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ABSTRACT 

The equivalence exists between regular grammar and finite automata in accepting languages. Some complicated con- 
version algorithms have also been in existence. The simplified forms of the algorithms and their proofs are given. And 
the construction algorithm 5 of the equivalent conversion from finite automata to left linear grammar is presented as 
well as its correctness proof. Additionally, a relevant example is expounded. 
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1. Introduction 

A rapid development in formal languages has made a 
profound influence on computer science, especially 
played a greater role in the design of programming lan- 
guages, compiling theory and computational complexity 
since formal language system was established by Chom-
sky in 1956. Chomsky’s Conversion Generative Gram-
mar was classified into phase grammar, context-sensitive 
grammar, context-free grammar and linear grammar (or 
regular grammar) that includes left linear grammar and 
right linear grammar. All these are just a simple intro-
duction to grammar, and automata theory, which plays an 
important role in compiling theory and technology, has 
another far-reaching impact on computer science. 

A regular grammar G, applied to formal representation 
and theoretical research on regular language, is the for-
mal description of regular language, mainly describes 
symbolic letters and often identifies words in compiler. A 
finite automata M including NFA (Non-deterministic 
Finite Automata) and DFA (Deterministic Finite Auto-
mata), applied to the formal model representation and 
research on digital computer, image recognition, infor-
mation coding and neural process etc., is the formal 
model of discrete and dynamic system that have finite 
memory, and is applied to word identification and the 
model representation and realization of generation proc-
ess during the course of word analysis in compiler. As far 
as language representation is concerned, the equivalence 
exists between the language regular grammar G describes 
and that finite automata M identifies. 

2. Some Equivalent Conversion Algorithms 
between Regular Grammar and Finite 
Automata 

The definition of DFA where some notations in the re-
mainder of this paper are shown is given first. The defi-
nition of NFA and regular grammar as well as the sub-
set-based construction algorithm from NFA to DFA can 
be easily found in [1-4]. 

Definition 1. A DFA M is an automatic recognition 
device that is a quintuple denoted by  0 , 
where each element in S indicates one state in present 
system; ∑ denotes the set of conditions under which the 
system may happen; δ is a single valued function from 

, , , ,S s F

S   to S with  1, 2s a s   indicating if the state of 
the current system is s1 with an input a, there will be a 
transition from the current state to the successive one 
named s2; s0 is the very unique start state and F the set of 
final states. 

With δ, one can easily identify whether the condition 
in   can be accepted by DFA or not. Now, we extend 
the definition domain of δ to  meaning that for 
any 

*S 
s S , a  and w * ,  ,s s    and 

    , ,,s aw s a w  



  hold. That is to say, if the 
condition is ε, the current state is unchanged; if the state 
is s and the condition aw, the system will first map δ(s, a) 
to s1, then continue to map from s1 until the last one. For 
some set ω where * , if  0 ,s f    where 
f F  holds, then we say that DFA can accept the con-

dition set ω. 
Definition 2. If a regular grammar G describes the 

same language as that a finite automata M identifies, viz., 
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   L G L M , then G is equivalent to M. 
The following theorems are concerned about the 

equivalence between regular grammar and finite auto-
mata. 

Theorem 1. For each right linear grammar GR (or left 
linear grammar GL), there is one finite automata M where 
         or R LL M L G L M L G  . 
Here is the construction algorithm from regular gram-

mar to finite automata, and the proof of correctness. It 
contains two cases, viz., one from right linear grammar 
and another from left linear grammar to finite automata. 

Construction Algorithm 1. 
For a given right linear grammar , , ,R T NG V V S 



, 
there is a corresponding NFA 

      , , , ,N TM V f V S f   

where f is a newly added final state with Nf V  hold- 
ing, the transition function δ is defined by the following 
rules. 

1) For any NA V
 ,

 and T , if  
holds, then let 

a V  A a 
A a 

,
f  hold; or 

2) For any NA B V  and , if  
holds, then let 

Ta V  A aB 
 ,A a  B  hold. 

Proof. For a right linear grammar GR, in the leftmost 
derivation of S =>*ω (ω ∈ ∑*), using A→aB once is 
equal to the case that the current state A meeting with a 
will be transited to the successive state B in M. In the last 
derivation, using A→a once is equal to the case that the 
current state A meeting with a will be transited to f, the 
final state in M. Here we let 1 n     where 

, then S =>*ω if and only if  1, ,i i    n

 
 

f

  

    
   

     
   

1 2

1 2 3

1 2 1

1 2 1

,  , , , ,

, , , , ,  

, , , , , ,

, , , , ,

n

n

i i n

n n

S S

S

S

S

      

      

         

        









 

  





   

  

holds. 

For GR, therefore, the enough and necessary conditions 
of S =>*ω are that there is one path from S, the start state 
to f, the final state in M. During the course of the transi-
tion, all the conditions met following one by one are just 
equal to ω, viz.,  RL G  if and only if  .L M  
Therefore, it is evident that    RL M L G  holds. 

Construction Algorithm 2. 
For a given left linear grammar , , ,L T NG V V S 



, 
there is a corresponding NFA 

      , , , ,N TM V q V q S   

where q is a newly added start state with Nq V  hold-
ing, the transition function δ is defined by the following 
rules. 

1) For any NA V  and T , if  
holds, then let 

a V  A a 
 ,q a A  hold; or 

2) for any , NA B V  and , if  
holds, then let 

Ta V  A Ba 
 ,B a A  hold. 

The proof of construction Algorithm 2 is similar to 
that of construction algorithm 1 and we obtain 

   LL M L G  

Theorem 2. For each finite automata M, there is one 
right linear grammar GR or left linear grammar GL where 
     R LL G L G L M  . 
Construction Algorithm 3. 
For a given finite automata  0, , , ,M S s F  , a 

corresponding right linear grammar 0, , ,RG S s    
can be constructed. We discuss this in two cases. 

1) If 0s F  holds, then Ψ is defined by the follow-
ing rules. 
For any a  and ,A B S , if  ,A a B   holds, 
then 

a) if B F  holds, let A→aB hold; or 
b) if B F  holds, let A→a|aB hold. Or 
2) if 0s F  holds, then  holds because 

of 
L M  

 0 , 0s s   . From step 1) we know that 
     RL G L M    holds. So, a new generation rule 

s1→s0|ε is added to GR created from step 1) where s1 is a 
newly added start symbol with the original symbol s0 
being no longer the start symbol any more and 1s S  
holding. Such a right linear grammar obtained is still 
named GR, viz.    1 1 1 0, , ,RG S s s s s      . 

3. The Improved Version for Construction 
Algorithm 3 

Construction Algorithm 3 discussed above is complex in 
some sort. The following one named as Construction 
Algorithm 4, more easily understood, is its simplified 
version. 

Construction Algorithm 4. 
For a given finite automata  0, , , ,M S s F  , a 

corresponding right linear grammar 0, , ,RG S s    
can be constructed. For any  and a ,A B S , 

1) If  ,A a B   holds, then let A→aB hold; 
2) If B F  holds, then we add a generation rule 

B→ε. Here B may be equal to s0, and as long as B is a 
member of the set of final states, B→ε must be added. 

Proof. For any *  in GR, if s0 =>*ω holds, let 

1 n     hold where , we have 
s0=> ω1s1 = > ω1ω2s2 => ··· => ω1 ··· ωisi => ··· => ω1 ··· 
ωn. 

 1, ,i i    n

That’s to say, s0 = > *ω holds if and only if there is a 
path from s0 meeting 1, , n   one by one to final 
states in M. Therefore,  RL G  if and only if 

 L M  holds, viz.,   L M RL G  . 
It is obvious that Construction Algorithm 4 is much 

simpler than Construction Algorithm 3. 
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4. The Proposed Construction Algorithm 

The following Construction Algorithm 5 presented in this 
work as much as I know so far is an effective algorithm 
about the equivalent conversion from finite automata M 
to left linear grammar GL according to construction algo-
rithm 4; its proof of correctness is also given. 

Construction Algorithm 5. 
Let a given finite automata be  0, , , ,M S s F 

q S
, 

adding q, a new symbol, as the start symbol with   
holding. Let  , ,G S q q   ,L  hold where Ψ is 
defined by the following rules. 

For any  and a , ,A B f S , 
1) If  ,A a B   holds, then let B→Aa hold; 
2) Add a generation rule s0→ε; and 
3) For any , add a generation rule q→f. f F
The rule 3) means that we add a new state q as the fi-

nal state, and then link all the original final states which 
are no longer final ones to q through ε respectively in the 
state transition diagram of M. 

In particular, we can let , , ,LG S f    hold when 
F, the set of final states, contains only one final state f 
where Ψ is defined by the following rules. 

For any  and a ,A B S , 
1) If  ,A a B  , let B→Aa hold; 
2) Add a generation rule s0→ε. 
Proof. For left linear grammar GL, using q→f once is 

equivalent to the case one of the original states meeting ε 
will be transited to q in M in the very beginning of the 
rightmost derivation of q = >*ω where ; during 
the course of the derivation, using B→Aa once is 
equivalent to the case the state A meeting a will be tran-
sited to the successive state B in M; in the final step of 
the derivation, using 0

*

s   once is equivalent to the 
case that the state s0 meeting ε stops in s0 in M. Therefore, 
the rightmost derivation of q = > *ω is just the inverse 
chain of the path M transits from the very start state s0 to 
the very final state f with all the conditions linked to-
gether in the path are just identical with ω. 

Let 1 n   
 1, ,i  

 hold without thought where 

i . If q = > *ω holds, we have q = > f 
= > sn−1ωn = > sn−2ωn−1ωn = > ··· = > si−1ωi ··· ωn = > ··· = > 
s0ω1 ··· ωn = > ω1 ··· ωn, and there is a transition 

n 
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of which each inverse step is corresponding to the one of 
the rightmost derivation above. 

There,  LL G  holds if and only if  L M  
holds, viz.  holds.  LL G L M

According to all of the above discussed and the 
equivalence between NFA and DFA, Theorem 2 is 
proved. 

An example expatriated for Construction Algorithm 5 
is taken as follows. 

Example 1. Let DFA be  
     , , , 0,1, 2 , , ,M A B f A f  which is equiva-

lent to regular expression 02(102)* where δ satisfies 
 ,0A B  ,  , 2B f  and  ,1f A  . The state 

transition diagram of M is shown in Figure 1. Now we 
can construct a left linear grammar  

   0,1, 2 , , , , , ,LG A B f q q   equivalent to M where 

 , 2,  0,  1,  q f f B B A A f A       
 

holds. 
In Figure 1, we can reduce GL to 
   0,1,2 , , , , ,A B f f   because of only one final state 

f here where  2, 0,  1,  f B B A A f A         
holds. Furthermore, we can also get rid of ε from A→ε 
for A is not a start symbol in GL, and then  

 2, 0 0, 1f B B A A f      is obtained. 

5. Related Work 

The known proofs that the equivalence and containment 
problems for regular expressions, regular grammars and 
nondeterministic finite automata are PSPACE-complete 
that depends upon consideration of highly unambiguous 
expressions, grammars and automata. R. E. Stearns and 
H. B. Hunt III [5] proved that such dependence is inher-
ent. Deterministic polynomial-time algorithms are pre-
sented for the equivalence and containment problems for 
unambiguous regular expressions, unambiguous regular 
grammars and unambiguous finite automata. The algo-
rithms are then extended to ambiguity bounded by a 
fixed k. Their algorithms depend upon several elemen-
tary observations on the solutions of systems of homo-
geneous linear difference equations with constant coeffi-
cients and their relationship with the number of deriva-
tions of strings of a given length n by a regular grammar. 
  V. Laurikari [6] proposed a conservative extension to 
traditional nondeterministic finite automata (NFAs) to 
keep track of the positions in the input string for the last 
uses of selected transitions, by adding “tags” to transi-
tions. The resulting automata are reminiscent of nonde-
terministic Mealy machines. A formal semantics of auto- 
 

1 

0 

A f 

2 B 

 

 Figure 1. The state transition diagram of M. 
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mata with tagged transitions is given. An algorithm is 
given to convert these augmented automata to the corre-
sponding deterministic automata, which can be used to 
process strings efficiently. The application to regular 
expressions is discussed, explaining how the algorithms 
can be used to implement, for example, substring ad-
dressing and a look ahead operator, and an informal 
comparison to other widely-used algorithms is made.  

Cyril Allauzen, et al. [7] presented a general weighted 
grammar software library, the GRM Library, that can be 
used in a variety of applications in text, speech, and bio- 
sequence processing. The underlying algorithms were 
designed to support a wide variety of semirings and the 
representation and use of very large grammars and auto-
mata of several hundred million rules or transitions. They 
described several algorithms and utilities of this library 
and pointed out in each case their application to several 
text and speech processing tasks. 

Several observations were presented on the computa-
tional complexity of regular expression problems [8]. The 
equivalence and containment problems were shown to 
require more than linear time on any multiple tape deter- 
ministic Turing machine. The complexity of the equiva- 
lence and containment problems was shown to be “essen- 
tially” independent of the structure of the languages rep- 
resented. Subclasses of the regular grammars, that gener- 
ated all regular sets but for which equivalence and con- 
tainment were provably decidable deterministically in 
polynomial time, were also presented. As corollaries sev-
eral program scheme problems studied in the literature 
were shown to be decidable deterministically in polyno-
mial time. 

Anne Brüggemann-Klein [9] showed that the Glush-
kov automaton can be constructed in a time quadratic in 
the size of the expression, and that this is worst-case op-
timal. For deterministic expressions, their algorithm has 
even linear run time. This improves on the cubic time 
methods. 

Motivated by Li and Pedrycz’s work on fuzzy finite 
automata and fuzzy regular expressions with membership 
values in lattice-ordered monoids and inspired by the 
close relationship between the automata theory and the 
theory of formal grammars, Xiuhong Guo [10] estab-
lished a fundamental framework of L-valued grammar. It 
was shown that the set of L-valued regular languages co-
incides with the set of L-languages recognized by nonde-
terministic L-fuzzy finite automata and every L-language 
recognized by a deterministic L-fuzzy finite automaton is 
an L-valued regular language. 

Formal construction of deterministic finite automata 
(DFA) based on regular expression was presented [11] as 
a part of lexical analyzer. At first, syntax tree is described 
based on the augmented regular expression. Then formal 
description of important operators, checking nullability 

and computing first and last positions of internal nodes of 
the tree is described. Next, the transition diagram is de-
scribed from the follow positions and converted into de-
terministic finite automata by defining a relationship 
among syntax tree, transition diagram and DFA. Formal 
specification of the procedure is described using Z nota-
tion and model analysis is provided using Z/Eves toolset. 

Sanjay Bhargava, et al. [12] described a method for 
constructing a minimal deterministic finite automaton 
(DFA) from a regular expression. It is based on a set of 
graph grammar rules for combining many graphs (DFA) 
to obtain another desired graph (DFA). The graph gram- 
mar rules are presented in the form of a parsing algo- 
rithm that converts a regular expression R into a minimal 
deterministic finite automaton M such that the language 
accepted by DFA M is same as the language described 
by regular expression R. 

6. Concluding Remarks 

The conversion algorithm can be realized from regular 
grammar to finite automata for the equivalence exists 
between the language regular grammar G describes and 
that finite automata M identifies and vice versa. In fact, 
the conversion between them is the very conversion be-
tween generation rules of grammar and mapping function 
of finite automata. The simplified forms of the conver-
sion algorithms which are a little complicated and their 
proofs are given. And an algorithm about the equivalent 
conversion from finite automata to left linear grammar is 
presented as well as its correctness proof. Additionally, a 
relevant example is expounded. 
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