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ABSTRACT 

Artificial neural networks have the abilities to learn by example and are capable of solving problems that are hard to 
solve using ordinary rule-based programming. They have many design parameters that affect their performance such as 
the number and sizes of the hidden layers. Large sizes are slow and small sizes are generally not accurate. Tuning the 
neural network size is a hard task because the design space is often large and training is often a long process. We use 
design of experiments techniques to tune the recurrent neural network used in an Arabic handwriting recognition system. 
We show that best results are achieved with three hidden layers and two subsampling layers. To tune the sizes of these 
five layers, we use fractional factorial experiment design to limit the number of experiments to a feasible number. 
Moreover, we replicate the experiment configuration multiple times to overcome the randomness in the training proc- 
ess. The accuracy and time measurements are analyzed and modeled. The two models are then used to locate network 
sizes that are on the Pareto optimal frontier. The approach described in this paper reduces the label error from 26.2% to 
19.8%. 
 
Keywords: Optical Character Recognition; Handwritten Arabic Words; Recurrent Neural Networks; Design of  

Experiments 

1. Introduction 

Artificial neural networks are richly connected networks 
of simple computational elements. They are capable of 
solving problems that linear computing cannot [1]. Re- 
current neural networks (RNN) have demonstrated ex- 
cellent results in recognizing handwritten Arabic words 
[2,3]. Their advantage comes from using the context in- 
formation as they contain memory elements and have 
cyclical connections. 

A neural network has a fixed number of inputs, hidden- 
ness, and output nodes arranged in layers. The number 
and sizes of these layers determine the performance of 
the network, among other network parameters. Small size 
networks often suffer limited information processing 
power. However, large networks may have redundant 
nodes and connections and high computations cost [4,5]. 
On the other hand, the size of the network determines its 
generalization capabilities. Based on what the network 
has learned during the training phase, generalization de- 
termines its capability to decide upon data unknown to it.  

To achieve good generalization, the network size should 
be 1) large enough to learn the similarities within same 
class samples and at the same time what makes one class 
different from other classes and 2) small enough to learn 
the differences among the data of the same class [6]. The 
latter condition avoids the problem of overfitting or over- 
training. Overfitting is the adaptation of the network to 
small differences among specific training data set result- 
ing in false classification of the test samples [7]. 

In this paper, we tune a RNN that is used in a system 
built for recognizing handwritten Arabic words. We 
show how the RNN size is tuned to achieve high recog- 
nition accuracy and reasonable training and recognition 
times. As the design space of the RNN sizes is huge and 
each training experiment takes a long time, we use de- 
sign of experiments techniques to collect as much infor- 
mation as possible with small number of experiments. 
The results of the conducted experiments are analyzed 
and modeled. The derived models are used to select a 
network size that is on the optimal front and has excel- 
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lent accuracy and time cost. 
The rest of this section reviews related work on neural 

network tuning. Section 2 describes the used Arabic 
handwriting recognition system. Section 3 describes the 
design of experiments techniques used in this paper. Sec- 
tion 4 presents the experimental work, results, and their 
analysis. Finally, the conclusions are presented in Section 
5. 

Related Work 

The accuracy of a neural network depends on the settings 
of its parameters, e.g., the number and sizes of the hidden 
layers and the learning scheme. Setting these parameters 
can be accomplished by many approaches including trial 
and error, analytical methods [8], pruning techniques [9- 
11], and constructive technique [12,13]. Optimal settings 
of these parameters are often a time consuming process. 

Analytical methods employ algebraic or statistical 
techniques for this purpose [8]. The disadvantage of 
these methods is that they are static and do not take the 
cost function into consideration. 

Constructive and pruning (destructive) algorithms can 
be used to obtain network structures automatically [14, 
15]. The constructive algorithm starts with a small net- 
work, and connections are added dynamically to expand 
the network. Fahlman and Lebiere started with an input 
and output layers only [12]. Hidden neurons are added 
and connected to the network. The network is trained to 
maximize the correlation between the new units and out- 
put units, and measure the residual error to decide if the 
new unit should be added. 

Lin et al. proposed a self-constructing fuzzy neural 
network which is developed to control a permanent 
magnet synchronous motor speed drive system [14]. It 
starts by initially implementing only input and output 
nodes. The membership and rule nodes are dynamically 
generated according to the input data during the learning 
process. 

On the other hand, the destructive algorithm starts with 
large network, and connections with little influence on 
the cost are deleted dynamically. Le Cun et al. and Has- 
sibi et al. calculate the parameters sensitivity after train- 
ing the network [9,10]. Those values with small or insuf- 
ficient contribution in the formation of the network out- 
put are removed. Weigend et al. introduced a method 
based on cost function regularization by including pen- 
alty term in the cost function [11]. 

Teng and Wah developed learning mechanism by re- 
ducing the number of hidden units of a neural network 
when trained [16]. Their approach was applied to solve 
the problem of classification with binary output. The 
learning time is long, however, the resulting network is 
small and fast when deployed in target applications. The 
stopping criterion in this technique is based on a pre- 

selected threshold. 
Genetic algorithms were also used to find the optimal 

size of neural networks to meet certain application needs. 
Leung et al. applied a genetic algorithm to tune neural 
networks [17]. An improved genetic algorithm was used 
to reduce the cost of fully-connected neural network to a 
partially-connected network. This approach was applied 
for forecasting the sun spots and tuning associative me- 
mory. 

Another approach is pattern classification. Weymaere 
and Martens applied standard pattern classification tech- 
niques to fairly-general, two-layer network [18]. They 
show that it can be easily improved to a near-optimum 
state. Their technique automatically determines the net- 
work topology (hidden layers and direct connections 
between hidden layers and output nodes) yielding the 
best initial performance. 

The above approaches suffer from long learning time 
and complex implementations. On the other hand, the 
statistical techniques of design of experiments (DoE) can 
be applied for better selection of the parameters of artifi- 
cial neural networks. The application of DoE techniques 
to optimize neural network parameters was reported in 
literature [1,19-22]. DoE techniques can estimate opti- 
mum settings in less time with small number of experi- 
mental runs. 

Balestrassi et al. applied DoE to determine the pa- 
rameters of a neural network in a problem of non-linear 
time series forecasting [23]. They applied classical facto- 
rial designs to set the parameters of neural network, such 
that, minimum prediction error could be reached. The 
results suggest that identifying the main factors and in- 
teractions using this approach can perform better com- 
pared to nonlinear auto-regressive models. 

Behmanesh and Rahimi used DoE to optimize the 
RNN in training process for modeling production control 
process and services [24]. Packianather et al. applied the 
Taguchi DoE in the optimization of neural network re- 
quired to classify defect in birch wood veneer [21]. 

Bozzo et al. applied DoE techniques to optimize the 
digital measurement of partial discharge to support di- 
agnosing the defect of power electric components [25]. 
The measuring process is influenced by several factors 
and there is no simple mathematical model available. 
DoE solved the latter problem by analyzing the results of 
81 tests performed on a simple physical model that quan- 
tified the interaction of factors and allowed for derived 
criterion to select optimal values for such factors. 

Staiculescu et al. optimize and characterize a micro- 
wave/millimeter wave flip chip [26]. Two optimization 
techniques are combined in a factorial design with three 
replicates. Olusanya quantified the effect of silane cou- 
pling agents on the durability of titanium joints by using 
DoE technique [27]. 
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In this paper, we use partial factorial DoE with replica- 
tion to select the sizes of the hidden layers of a recurrent 
neural network. 

2. System Overview 

Figure 1 shows the processing stages of our system for 
recognizing handwritten Arabic words (JU-OCR2). An 
earlier version of this system (JU-OCR) has participated 
in ICDAR 2011 Arabic handwriting recognition compe- 
tition [28]. This system achieves now state-of-the-art 
accuracy and is described in detail in Ref. [29]. 

The five stages are: sub-word segmentation, grapheme 
segmentation, feature extraction, sequence transcription, 
and word matching. Each stage consists of one or more 
steps and is briefly described below. 

2.1. Processing Stages 

The first stage segments the input word into sub-words. 
This stage starts by estimating the word’s horizontal 
baseline and identifying the secondary bodies above and 
below the main bodies. The main bodies are extracted as 
sub-words along with their respective secondary bodies. 

These sub-words are then segmented into graphemes 
in two steps: morphological feature points such as end, 
branch, and edge points are first detected from the skele- 
ton of the main bodies, then these points are used in a rule- 
based algorithm to segment the sub-words into graphmes. 
These segmentation algorithms are described in Ref. [30]. 
 

 

Figure 1. Processing stages of our Arabic handwriting rec-
ognition system.  

Efficient features are then extracted from the seg- 
mented graphemes. Although some of these features are 
extracted in the segmentation process, the majority of 
features are extracted in the feature extraction stage. A 
total of 30 features are used including statistical, con- 
figuration, skeleton, boundary, elliptic Fourier descrip- 
tors, and directional features. Using feature statistics 
from the training samples, the feature vectors are nor- 
malized to zero mean and unit standard deviation. 

The normalized feature vectors of the graphemes are 
then passed to the sequence transcription stage. The se- 
quence transcription stage maps sequences of feature 
vectors to sequences of recognized characters. This stage 
uses a recurrent neural network and is further described 
in the following subsection. 

Finally, the word matching stage uses the dictionary of 
valid words to correct transcription errors. 

2.2. Transcription Using RNN 

Our sequence transcription is carried out using a recur- 
rent neural network (RNN) with the bidirectional Long 
Short-Term Memory architecture (BLSTM) [31]. The 
Connectionist Temporal Classification (CTC) [32] is 
used in the output layer. 

Our experiments on BLSTM-CTC were carried out 
with the open source software library RNNLIB [33]. This 
library is selected because it has been used in recognition 
systems that have won three handwriting recognition 
competitions [3,34,35]. 

RNNs exploit the sequence context through cyclic 
connections in the hidden layer [36]. In order to have 
access to future as well as past context, bidirectional 
RNNs are used. In BRNNs, the training sequence is pre- 
sented forwards and backwards to two separate recurrent 
hidden layers. This layer pair is connected to the same 
next hidden layer or to the output layer. 

The BLSTM architecture provides access to long- 
range context in both input sequence directions. This 
architecture consists of the standard BRNN architecture 
with LSTM blocks used in the hidden layer. The LSTM 
blocks replace the non-linear units in the hidden layer of 
simple RNNs [37]. Figure 2 shows an LSTM memory 
block which consists of a core memory cell and three 
gates. The input gate controls storing into the memory 
cell and allows holding information for long periods of 
time. The output gate controls the output activation func- 
tion, and the forget gate affects the internal state. 

The CTC output layer is used to determine a probabil- 
ity distribution over all possible character sequences, 
given a particular feature sequence. A list of the most 
probable output sequences are then selected and passed 
along to the final word matching stage of recognition. 

To improve accuracy, multiple levels of LSTM RNN 
hidden layers can be stacked on top of each other. How-  
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ever, this leads to a very large number of connections 
between the forward and backward layers of successive 
levels, and consequently, increase computational cost. As 
shown in Figure 3, subsampling layers are used to con- 
trol the number of connections between successive levels. 
A subsampling layer works as intermediate layer be- 
tween two levels, one level feeds forward to the subsam- 
pling layer, which in turn feeds forward to the next level. 
This way, the number of weights is reduced and is con- 
trolled by the size of the subsampling layer. 

The performance and computational cost of our RNN 
is determined by many factors including its topology 
manifested by the number and sizes of the hidden layers 
and subsampling layers. In this paper, we use experi- 
mental approach to determine the RNN topology. 

3. Design of Experiments 

In this section, we give an introduction about the design 
of experiments techniques and describe some DoE tech- 
niques that maximize information with the number of 
experiments. 
 

 

Figure 2. LSTM memory block. 
 

 

Figure 3. Neural network topology with subsampling layer. 

3.1. Introduction to DoE 

The goal of DoE is to obtain the maximum information 
with the minimum number of experiments [38]. This is 
particularly important when each experiment is very long 
such as an experiment to train and evaluate a large RNN 
using tens of thousands of handwritten samples. DoE is 
often needed when the performance of a system is a 
function of multiple factors and it is required to select the 
optimal levels for these factors or to evaluate the effect 
of each factor and the interactions among the factors. 

An experimental design consists of specifying the 
number of experiments and the factor level combinations 
for every experiment. In the simple design, we start with 
a base configuration and vary one of the  factors at 
time to find out how each factor affects performance. 
This type of DoE requires 

1
 experiments, 

where i  is the number of levels of Factor . However, 
this technique is not efficient and cannot evaluate inter- 
actions among factors. 

k


i

1
k

ii
n


 1

n

A technique that allows evaluating all effects and 
interactions is the full factorial design which includes all 
possible combinations of all levels of all factors. This 
would sum up to a total of 

1
 experiments. The 

drawback of this technique is getting large number of 
experiments when the number of factors and levels is 
large. 

k

ii
n



An alternative technique is fractional factorial design 
which consists of a fraction of the full factorial experi- 
ments. Although this technique saves time compared 
with the full factorial design, it offers less information 
and the evaluation of factor effects and interactions is 
less precise. Further detail about factorial DoE is in the 
following subsections. 

3.2.  Factorial Design 2k

One variant of the full factorial design is the  fac- 
torial design. This design reduces the number of experi- 
ments to  and allows the evaluation of factor effects 
and interactions. This design works well when the system 
response is a unidirectional function of each factor. 

2k

2k

In this design, only two levels are considered for each 
factor. The two levels are usually the minimum level 
(referred to by −1) and the maximum level (+1). Table 1 
shows this design for two Factors A and B. The table 
illustrates for each of the  experiments, the levels of 
factors A and B and the measured response . 

22

i

The unit vector (I) in this table is needed for estimate- 
ing the average response and the vector (AB) is the 
product of A and B and is needed for estimating the in- 
teraction between vectors A an B. From the experimental 
results, the following model can be derived. 

y

0 A B ABy q q A q B q AB             (1) 
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Table 1. 22 factorial design for two factors. 

i  I A B AB iy
 

1 1 −1 −1 +1 1y
 

2 1 −1 +1 −1 2y
 

3 1 +1 −1 −1 3y
 

4 1 +1 +1 +1 4y
 

 
Since the four vectors of Table 1 are orthogonal, the 

four coefficients are easily computed as: 1) the average  

response is 
4

0 1

1

4 ii
q


  Iy , 2) the effect of factor A is 

4

1

1

4A i
q


  i iA y , 3) the effect of factor B is 

4

1

1

4B i ii
q


  B y , and 4) the interaction between A and B 

is 
4

1

1

4AB i i ii
q A


  B y . 

And generally, for  factors k 1x  through kx , the 
following model is used. 

1 1 2 10 1 1 2 1k kx x k x x x x ky q q x q x q x x q x x         
(2) 

This model has  terms; the average response,   2k k

factor effects,  two-factor interactions,  three-  
2

k 
 
  3

k 
 
 

factor interactions, etc. The  coefficients can be simi- 
larly computed, e.g., the average response  

2k

2

0 1

1

2

k

ik i
q


  Iy , the effect of factor jx  is 

2

1

1

2

k

jx ji ik i
q


  x y , and the interaction between jx  and 

lx  is 
2

1

1

2

k

j lx x jk i
q x


  i li ix y . 

3.3.  Factorial Design with Replication 2k r

Many measurements have experimental error or involve 
some randomness. For example, the initial weights used 
in training a neural network are randomly selected. Con- 
sequently, the performance of a neural network changes 
from one experiment to another. The 2  factorial 
design does not estimate such errors. The alternative is 
using the  factorial design with replication. Here 
each factor level combination is repeated  replications 
and a total of  experiments is carried out. 

k

2k r

2
r

k r
The mean response iy  of every  replications is 

calculated and is used in place of i  to calculate the 
model coefficients, as described above. Thus, as  in- 
creases, the effect of the random behavior is averaged out. 
Such model estimates the expected response  and 

allows estimating the experimental error of combination 
, replication  as 

r
y

r

ˆiy

i j ˆij ij ie y y  . 

3.4.  Fractional Factorial Design 2k p r

Full factorial design is time consuming with large num- 
ber of factors  and replications . The 2k r k p  frac- 
tional factorial design features reducing the number of 
experiments by a factor of , where  is a suitable 
positive integer. The down side is that the 

2 p p
2k p  model 

offers less precise estimation of the factor effects and 
interactions. It only has  effects and interactions 
out of . 

2k p

5

2k

In this design, a sign table of  factors is con- 
structed similar to the example shown in Table 2. In this 
example, we have 

k p

k   factors and . The three 
factors are initially labeled A, B, and C. Note that this 
table includes the sign vectors of four two- and three- 
factor interactions. For the case when we have five fac- 
tors, e.g., L1, L2, L3, S1, and S2, three factors are 
mapped to A, B, and C, and the remaining two factors 
are mapped to high-degree interactions. In this example, 
S1 and S2 are mapped to the interactions BC and ABC, 
respectively. 

2p

For  replications, the mean response of  experi- 
ments is used in estimating the model coefficients as 
described in the previous subsection. The model of Table 
2 has 

r



r

5 22 8  coefficients. Each coefficient is found as 
one eighth the dot product of its vector by the  

mean response vector 
8

1

1

8x ii
q



 
 

 xy

 . These eight  

coefficients estimate the average response, five factor 
effects, and two interactions specified in the following 
model. 

0 1

1 2

q

q L
2 3

1 3 1 2

ˆ 1 2 3

1 2 1 3 1 2
L L L

L L L L S S

y q L q L q L

L q L L q S q S

   

   
    (3) 

 

Table 2. 5 22   fractional factorial experiment design sign 
matrix. 

i  I A B C AB AC BC ABC

  L1 L2 L3   S1 S2 

1 1 −1 −1 −1 +1 +1 +1 −1 

2 1 −1 −1 +1 +1 −1 −1 +1 

3 1 −1 +1 −1 −1 +1 −1 +1 

4 1 −1 +1 +1 −1 −1 +1 −1 

5 1 +1 −1 −1 −1 −1 +1 +1 

6 1 +1 −1 +1 −1 +1 −1 −1 

7 1 +1 +1 −1 +1 −1 −1 −1 

8 1 +1 +1 +1 +1 +1 +1 +1 
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When compared with a  model, this model has one 
fourth the number of coefficients. This model confounds 
four effects or interactions in one coefficient. The con- 
founding groups can be found through Algebra of con- 
founding [38]. For example, the coefficient 2S  in- 
cludes the effect of factor S2 and the interactions 
L1L2L3, L2L3S1S2, and L1S1. This problem of reduced 
information is often tolerated as the factor effects are us- 
ually larger than the interactions and the value of a coef- 
ficient is dominated by its factor effect. 

2k

q

3.5. Allocation of Variation 

The fraction of variation explained by each factor or in- 
teraction is found relative to the total variation of the 
response. The total variation or total sum of squares is 
found by 

 
2 2

1 1

.
k p r

ij
i j

SST y y


 

             (4) 

The variation explained by x  is 22k p
xSSx rq . And 

the fraction of variation explained by x  is . SSTSSx/
Similarly, the fraction of variation due to the experi- 

mental error can be found from the sum of square errors 
by , where SSE is found by SSTSSE/

 
2 2

1 1

.
k p r

ij i
i j

SSE y y


 

             (5) 

4. Experiments and Results 

This section describes the experiments carried out to tune 
the topology of the RNN sequence transcriber for effi- 
cient results. First, we describe the database of handwrit- 
ten Arabic words used. Then we describe the two sets of 
conducted experiments and present and analyze their 
results. The first set of experiments was carried out to 
select the best number of layers and the second set to 
select the size of each layer. 

4.1. Samples 

This work uses the IfN/ENIT database of handwritten 
Arabic words [39]. This database is used by more than 
110 research groups in about 35 countries [28]. The da- 
tabase version used is v2.0p1e and consists of 32,492 
Arabic words handwritten by more than 1000 writers. 
This database is organized in five training sets and two 
test sets summarized in Table 3. The table shows the 
number of samples, the number of sub-words (parts of 
Arabic words), and the number of characters that each set 
has. 

The two test sets are publicly unavailable and are used 
in competitions. Therefore, we use the five training sets 

for training, validation, and testing. Set e is the hardest 
set and has the largest variety of writers. Recognition 
systems often score worst on this set. Therefore, in all the 
experiments described in this paper, we use set e as the 
test set and use the first four sets for training and valida- 
tion. We have randomly selected 90% of the samples of 
the first four sets for training and the rest 10% for valida- 
tion. 

4.2. Selecting the Number of Layers 

To select the number of layers of the RNN transcriber, 
we have carried out six experiments of varying numbers 
of layers. The configurations used in these six experi- 
ments are: 

1) One hidden layer of size 100.  
2) Two hidden layers of size 60 and 180.  
2s) Two hidden layers of size 60 and 180 with sub- 

sampling layer of size 60.  
3) Three hidden layers of size 40, 80, and 180.  
3s) Three hidden layers of size 40, 80, and 180 with 

two sub-sampling layers of sizes 40 and 80.  
4) Four hidden layers of size 40, 80, 120, and 180.  
These layer sizes are the default sizes that are found in 

the RNNLIB library’s configuration files. 
Figure 4 shows the label error of these six confi- 

gurations. The label error rate is the ratio of insertions, 
deletions, and substitutions on the output to match the 
target labels of the test set . e

These results show that the accuracy improves with 
more layers and with using sub-sampling layers. How- 
ever, the accuracy does not increase when increasing the 
number of layers from three to four. Therefore, we adopt 
the topology of three layers with two sub-sampling lay- 
ers. 

4.3. Selecting the Layer Sizes 

After concluding that it is best to use three hidden layers 
with two sub-sampling layers, we wanted to find the 
sizes of these five layers. We have noticed that increasing  
 
Table 3. The IfN/ENIT database of handwritten Arabic 
words. 

 Set Names PAWs Characters 

a  6537 28,298 51,984 

b  6710 29,220 53,862 

c  6477 28,391 52,155 

d  6735 29,511 54,166 

Training Sets

e  6033 22,640 45,169 

f
 

8671 32,918 64,781 
Test Sets 

s  1573 6109 11,922 
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Figure 4. The label error for set  on neural networks of 
six topologies. 

e

 
the layer sizes generally improves the accuracy, but in- 
creases the training time and decreases the recognition 
speed. Our objective in this set of experiments was to 
find layer sizes that give high accuracy and acceptable 
training and recognition time. 

Selecting the sizes of the five layers is a DoA problem 
of five factors. As each factor may take many levels, we 
considered  design. This consideration is justified be- 
cause the RNN response is generally monotonic with the 
layer sizes. 

2k

However, as the neural network training involves 
some randomness, the neural network response varies 
from one experiment to another. Therefore, each confi- 
guration should be repeated  repetitions to get average 
values. This is a  design. With  and 

r
2k r 5k  4r  , 

we need 128 experiments that would take too long time. 
Therefore, we decided to use  design with 

, , and . This design reduces the num- 
ber of experiments to 32. The selected design is shown in 
Table 2 where the three hidden layers are referred to as 
L1, L2, and L3, and the two sub-sampling layers are S1 
and S2. Table 4 shows the levels used in the eight 
configurations. Note that the minimum level (−1) is sel- 
ected as one half the default value in the 3S configuration 
described in Subsection 4.2 above and the maximum 
level (+1) is twice the default value. 

2k p r

5k  2p  4r 

Table 5 shows the label error for the eight configure- 
tions on four replications. The table also shows the aver- 
age label error of each four replications. Note that the 
label error decreases from 23.9% for the smallest layer 
sizes to 20.1% for the largest sizes. The fraction of varia- 
tion due to experimental error (SSE/SST) = 2.0/43.0 = 
4.5%. 

Table 6 shows the time of each experiment in hours. 
Note that this time includes the training and testing times. 
These experiments were carried out on Ubuntu 10.10 
computers with Intel Core i7-2600 quad processors run- 
ning at 3.4 GHz and equipped with 4 GB memory. Note 
that this time is highly affected by the neural network  

size and ranges from 13.8 hours to 6 days and 19 hours. 
Moreover, due to the randomness in training the neural 
networks, the training time highly changes from one rep- 
lication to another. The fraction of variation due to ex- 
perimental error in experiment time (SSE/SST) = 4230/ 
87,700 = 4.8%. 
 

Table 4. 5 22   fractional factorial experiment design show- 
ing layer sizes used. 

i  L1 L2 L3 S1 S2 

1 −1(20) −1(40) −1(90) +1(80) −1(40) 

2 −1(20) −1(40) +1(360) −1(20) +1(160) 

3 −1(20) +1(160) −1(90) −1(20) +1(160) 

4 −1(20) +1(160) +1(360) +1(80) −1(40) 

5 +1(80) −1(40) −1(90) +1(80) +1(160) 

6 +1(80) −1(40) +1(360) −1(20) −1(40) 

7 +1(80) +1(160) −1(90) −1(20) −1(40) 

8 +1(80) +1(160) +1(360) +1(80) +1(160) 

 
Table 5. Label error for the eight layer sizes configura- 
tions. 

i  1y
 2y

 3y
 4y

 
y

 

1 23.5% 23.5% 23.6% 23.2% 23.5% 

2 21.9% 22.8% 22.0% 22.3% 22.3% 

3 23.1% 23.4% 23.5% 23.1% 23.3% 

4 21.9% 22.2% 21.8% 22.6% 22.1% 

5 21.8% 21.6% 21.5% 21.6% 21.6% 

6 22.7% 22.2% 22.0% 21.9% 22.2% 

7 23.6% 23.7% 24.3% 24.0% 23.9% 

8 20.2% 19.9% 20.3% 19.9% 20.1% 

 
Table 6. Experiment time in hours for the eight layer sizes 
configurations. 

i  1t  2t  3t  4t  t  

1 14.2 14.2 13.5 13.3 13.8 

2 159.6 158.0 170.8 165.2 163.4 

3 32.8 34.7 34.9 34.2 34.2 

4 81.8 72.1 77.4 74.8 76.5 

5 17.5 20.9 19.8 29.0 21.8 

6 86.1 113.5 50.7 46.9 74.3 

7 22.0 16.4 21.4 19.8 19.9 

8 101.9 117.0 139.1 139.1 124.2 
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4.4. Analysis 

We used the model of Equ. 3 on the results shown in 
Tables 5 and 6. Table 7 shows the computed eight 
model coefficients for the label error and for the experi- 
ment time. This table also shows the fraction of variation 
explained by each factor. 

The contribution of layer L3 on the label error is the 
largest among other factors at 36.5%. The two sub-sam- 
pling layers S1 and S2 come next and have almost equal 
contributions at 22.0% and 23.1%, respectively. 

Layer L3 also has the largest effect on the experiment 
time at 69.3%. Next comes the effect of the sub-sampling 
layer S2 at 14.4%. 

As L3 has the largest contribution, increasing it greatly 
lowers the label error, but increases the execution time. 
Also, increasing the sizes of S1 and S2 decreases the 
label error and increases the execution time. However, 
increasing L1 also enhances the label error with little 
increase in execution time, similar to S1. On the other 
hand, L2 has minor effect, increasing its value does not 
give measurable enhancement. 

To explore the design space of accuracy and time, we 
use Figure 5. This figure shows the results of the eight 
configurations of Table 4 (drawn with “+” sign) and the 
base, default configuration 3S described in Subsection 
1.4.2 (square sign at 45 hrs and 21.0%). Moreover, the 
figure shows the estimated label error and experiment 
time for 24 additional configurations using the model of 
Equation (3) and the coefficients shown in Table 7 (“×” 
sign). These 24 configurations are the 32 possible con- 
figurations of five binary levels minus the eight configu- 
rations of Table 4. 

The designer should select configurations that are on 
the Pareto optimal frontier. This frontier consists here of 
the points of low label error and low experiment time. 
The lowest two points are the point of Configuration 8 at 
124 hrs and 20.1% and a point from the model at 100 hrs 
and 20.0%. This model point has the configuration L1 = 
80, L2 = 40, L3 = 360, S1 = 80, and S2 = 160. 

This design point was verified experimentally. It 
turned out that this configuration achieves 20.2% label  
 

 

Figure 5. Design space of the label error and experiment 
time. 

Table 7. Computed model coefficients and fraction of varia- 
tion explained by each factor. 

 0q 1Lq 2Lq 3Lq  1 2L Lq  1 3L Lq  1Sq 2Sq

22.36 −0.413 −0.019 −0.700 0.056 −0.113 −0.544 −0.556Label 
Error 

 ŷ  12.7% 0.0% 36.5% 0.2% 0.9% 22.0% 23.1%

66.0 −5.95 −2.31 43.60 14.32 −4.39 −6.92 19.89Time 

 t̂
 1.3% 0.2% 69.3% 7.5% 0.7% 1.7% 14.4%

 
error and takes 89 hours. This configuration was adopted 
for its excellent accuracy and time trade-off. 

A slightly higher accuracy can be achieved using 
much larger configuration. We have experimented with a 
large configuration of L1 = 100, L2 = 100, L3 = 360, S1 
= 120, and S2 = 180. This configuration achieves 19.8% 
label error and takes 281 hours. 

5. Conclusions 

In this paper, we have presented our approach and results 
for tuning a recurrent neural network sequence transcri- 
ber. This transcriber is used in the recognition stage of 
our system for recognizing Arabic handwritten words 
(JU-OCR2). 

We have used design of experiments techniques to 
find a RNN topology that gives good recognition accur- 
acy and experiment time. The experimental results pre- 
sented in this paper show that it is best to construct the 
RNN with three hidden layers and two subsampling 
layers. 

To select the sizes of these five layers, we designed a 
set of experiments using the rpk2

5=
 fractional factorial 

design. For five factors  and , we have 
eight experimental configurations. Each configuration is 
repeated 

k 2=p

4=r  repetitions to overcome the randomness 
process in training RNNs. 

Our analysis of the label error and experiment time of 
the 32 experiments show that the third hidden layer has 
the largest contribution on label error and experiment 
time, whereas the first hidden layer has the smallest con- 
tribution. 

Two models were constructed from these experiments 
to find the label error and experiment time as functions 
of the sizes of the five layers. These models were able to 
predict a configuration that lies on the Pareto optimal 
frontier. This configuration is L1 = 80, L2 = 40, L3 = 
360, S1 = 80, and S2 = 160. We have experimentally 
verified that this is an excellent design point that achi- 
eves 20.2% label error and takes 89 hours. 
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