the proposed method is larger than of 
TCPSO. This function is nearly discrete type function as shown in Figure 15. 
From the experimental result, the proposed method is very effective for a lot of 
types of optimization problems, however, it should be revised to improve the 
performance also in high-dimensional discrete type functions such as “Generalized 
penalized 2”. 
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Table 5. Experimental results (multi-modal functions). 

  Proposed method TCPSO [9] 

Target function D Error/D Termination term/D Error/D Termination term/D 

Ackley 
(Multi-modal) 

2 0 21.7 0 20.6 

10 0 149.1 0 226.3 

30 0 178.1 0 364.6 

50 0.667 194.8 3.97 350.8 

100 0 146.5 0.710 202.3 

Generalized Rastrigin 
(Multi-modal) 

2 0 13.0 0 11.6 

10 0 71.9 0 71.1 

30 0 68.9 0 70.6 

50 0 97.9 0.002 107.0 

100 0.058 354.6 0.516 399.6 

Generalized Schewefel's 
problem 2.26 

(Multi-modal) 

2 74.4 2571.0 137.5 4042.1 

10 1198.2 1702.7 1448.3 1343.3 

30 5383.2 920.7 5607.6 506.6 

50 9389.2 761.5 9772.9 355.0 

100 19138.3 1245.8 21225.8 288.4 

Generalized Griewank 
(Multi-modal) 

2 0 102.1 0 112.0 

10 0.034 1271.1 0.045 1427.5 

30 0.0066 237.9 0.011 290.4 

50 0.0034 139.6 0.0032 124.2 

100 0.0019 79.6 0.00057 62.9 

Generalized penalized 1 
(Multi-modal) 

2 0 11.0 0 10.8 

10 0 132.6 0 141.1 

30 213.3 808.5 408.7 671.1 

50 699.4 596.8 752.7 443.1 

100 1578.7 291.9 1654.2 264.0 

Generalized penalized 2 
(Multi-modal) 

2 0 32.1 0 14.7 

10 0 80.8 0 83.5 

30 0 167.1 0 153.3 

50 0 217.9 0 198.9 

100 0.152 380.2 0.124 351.9 

5. Conclusions 

This paper proposed a procedure of particle swarm optimization (PSO), which is 
constructed based on two-swarm cooperative PSO (TCPSO) [9] and includes the 
procedure of distance-based clustering. The main idea of the proposed method 
is dividing whole swarms into multiple subgroups by using k -means clustering, 
and the divisions are executed several times with periodical change of k  during 
the search process. This mechanism maintains the diversity and centralization of 
the search, and resolves the optimization problem of several kinds of functions.  
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Figure 2. Experimental result: error/D (unimodal functions). 
 

 
Figure 3. Experimental result: termination term/D (unimodal functions). 

 
This paper conducts numerical experiments using some benchmark problems of 
unimodal and multi-modal functions, and the experimental results indicate that 
the proposed method succeed to discover better solutions of some problems 
compared to the existing method (TCPSO). 
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Figure 4. Experimental result: error/D (multi-modal functions). 

 

 
Figure 5. Experimental result: termination term/D (multi-modal functions). 
 

As shown in Table 4, Figure 2 and Figure 3, only in a case of high- 
dimensional function of Rosenbrock ( )100D = , the proposed method is 
obviously defeated by TCPSO, we should explain the reason and propose an 
improvement of the performance, for example, by revising the condition of 
change of k  is improved. 
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Appendix 

Benchmark problems (unimodal functions) 
 

 
Figure 6. Sphere function (D = 2). 

 

 
Figure 7. Quandratic function (D = 2). 

 

 
Figure 8. Schwefel’s problem 1.2 function (D = 2). 
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Figure 9. Rosenbrock function (D = 2).  

 

 
Figure 10. Schwefel’s problem 2.22 function (D = 2). 

 
Benchmark problems (multi-modal functions) 

 

 
Figure 11. Generalized Rastrigin function (D = 2). 
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Figure 12. Generalized Schwefel’s problem 2.26 function (D = 2). 

 

 
Figure 13. Generalized Griewank function (D = 2). 

 

 
Figure 14. Generalized penalized 1 function (D = 2). 
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Figure 15. Generalized penalized 2 function (D = 2). 
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