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Abstract 
In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT 
clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to 
detect and remove noise and outliers, and separate clusters. Our experimental results on two-di- 
mensional datasets and practical datasets show that this algorithm can produce new datasets such 
that the performance of the clustering algorithm is improved. 
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1. Introduction 
1.1. Clustering Problem and Data Preprocessing 
Clustering is the process of dividing a dataset into partitions such that intracluster similarity is maximized. Al-
though it has a long history of development, there remain open problems, such as how to determine the number 
of clusters, the difficulty in identifying arbitrary shapes of clusters, and the curse of dimensionality [1]. The ma-
jority of current algorithms perform well for only certain types of data [2]. Therefore, it is not easy to specify the 
algorithm and input parameters required to achieve the best result. In addition, it is difficult to evaluate the clus-
tering performance, since most of the clustering validation indexes are specified for certain clustering objectives 
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[3]. Finding an appropriate algorithm and parameters is very difficult and requires a sufficient number of ex-
perimental results. The datasets measured from real systems usually contain outliers and noise, and are, there-
fore, often unreliable [4] [5]. Such datasets can impact the quality of cluster analysis. However, if the data have 
been preprocessed appropriately—for example, clusters are well-separated, dense and have no noise—the per-
formance of the clustering algorithms may improve. 

Data preprocessing is often used to improve the quality of data. In relation to clustering, popular applications 
of data preprocessing are normalization, removing noisy data points, and feature reduction. Many studies have 
used Principal Component Analysis (PCA) [6] to reveal representative factors. Although PCA accounts for as 
much variance of the data as possible, clustering algorithms combined with PCA do not necessarily improve, 
and, in fact, often degrade, the cluster quality [7]. PCA essentially performs a linear transformation of the data 
based on the Euclidean distance between samples; thus, it cannot characterize an underlying nonlinear subspace. 

Recent studies have focused on new categories of clustering algorithms which prioritize the application of 
data preprocessing. Shrinking, a data shrinking process, moves data points along the gradient of the density, 
generating condensed and widely separated clusters [8]. Following data shrinking, clusters are detected by find-
ing the connected components of dense cells. The data shrinking and cluster detection steps are conducted on a 
sequence of grids with different cell sizes. The clusters detected at these cells are compared using a cluster-wise 
evaluation measurement, and the best clusters are then selected as the final result. In CLUES [9], each data point 
is transformed such that it moves a specific distance toward the center of a cluster. The direction and the associ-
ated size of each movement are determined by the median of the data point’s k nearest neighbors. This process is 
repeated until a pre-defined convergence criterion is satisfied. The optimal number of neighbors is determined 
through optimization of commonly used index functions to evaluate the clustering result generated by the algo-
rithm. The number of clusters and the final partition are determined automatically without any input parameters, 
apart from the convergence termination criteria. 

These two shrinking algorithms share the following limitations: 
 The process of shifting toward the median of neighbors can easily fracture the cluster (Figure 1). 
 The direction of the movement vector is not appropriate in specific cases. For example, if the clusters are ad-

jacent and differ highly in density, the median of the neighbors is likely to be located on another cluster. 
In addition to the distance, density [10] is a quantity typically considered in clustering. The density represents 

the distribution of data within a certain distance. Density-based clustering algorithms attempt to find dense re-
gions separated from other regions that satisfy certain criteria. Well-known density-based clustering algorithms 
include DBSCAN [11], OPTICS [12], and DENCLUE [13]. Density clustering algorithms can find arbitrary 
clusters with high accuracy, but they are highly sensitive to the value of parameters and their accuracy decreases 
rapidly as the number of attributes increases, especially when dealing with high-dimensional datasets. 

1.2. IMPACT Algorithm and the Movement of Data Points 
IMPACT [14] is a two phases clustering algorithm which is based on the idea of gradually moving all data 
points closer to similar data points according to the attraction between them until the dataset becomes self-parti- 
tioned. In the first phase of the IMPACT algorithm, the data are normalized and denoised. In the next phase, the 
IMPACT algorithm iteratively moves data points and identifies clusters until the stop condition is satisfied. The 
 

              
(a)                                   (b) 

Figure 1. Clusters fractured after shrinking. (a) Original dataset; (b) Dataset after shrinking.   
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attraction can be adjusted by various parameters to handle specific types of data. IMPACT is robust to input pa-
rameters and flexibly detects various types of clusters as shown in experimental results. However, there are steps 
that can be improved in IMPACT, such as noise removal, attraction computation, and cluster identification. Also, 
IMPACT has difficulties in clustering high dimensional data. 

In this study, we propose a data preprocessing algorithm named D-IMPACT (Density-IMPACT) to improve 
the quality of the cluster analysis. It preprocesses the data based on the IMPACT algorithm and the concept of 
density. An advantage of our algorithm is its flexibility in relation to various types of data; it is possible to select 
an affinity function suitable for the characteristics of the dataset. This flexibility improves the quality of cluster 
analysis even if the dataset is high-dimensional and non-linearly distributed, or includes noisy samples. 

2. D-IMPACT Algorithm 
In this section, we describe the data preprocessing algorithm D-IMPACT based on the concepts underlying in 
the IMPACT algorithm. We aim to improve the accuracy and flexibility of the movement of data points in the 
IMPACT algorithm by applying the concept of density to various affinity functions. These improvements will 
be described in the subsequent subsections. 

2.1. Movement of Data Points 
The main difference between D-IMPACT and other algorithms is that the movement of data points can be varied 
by the density functions, the attraction functions, and an inertia value. This helps D-IMPACT detect different 
types of clusters and avoid many common clustering problems. In this subsection, we describe the scheme to 
move data points in D-IMPACT. We assume that the dataset has m samples and each sample is characterized by 
n features. We also denote the feature vector of the ith sample by xi. 

2.1.1. Density 
We use two formulae to compute the density of a data point based on its neighbors, which are defined as data 
points located within a radius Φ. This density is calculated with and without considering the distance from the 
data point to its neighbors. We define the density δi for the data point xi as 

( )deni ixδ = , 

where ( )den ix  is one of following density functions: 
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where ( )iNN x  is the set of neighbors of xi and ( )iNN x  is the number of neighbors. Unlike the density 
function den1, the density function den2 considers not only the number of neighbors, but also the distance be-
tween them to avoid issues relating to the choice of threshold value, Φ. In a practical application, we scale the 
density to avoid scale differences arising from the use of specific datasets as follows: 
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2.1.2. Attraction 
In our D-IMPACT algorithm, the data points attract each other and one other closer. We define the attraction of 
data point xi caused by xj as 

( ) ( )
( ) ( )

0 if distance
attraction

aff if distance

i j
ij i j

i j i j

x ,x
A x ,x

x ,x x ,x

 < Φ= = 
≥ Φ  



V. A. Tran et al. 
 

 
642 

where ( )aff i jx ,x  is a function used to compute the affinity between two data points xi and xj. This quantity 
ignores the affinity between neighbors. The affinity can be computed using the following formulae: 
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These four formulae have been adopted to improve the quality of the movement process in specific cases. The 
function aff1, used in IMPACT, considers the distance between two data points only. The function aff2 considers 
the effect of density on the attraction; highly aggregated data points cause stronger attraction between them than 
sparsely scattered ones. This technique can improve the accuracy of the movement process. The function aff3 
considers the difference between the densities of two data points; two data points attract each other more 
strongly if their densities are similar. This can be used in the case where clusters are adjacent but have differing 
densities. The function aff4 is a combination of aff2 and aff3. The parameter p is used to adjust the effect of the 
distance to the affinity. Attraction is the key value affecting the computation of the movement vectors. For each 
specific problem in clustering, an appropriate attraction computation can help D-IMPACT to correctly separate 
clusters. 

Under the effect of attraction, two data points will move toward each other. This movement is represented by 
an n-dimensional vector called the affinity vector. We denote aij as the affinity vector of data point xi caused by 
data point xj. The kth element of aij is defined as 
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The affinity vector is a component used to calculate the movement vector. 

2.1.3. Inertia Value 
To shrink clusters, D-IMPACT moves the data points at the border region of original clusters toward the cen-
troid of the cluster. Highly aggregated data points, usually located around the centroid of the cluster, should not 
move too far. In contrast, sparsely scattered data points at the border region should move toward the centroid 
quickly. Hence, we introduce an inertia value to adjust the magnitude of each movement vector. We define the 
inertia value Ii of data point xi based on its density1 by 

1 .i iI δ= −  

2.1.4. Data Point Movement 
D-IMPACT moves a data point based on its corresponding movement vector. The movement vector vi of data 
point xi is the summation of all affinity vectors that affect the data point xi 

1
,

m
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j
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=
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where aij is the affinity vector. The movement vectors are then adjusted by the inertia value and scaled by s, 
which is a scaling value used to ensure the magnitude does not exceed a value Φ, as in the IMPACT algorithm. 
This scaling value is given by 

 

 

1In the case of very sparse datasets, neighbor detection based on a scanning radius usually fails. Therefore, all data points will have a density 
equal to 1. Hence, we replace the formula used to compute the inertia value with 1 /2.i iI δ= −  
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Finally, each data point is moved using 

( ) ( )1 ,i ii k i kx x s I v−= + × ×  

where ( )1i kx −  is the coordinate of data point xi in the previous iteration, and ( )i kx  is the coordinate of data 
point xi in this iteration. We propose the algorithm D-IMPACT based on this scheme of moving data points. 

2.2. D-IMPACT Algorithm 
D-IMPACT has two phases. The first phase detects noisy and outlier data points, and removes them. The second 
separates clusters by iteratively moving data points based on attraction and density functions. Figure 2 shows 
the flow chart of the D-IMPACT algorithm. Since two parameters p and q play similar roles in both IMPACT 
and D-IMPACT algorithms, they can be chosen according to the instructions in the literature of IMPACT algo-
rithm (in this study, we set p = 2 and q = 0.01). To remove noisy points and outliers, we set the input parameter 
Thnoise as 0.1, which achieved the best result in our experiments. 

2.2.1. Noisy Points and Outlier Detection 
First, the distance matrix is calculated. The density of each data point is then calculated by one of the formulae 
defined in the previous subsection. The threshold used to identify neighbors is computed based on the maximum 
distance and the input parameter q, and is given by 

max Distance,qΦ = ×  

where max Distance  is the largest distance between two data points in the dataset. 
 

 
Figure 2. The outline of the D-IMPACT algorithm.             
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The next step is noise and outlier detection. An outlier is a data point significantly distant from the clusters. 
We refer to data points which are close to clusters but do not belong to them to as noisy points, or noise, in this 
manuscript. Both of these data point types are usually located in sparsely scattered areas, that is, low-density re-
gions. Hence, we can detect them based on density and the distance to clusters. We consider a data point as 
noisy if its density is less than a threshold Thnoise, and it has at least one neighbor which is noisy or a clus-
ter-point (with the latter defined as a data point whose density is larger than Thnoise). An outlier is a point with a 
density less than Thnoise that has no neighbor which is noisy or a cluster-point. Figure 3 gives an example of 
noise and outlier detection. 

Both outliers and noisy points are output and then removed from the dataset. The effectiveness of this re-
moval is shown in Figure 4. The value Φ  is then recalculated as the dataset has been changed by the removal 
of noise and outliers. When this phase is completed, the movement phase commences. 

2.2.2. Moving Data Points 
In this phase, the data points are iteratively moved until the termination criterion is met. The distances and the 
densities are calculated first, after which, we compute the components used to determine the movement vectors: 
attraction, affinity vector, and the inertia value. We then employ the movement method described in the previous 
section to move the data points. The movement shrinks the clusters to increase their separation from one another. 
This process is repeated until the termination condition is satisfied. In D-IMPACT, we adopt various termination 
criteria as follows: 
 Termination after a fixed number of iterations controlled by a parameter niter. 
 Termination based on the average of the densities of all data points.  
 Termination when the magnitudes of movement vectors have significantly decreased from the previous 

iteration. 
When this phase is completed, the preprocessed dataset is output. The new dataset contains separated and 

shrunk clusters, with noise and outliers removed. 

2.2.3. Complexity 
D-IMPACT is a computationally efficient algorithm. The cost of computing m2 affinity vectors is ( )2O m n . The 
 

 
Figure 3. Illustration of noisy points and outliers.          

 

 
Figure 4. Illustration of the effect of noise removal in D-IMPACT. 
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complexity of the computation of movement vectors is ( )O mn . Therefore, the overall cost of an iteration is 
( )2O m n . We see, based on our experiments, that the number of iterations is usually small and does not have 

significant impact on the overall complexity. Therefore, the overall complexity of D-IMPACT is ( )2O m n .  
We measured the real processing time of D-IMPACT on 10 synthetic datasets. For each dataset, the data 

points were randomly located (uniformly distributed). The sizes of the datasets varied from 1000 to 5000 sam-
ples. These datasets are included in the supplement to this paper. We compared D-IMPACT with CLUES using 
these datasets. D-IMPACT was employed with the parameter niter set to 5. For CLUES, the number of neighbors 
was set to 5% of the number of samples and the parameter itmax was set to 5. The experiments were executed 
using a workstation with a T6400 Core 2 Duo central processing unit running at 2.00 GHz with 4 GB of random 
access memory. Figure 5 shows the advantage in speed of D-IMPACT in relation to CLUES. 

3. Experiment 
In this section, we compare the effectiveness of D-IMPACT and the shrinking function of CLUES (in short, 
CLUES) on different types of datasets. 

3.1. Datasets and Method 
3.1.1. Two-Dimensional Datasets 
To validate the effectiveness of D-IMPACT, we used different types of datasets: two dimensional (2D) datasets 
taken from the Machine Learning Repository (UCI) [15], and a microarray dataset. Figure 6 shows the 2D 
datasets used. 

The 2D datasets are DM130, t4.4k, t8.8k, MultiCL, and Planet. They contain clusters with different shapes, 
densities and distributions, as well as noisy samples. The DM130 dataset has 130 data points: 100 points are 
generated randomly (uniformly distributed), and then three clusters, where each cluster comprises ten data 
points, are added to the top-left, top-right and bottom-middle area of the dataset (marked by red rectangles in 
Figure 6(a)). The MultiCL dataset has a large number of clusters (143 clusters) scattered equally. Two datasets, 
t4.8k and t8.8k [16], used in the analysis of the clustering algorithm Chameleon [17], are well-known datasets 
for clustering. Both contain clusters of various shapes and are covered by noisy samples. Clusters are chained by 
the single-link effect in the t4.8k dataset. The clusters of the Planet dataset are adjacent, but differ in density. 
These datasets encompass common problems in clustering. 

3.1.2. Practical Datasets 
The practical datasets are more complex than the 2D datasets, i.e., the high dimensionality can greatly impact 
the usefulness of the distance function. We used the Wine, Iris, Water-treatment plant (WTP), and Lung cancer 
(LC) datasets from UCI, as well as the dataset GSE9712 from the Gene Expression Omnibus [18] to test 
D-IMPACT and CLUES on high-dimensional datasets. The datasets are summarized in Table 1. The Iris dataset 
 

 
Figure 5. Processing times of D-IMPACT and CLUES on test datasets.        
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(a)                                (b) 

      
(c)                             (d)                            (e) 

 
Figure 6. Visualization of 2D datasets. a) DM130; b) MultiCL; c) t4.8k; d) t8.8k; e) Planet.     

 
Table 1. Datasets used for experiments.                                                                      

Dataset Size of datasets Number of features Number of clusters 

DM130 130 2 3 

MultiCL 8026 2 143 

t4.8k 8000 2 8 

t8.8k 8000 2 8 

Planet 719 2 2 

Iris 150 4 3 

Wine 178 13 3 

WTP 527 38 13 

LC 32 56 3 

GSE9712 12 22,283 4 

 
contains three classes (Iris Setosa, Iris Versicolor, Iris Virginica), each with 50 samples. One class is linearly 
separable from the other two; the latter are not linearly separable from each other. The Wine dataset (178 sam-
ples, 13 attributes), which are the results of chemical analysis of wines grown in the same region in Italy, but de-
rived from three different cultivars, include three overlapping clusters. The WTP dataset (527 samples, 38 at-
tributes) includes the record of the daily measures from sensors in an urban waste water-treatment plant. It is an 
imbalanced dataset—several clusters have only 1 - 4 members, corresponding to the days that have abnormal 
situations. The lung cancer (LC) dataset (32 samples, 56 attributes) describes 3 types of pathological lung can-
cers. Since the Wine, WTP, and LC datasets have attributes within different ranges, we perform scaling to avoid 
the domination of wide-range attributes. The last dataset we use is a gene expression dataset, GSE9712, which 
contains expression values of 22,283 genes from 12 radio-resistant and radio-sensitive tumors.  

3.1.3. Validating Methods 
For a fair comparison, we employed CLUES implemented in R [19] and varied the number of neighbors k (from 
5% to 20% of the number of samples) for different datasets. For D-IMPACT, according to the instructions and 
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the experimental results in the literature of IMPACT algorithm, we used the default parameter set (q = 0.01, p = 
2, aff1, den1, Thnoise = 0, niter = 2) with some modifications. The complete parameter set is described in Table 2. 
We compared the differences between the preprocessed datasets and the original datasets using 2D plots. How-
ever, it is difficult to visualize the high-dimensional datasets using only 2D plots. For this reason, we compared 
the two algorithms by using a plot showing several combinations of features. Further, to evaluate the quality of 
the preprocessing, we compared the clustering results for the datasets preprocessed by D-IMPACT and CLUES. 
We used two evaluation measures, the Rand Index and adjusted Rand Index (aRI) [20]. Hierarchical agglomera-
tive clustering (HAC) was used as the clustering method [10]. We used the Wine, Iris, and GSE9712 datasets to 
validate the clustering results, and the WTP and LC datasets to validate the ability of D-IMPACT to separate 
outliers from clusters. 

3.2. Experimental Results of 2D Datasets 
The results of D-IMPACT and CLUES on 2D datasets DM130, MultiCL, t4.8k, t8.8k, and Planet are displayed 
and analyzed in this section. 

Clusters in the dataset DM130 are difficult to recognize since they are not dense or well separated. Therefore, 
we set the p to 4 and run D-IMPACT for longer (niter = 3). The D-IMPACT algorithm shrinks the clusters cor-
rectly and retains structures of the original dataset (Figure 6(a) and Figure 7(a)). CLUES, with the number of 
neighbors k varied from 10 to 30, degenerated the clusters into a number of overlapped points and caused a loss 
of the global structure (Figure 7(b)). 
 

        
(a)                                (b) 

Figure 7. Visualization of the dataset DM130 preprocessed by D-IMPACT and CLUES. a) 
D-IMPACT; b) CLUES.                                                          

 
Table 2. Parameter sets of D-IMPACT for experiments.                                                          

Dataset Parameter set 

DM130 p = 4, niter = 3 

MultiCL den2, aff2 

t4.8k q = 0.03, Thnoise = 0.1, niter = 1 

t8.8k q = 0.03, Thnoise = 0.1, niter = 1 

Planet q = 0.05, p= 4, den2, aff3, niter = 4 

Iris niter = 5 

Wine p = 4, Scale = true, 1 2i iI De= −  

WTP Scale = true, aff2 

LC Scale = true 

GSE9712 1 2i iI De= −  
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The shrinking process may merge clusters incorrectly since clusters in the dataset MultiCL are dense and 
closely located. Hence, we used the density function den2 and the affinity function aff2, which emphasizes the 
density, to preserve the clusters. The result is shown in Figure 8. D-IMPACT correctly shrunk the clusters 
(Figure 8(a)), yet CLUES merged some clusters incorrectly due to issues relating to the choice of k (Figure 
8(b)). 

In relation to the two datasets t4.8k and t8.8k, D-IMPACT and CLUES are expected to remove noise and 
shrink clusters. We set q = 0.03 and Thnoise = 0.1 to detect carefully noise and outliers. The results of D-IMPACT 
are shown in Figure 9; the majority of noise was removed, and clusters were shrunk and separated. We then 
tested CLUES on the t4.8k dataset. Since the clusters in t4.8k are heavily covered by noise, we tested CLUES on 
the dataset whose noise was removed by D-IMPACT for a fair comparison. The value k is varied to test the pa-
rameter sensitivity of CLUES. Figure 10 shows different results due to this parameter sensitivity. 

To separate adjacent clusters in the dataset Planet, we used the function aff3, which considers the density dif-
ference. The parameter q is set to 0.05, since the data points are located near each other. We used den2 and p = 4 
to emphasize the distance and density. The results are shown in Figure 11. As shown, D-IMPACT clearly out-
performed CLUES. 

3.3. Experimental Results of Practical Datasets 
3.3.1. Iris, Wine, and GSE9712 Datasets 
To avoid the domination of wide-range features, we scaled several datasets (Scale = true). In the case of Wine, 
we had to modify the inertiavalue and use p = 4 to emphasize the importance of nearest neighbors. We used 
HAC to cluster the original and preprocessed Iris and Wine datasets, and then validated the clustering results 
with aRI. A higher Rand Index score indicates a better clustering result. The Iris dataset was also preprocessed 
using a PCA-based denoising technique. However, the distance matrices before and after applying PCA are 
 

        
(a)                                (b) 

Figure 8. Visualization of the dataset MultiCL preprocessed by D-IMPACT and 
CLUES. a) D-IMPACT; b) CLUES.                                            

 

      
(a)                                (b) 

Figure 9. Visualization of two datasets t4.8k and t8.8k preprocessed by D-IMPACT. a) 
t4.8k; b) t8.8k.                                                            
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(a)                                (b) 

Figure 10. Visualization of the dataset t4.8k preprocessed by CLUES using different 
values of k based on the size of the dataset. a) k = 80 (1%); b) k = 160 (2%).          

 

       
(a)                       (b)                           (c) 

Figure 11. Visualization of the dataset Planet preprocessed by D-IMPACT and 
CLUES. a) Preprocessed by D-IMPACT. Two clusters are separated; b) Preprocessed 
by CLUES; c) Clustering result using HAC on the dataset in b), indicating that 
CLUES shrinks clusters incorrectly.                                          

 
nearly the same (using 2, 3, or 4 principal components (PCs)). Therefore, the clustering results of HAC for the 
dataset preprocessed by PCA are at most the same result as that of the original dataset, which depends on the 
number of PCs used (aRI score ranged from 0.566 to 0.759). Table 3 shows the aRI scores of clustering results 
of HAC on original datasets and datasets preprocessed by D-IMPACT and CLUES. The effectiveness was de-
pendent on the datasets. In the case of Iris, D-IMPACT greatly improved the dataset, particularly as compared 
with CLUES. However, for the Wine dataset, CLUES achieved the better result. This is due to the overlapped 
clusters in the Wine dataset are undistinguishable using affinity function. In addition, we calculated aRI scores 
to compare clustering results obtained by the clustering algorithms IMPACT and D-IMPACT. For the Iris data-
set, the best aRI score achieved by IMPACT was 0.716, which was greatly lower than the best aRI score by 
D-IMPACT (0.835). For the Wine dataset, the best aRI score by IMPACT was 0.897, which was slightly lower 
than the best aRI score by D-IMPACT (0.899). These results show that the movement of the data points was 
improved in D-IMPACT compared to the IMPACT algorithm. The GSE9712 dataset is high-dimensional and 
has a small number of samples. Due to the curse of dimensionality and the noise included in microarray data, it 
is very difficult to distinguish clusters based on the distance matrix. We performed D-IMPACT and CLUES on 
this dataset to improve the distance matrix, and then applied the clustering algorithm HAC. D-IMPACT clearly 
outperformed CLUES since CLUES greatly decreased the quality of the cluster analysis. 

We also performed k-means clustering [10] on these datasets. We performed 100 different initializations for 
each dataset. The clustering results also favored D-IMPACT. Table 4 shows the best and average scores (in 
brackets) of the experiments. In addition, using Welch’s two sample t-test, the stability of the clustering result 
on D-IMPACT increased; the p-values between two experiments (100 runs of k-means for each experiment) of 
the original dataset, CLUES, and D-IMPACT were 0.490, 0.365 and 0.746, respectively. Since the p-value of 
the t-test is the confidence of the alternative “the two vectors have different means”, a higher p-value indicates 
more stable clustering results. 
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Table 3. The Index scores of clustering results using HAC2 on the original and preprocessed datasets of Iris and Wine. The 
best scores are in bold.                                                                                     

Dataset 
Preprocessing algorithm 

None CLUES D-IMPACT 

Iris 0.759 0.732 0.835 

Wine 0.810 0.899 0.884 

GSE9712 0.330 0.139 0.330 

 
Table 4. Index scores of clustering results using k-means on original and preprocessed datasets of IRIS and Wine. The best 
scores are in bold.                                                                                         

Dataset 
Preprocessing algorithm 

None CLUES D-IMPACT 

Iris 0.730 (0.682) 0.757 (0.677)  0.757 (0.686)  

Wine 0.899 (0.859) 0.915 (0.814) 0.899 (0.852) 

GSE9712 0.403 (0.212) 0.139 (0.224) 0.403 (0.329) 

 
To clearly show the effectiveness of the two algorithms, we visualized the Iris and Wine datasets preproc-

essed by D-IMPACT and CLUES as shown in Figure 12. Since Wine has 13 features (i.e. 78 subplots are re-
quired to visualize all the combinations of the 13 features), we only visualize the combinations for the first four 
features, using 2D plots (Figure 13). D-IMPACT successfully separated two adjacent clusters (blue and red) in 
the Iris dataset. D-IMPACT also distinguished overlapping clusters in the Wine dataset. We marked the separa-
tion created by D-IMPACT with red-dashed ovals in Figure 13. This shows that D-IMPACT worked well with 
overlapped clusters. CLUES degenerated the dataset into a number of overlapped points. This caused the loss of 
cluster structures and reduced the stability of clusters in the dataset (Figure 14). Therefore, the use of k-means 
created different clustering results during the experiment. 

3.3.2. Water-Treatment Plant and Lung Cancer Datasets 
To validate the outlier separability, we tested CLUES and D-IMPACT on the WTP and LC datasets. The WTP 
dataset has small clusters (1 - 4 samples for each cluster). Using aff2, we can reduce the effect of the affinity to 
these minor clusters. We show the dendrogram of HAC clustering results (using single-linkage) on the original 
and preprocessed dataset of WTP in Figure 15. In the dataset preprocessed by D-IMPACT, several minor clus-
ters are more distinct than the major clusters (Figure 15(b)). In addition, the quality of the dataset was improved 
after preprocessing by D-IMPACT; the clustering result using k-means (100 runs) on the dataset preprocessed 
by D-IMPACT achieved average aRI = 0.217, while the clustering result on the original dataset had average aRI 
= 0.120. CLUES merged minor clusters during shrinking and, therefore, the clustering result was bad (average 
aRI = 0.114). To compare the outlier detection capability of D-IMPACT and CLUES, we calculated the Rand 
Index scores for only minor clusters. The resulting dataset preprocessed by D-IMPACT achieved Rand Index = 
0.912, while CLUES had Rand Index = 0.824. In addition, in the clustering result on the dataset preprocessed by 
D-IMPACT, 8 out of 9 minor clusters were correctly detected. In contrast, no minor cluster was correctly de-
tected when using CLUES.  

The lung cancer (LC) dataset was used by R. Visakh and B. Lakshmipathi to validate the outlier detection 
ability of an algorithm focusing on a constraint based cluster ensemble using spectral clustering, called CCE 
[21]. The dataset has no obvious noise or outliers. We detected some noise and outlier points by considering the 
distance to the nearest neighbor and the average distance to the k-nearest neighbors (k = 6) of 32 samples in the 
LC dataset. We generated a list of candidates for noise and outliers: sample numbers 18, 19, 23, 26, and 29. We 
then performed HAC with different linkages on the original and preprocessed LC datasets to detect noise and 

 

 

2We used the linkage that achieved the best result on the original dataset to perform clustering on the preprocessed dataset. These were av-
erage linkage for Iris, complete linkage for Wine dataset, and single linkage for GSE9712. 
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Figure 12. Visualization of the Iris dataset before and after preprocessing by D-IMPACT. 
Visualization of the original dataset is shown in the bottom-left triangle. Visualization of 
the dataset optimized by D-IMPACT is shown in the top-right triangle.                    

 

 
Figure 13. Visualization of the first four features of the Wine dataset before and after preproc-
essing by D-IMPACT. Visualization of the original dataset is shown in the bottom-left triangle. 
Visualization of the dataset preprocessed by D-IMPACT is shown in the top-right triangle.        
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outliers based on the dendrogram. These results were then compared with the reported result of CCE. This was 
done by calculating the accuracy and precision values. The results in Table 5 clearly show that D-IMPACT 
outperformed CCE. It also shows the effectiveness of D-IMPACT in relation to outlier detection. 

4. Conclusion and Discussion 
In this study, we proposed a data preprocessing algorithm named D-IMPACT inspired by the IMPACT cluster-
ing algorithm. D-IMPACT moves data points based on attraction and density to create a new dataset where 
noisy points and outliers are removed, and clusters are separated. The experimental results with different types 
of datasets clearly demonstrated the effectiveness of D-IMPACT. The clustering algorithm employed on the 
datasets preprocessed by D-IMPACT detected clusters and outliers more accurately. 

Although D-IMPACT is effective in the detection of noise and outliers, there are some difficulties remaining. 
In the case of sparse datasets (e.g., microarray data and text data), the approach to noise detection based on the 
density often fails since most of the data, including noise and outlier points, will have a density which equals 1 
under our definition. In addition, the distances between data points are not so different due to the curse of di-
mensionality. In order to overcome this problem, we consider an attraction measure between two data points. 
The attraction of a noise or outlier point is usually small since it is far from other data points. These problems 
may be overcome by using the density and attraction information to detect these data point types. 
 

 
(a)                                                          (b) 

Figure 14. Visualization of the Iris and Wine datasets preprocessed by CLUES. a) Iris; b) Wine.                              
 
Table 5. Accuracy and precision values of noise and outlier detection on the lung cancer dataset.                        

Preprocessing algorithm Linkage Accuracy Precision 

None Single 0.718 0.5 

None Average 0.343 0.556 

None Complete 0.125 0.222 

D-IMPACT Single 0.781 0.667 

D-IMPACT Average 0.812 1 

D-IMPACT Complete 0.812 1 

CCE N/A 0.75 0.6 
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(a) 

 
(b) 

 
(c) 

Figure 15. Dendrograms of the clustering results on the WTP dataset. a) Dendrogram of the original water-treatment dataset; 
b) Dendrogram of the water-treatment dataset after being preprocessed by D-IMPACT; c) Dendrogram of the water-treat- 
ment dataset after being preprocessed by CLUES.                                                                       
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Availability 
The algorithm D-IMPACT is implemented in C++. For readers who are interested in this work, the implementa-
tion and datasets are downloadable at [22]. 
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