
Journal of Software Engineering and Applications, 2013, 6, 33-37
http://dx.doi.org/10.4236/jsea.2013.61005 Published Online January 2013 (http://www.scirp.org/journal/jsea)

33

The Equivalent Conversion between Regular Grammar
and Finite Automata

Jielan Zhang1, Zhongsheng Qian2

1Department of Information Technology, Yingtan Vocational and Technical College, Yingtan, China; 2School of Information Tech-
nology, Jiangxi University of Finance and Economics, Nanchang, China.
Email: changesme@163.com

Received November 21st, 2012; revised December 20th, 2012; accepted December 31st, 2012

ABSTRACT

The equivalence exists between regular grammar and finite automata in accepting languages. Some complicated con-
version algorithms have also been in existence. The simplified forms of the algorithms and their proofs are given. And
the construction algorithm 5 of the equivalent conversion from finite automata to left linear grammar is presented as
well as its correctness proof. Additionally, a relevant example is expounded.

Keywords: Regular Grammar; Finite Automata; NFA; DFA

1. Introduction

A rapid development in formal languages has made a
profound influence on computer science, especially
played a greater role in the design of programming lan-
guages, compiling theory and computational complexity
since formal language system was established by Chom-
sky in 1956. Chomsky’s Conversion Generative Gram-
mar was classified into phase grammar, context-sensitive
grammar, context-free grammar and linear grammar (or
regular grammar) that includes left linear grammar and
right linear grammar. All these are just a simple intro-
duction to grammar, and automata theory, which plays an
important role in compiling theory and technology, has
another far-reaching impact on computer science.

A regular grammar G, applied to formal representation
and theoretical research on regular language, is the for-
mal description of regular language, mainly describes
symbolic letters and often identifies words in compiler. A
finite automata M including NFA (Non-deterministic
Finite Automata) and DFA (Deterministic Finite Auto-
mata), applied to the formal model representation and
research on digital computer, image recognition, infor-
mation coding and neural process etc., is the formal
model of discrete and dynamic system that have finite
memory, and is applied to word identification and the
model representation and realization of generation proc-
ess during the course of word analysis in compiler. As far
as language representation is concerned, the equivalence
exists between the language regular grammar G describes
and that finite automata M identifies.

2. Some Equivalent Conversion Algorithms
between Regular Grammar and Finite
Automata

The definition of DFA where some notations in the re-
mainder of this paper are shown is given first. The defi-
nition of NFA and regular grammar as well as the sub-
set-based construction algorithm from NFA to DFA can
be easily found in [1-4].

Definition 1. A DFA M is an automatic recognition
device that is a quintuple denoted by  0 ,
where each element in S indicates one state in present
system; ∑ denotes the set of conditions under which the
system may happen; δ is a single valued function from

, , , ,S s F

S  to S with  1, 2s a s  indicating if the state of
the current system is s1 with an input a, there will be a
transition from the current state to the successive one
named s2; s0 is the very unique start state and F the set of
final states.

With δ, one can easily identify whether the condition
in  can be accepted by DFA or not. Now, we extend
the definition domain of δ to meaning that for
any

*S 
s S , a and w * ,  ,s s   and

    , ,,s aw s a w  



 hold. That is to say, if the
condition is ε, the current state is unchanged; if the state
is s and the condition aw, the system will first map δ(s, a)
to s1, then continue to map from s1 until the last one. For
some set ω where * , if  0 ,s f   where
f F holds, then we say that DFA can accept the con-

dition set ω.
Definition 2. If a regular grammar G describes the

same language as that a finite automata M identifies, viz.,

Copyright © 2013 SciRes. JSEA

The Equivalent Conversion between Regular Grammar and Finite Automata 34

   L G L M , then G is equivalent to M.
The following theorems are concerned about the

equivalence between regular grammar and finite auto-
mata.

Theorem 1. For each right linear grammar GR (or left
linear grammar GL), there is one finite automata M where
         or R LL M L G L M L G  .
Here is the construction algorithm from regular gram-

mar to finite automata, and the proof of correctness. It
contains two cases, viz., one from right linear grammar
and another from left linear grammar to finite automata.

Construction Algorithm 1.
For a given right linear grammar , , ,R T NG V V S 



,
there is a corresponding NFA

      , , , ,N TM V f V S f 

where f is a newly added final state with Nf V hold-
ing, the transition function δ is defined by the following
rules.

1) For any NA V
 ,

 and T , if
holds, then let

a V  A a 
A a 

,
f hold; or

2) For any NA B V and , if
holds, then let

Ta V  A aB 
 ,A a  B hold.

Proof. For a right linear grammar GR, in the leftmost
derivation of S =>*ω (ω ∈ ∑*), using A→aB once is
equal to the case that the current state A meeting with a
will be transited to the successive state B in M. In the last
derivation, using A→a once is equal to the case that the
current state A meeting with a will be transited to f, the
final state in M. Here we let 1 n    where

, then S =>*ω if and only if  1, ,i i    n

 

f

    
   

     
   

1 2

1 2 3

1 2 1

1 2 1

, , , , ,

, , , , ,

, , , , , ,

, , , , ,

n

n

i i n

n n

S S

S

S

S

      

      

         

        









 

  





   

  

holds.

For GR, therefore, the enough and necessary conditions
of S =>*ω are that there is one path from S, the start state
to f, the final state in M. During the course of the transi-
tion, all the conditions met following one by one are just
equal to ω, viz.,  RL G if and only if  .L M
Therefore, it is evident that    RL M L G holds.

Construction Algorithm 2.
For a given left linear grammar , , ,L T NG V V S 



,
there is a corresponding NFA

      , , , ,N TM V q V q S 

where q is a newly added start state with Nq V hold-
ing, the transition function δ is defined by the following
rules.

1) For any NA V and T , if
holds, then let

a V  A a 
 ,q a A hold; or

2) for any , NA B V and , if
holds, then let

Ta V  A Ba 
 ,B a A hold.

The proof of construction Algorithm 2 is similar to
that of construction algorithm 1 and we obtain

   LL M L G

Theorem 2. For each finite automata M, there is one
right linear grammar GR or left linear grammar GL where
     R LL G L G L M  .
Construction Algorithm 3.
For a given finite automata  0, , , ,M S s F  , a

corresponding right linear grammar 0, , ,RG S s  
can be constructed. We discuss this in two cases.

1) If 0s F holds, then Ψ is defined by the follow-
ing rules.
For any a and ,A B S , if  ,A a B  holds,
then

a) if B F holds, let A→aB hold; or
b) if B F holds, let A→a|aB hold. Or
2) if 0s F holds, then holds because

of
L M  

 0 , 0s s   . From step 1) we know that
     RL G L M   holds. So, a new generation rule

s1→s0|ε is added to GR created from step 1) where s1 is a
newly added start symbol with the original symbol s0
being no longer the start symbol any more and 1s S
holding. Such a right linear grammar obtained is still
named GR, viz.    1 1 1 0, , ,RG S s s s s      .

3. The Improved Version for Construction
Algorithm 3

Construction Algorithm 3 discussed above is complex in
some sort. The following one named as Construction
Algorithm 4, more easily understood, is its simplified
version.

Construction Algorithm 4.
For a given finite automata  0, , , ,M S s F  , a

corresponding right linear grammar 0, , ,RG S s  
can be constructed. For any and a ,A B S ,

1) If  ,A a B  holds, then let A→aB hold;
2) If B F holds, then we add a generation rule

B→ε. Here B may be equal to s0, and as long as B is a
member of the set of final states, B→ε must be added.

Proof. For any * in GR, if s0 =>*ω holds, let

1 n    hold where , we have
s0=> ω1s1 = > ω1ω2s2 => ··· => ω1 ··· ωisi => ··· => ω1 ···
ωn.

 1, ,i i    n

That’s to say, s0 = > *ω holds if and only if there is a
path from s0 meeting 1, , n  one by one to final
states in M. Therefore,  RL G if and only if

 L M holds, viz.,   L M RL G  .
It is obvious that Construction Algorithm 4 is much

simpler than Construction Algorithm 3.

Copyright © 2013 SciRes. JSEA

The Equivalent Conversion between Regular Grammar and Finite Automata 35

4. The Proposed Construction Algorithm

The following Construction Algorithm 5 presented in this
work as much as I know so far is an effective algorithm
about the equivalent conversion from finite automata M
to left linear grammar GL according to construction algo-
rithm 4; its proof of correctness is also given.

Construction Algorithm 5.
Let a given finite automata be  0, , , ,M S s F 

q S
,

adding q, a new symbol, as the start symbol with 
holding. Let  , ,G S q q   ,L hold where Ψ is
defined by the following rules.

For any and a , ,A B f S ,
1) If  ,A a B  holds, then let B→Aa hold;
2) Add a generation rule s0→ε; and
3) For any , add a generation rule q→f. f F
The rule 3) means that we add a new state q as the fi-

nal state, and then link all the original final states which
are no longer final ones to q through ε respectively in the
state transition diagram of M.

In particular, we can let , , ,LG S f   hold when
F, the set of final states, contains only one final state f
where Ψ is defined by the following rules.

For any and a ,A B S ,
1) If  ,A a B  , let B→Aa hold;
2) Add a generation rule s0→ε.
Proof. For left linear grammar GL, using q→f once is

equivalent to the case one of the original states meeting ε
will be transited to q in M in the very beginning of the
rightmost derivation of q = >*ω where ; during
the course of the derivation, using B→Aa once is
equivalent to the case the state A meeting a will be tran-
sited to the successive state B in M; in the final step of
the derivation, using 0

*

s  once is equivalent to the
case that the state s0 meeting ε stops in s0 in M. Therefore,
the rightmost derivation of q = > *ω is just the inverse
chain of the path M transits from the very start state s0 to
the very final state f with all the conditions linked to-
gether in the path are just identical with ω.

Let 1 n   
 1, ,i  

 hold without thought where

i . If q = > *ω holds, we have q = > f
= > sn−1ωn = > sn−2ωn−1ωn = > ··· = > si−1ωi ··· ωn = > ··· = >
s0ω1 ··· ωn = > ω1 ··· ωn, and there is a transition

n 

    
   

     
     

0 0 1 2

0 1 2 3

0 1 2 1

0 1 2 1

, , , , ,

, , , , ,

, , , , , , ,

, , , , ,

n

n

i i n

n n

s s

s

s

s f

      

      

         

        









 

  





   

  

of which each inverse step is corresponding to the one of
the rightmost derivation above.

There,  LL G holds if and only if  L M
holds, viz. holds.  LL G L M

According to all of the above discussed and the
equivalence between NFA and DFA, Theorem 2 is
proved.

An example expatriated for Construction Algorithm 5
is taken as follows.

Example 1. Let DFA be
     , , , 0,1, 2 , , ,M A B f A f which is equiva-

lent to regular expression 02(102)* where δ satisfies
 ,0A B  ,  , 2B f and  ,1f A  . The state

transition diagram of M is shown in Figure 1. Now we
can construct a left linear grammar

   0,1, 2 , , , , , ,LG A B f q q  equivalent to M where

 , 2, 0, 1, q f f B B A A f A       

holds.
In Figure 1, we can reduce GL to
   0,1,2 , , , , ,A B f f  because of only one final state

f here where  2, 0, 1, f B B A A f A      
holds. Furthermore, we can also get rid of ε from A→ε
for A is not a start symbol in GL, and then

 2, 0 0, 1f B B A A f     is obtained.

5. Related Work

The known proofs that the equivalence and containment
problems for regular expressions, regular grammars and
nondeterministic finite automata are PSPACE-complete
that depends upon consideration of highly unambiguous
expressions, grammars and automata. R. E. Stearns and
H. B. Hunt III [5] proved that such dependence is inher-
ent. Deterministic polynomial-time algorithms are pre-
sented for the equivalence and containment problems for
unambiguous regular expressions, unambiguous regular
grammars and unambiguous finite automata. The algo-
rithms are then extended to ambiguity bounded by a
fixed k. Their algorithms depend upon several elemen-
tary observations on the solutions of systems of homo-
geneous linear difference equations with constant coeffi-
cients and their relationship with the number of deriva-
tions of strings of a given length n by a regular grammar.
 V. Laurikari [6] proposed a conservative extension to
traditional nondeterministic finite automata (NFAs) to
keep track of the positions in the input string for the last
uses of selected transitions, by adding “tags” to transi-
tions. The resulting automata are reminiscent of nonde-
terministic Mealy machines. A formal semantics of auto-

1

0

A f

2 B

 Figure 1. The state transition diagram of M.

Copyright © 2013 SciRes. JSEA

The Equivalent Conversion between Regular Grammar and Finite Automata 36

mata with tagged transitions is given. An algorithm is
given to convert these augmented automata to the corre-
sponding deterministic automata, which can be used to
process strings efficiently. The application to regular
expressions is discussed, explaining how the algorithms
can be used to implement, for example, substring ad-
dressing and a look ahead operator, and an informal
comparison to other widely-used algorithms is made.

Cyril Allauzen, et al. [7] presented a general weighted
grammar software library, the GRM Library, that can be
used in a variety of applications in text, speech, and bio-
sequence processing. The underlying algorithms were
designed to support a wide variety of semirings and the
representation and use of very large grammars and auto-
mata of several hundred million rules or transitions. They
described several algorithms and utilities of this library
and pointed out in each case their application to several
text and speech processing tasks.

Several observations were presented on the computa-
tional complexity of regular expression problems [8]. The
equivalence and containment problems were shown to
require more than linear time on any multiple tape deter-
ministic Turing machine. The complexity of the equiva-
lence and containment problems was shown to be “essen-
tially” independent of the structure of the languages rep-
resented. Subclasses of the regular grammars, that gener-
ated all regular sets but for which equivalence and con-
tainment were provably decidable deterministically in
polynomial time, were also presented. As corollaries sev-
eral program scheme problems studied in the literature
were shown to be decidable deterministically in polyno-
mial time.

Anne Brüggemann-Klein [9] showed that the Glush-
kov automaton can be constructed in a time quadratic in
the size of the expression, and that this is worst-case op-
timal. For deterministic expressions, their algorithm has
even linear run time. This improves on the cubic time
methods.

Motivated by Li and Pedrycz’s work on fuzzy finite
automata and fuzzy regular expressions with membership
values in lattice-ordered monoids and inspired by the
close relationship between the automata theory and the
theory of formal grammars, Xiuhong Guo [10] estab-
lished a fundamental framework of L-valued grammar. It
was shown that the set of L-valued regular languages co-
incides with the set of L-languages recognized by nonde-
terministic L-fuzzy finite automata and every L-language
recognized by a deterministic L-fuzzy finite automaton is
an L-valued regular language.

Formal construction of deterministic finite automata
(DFA) based on regular expression was presented [11] as
a part of lexical analyzer. At first, syntax tree is described
based on the augmented regular expression. Then formal
description of important operators, checking nullability

and computing first and last positions of internal nodes of
the tree is described. Next, the transition diagram is de-
scribed from the follow positions and converted into de-
terministic finite automata by defining a relationship
among syntax tree, transition diagram and DFA. Formal
specification of the procedure is described using Z nota-
tion and model analysis is provided using Z/Eves toolset.

Sanjay Bhargava, et al. [12] described a method for
constructing a minimal deterministic finite automaton
(DFA) from a regular expression. It is based on a set of
graph grammar rules for combining many graphs (DFA)
to obtain another desired graph (DFA). The graph gram-
mar rules are presented in the form of a parsing algo-
rithm that converts a regular expression R into a minimal
deterministic finite automaton M such that the language
accepted by DFA M is same as the language described
by regular expression R.

6. Concluding Remarks

The conversion algorithm can be realized from regular
grammar to finite automata for the equivalence exists
between the language regular grammar G describes and
that finite automata M identifies and vice versa. In fact,
the conversion between them is the very conversion be-
tween generation rules of grammar and mapping function
of finite automata. The simplified forms of the conver-
sion algorithms which are a little complicated and their
proofs are given. And an algorithm about the equivalent
conversion from finite automata to left linear grammar is
presented as well as its correctness proof. Additionally, a
relevant example is expounded.

7. Acknowledgements

This work was financially supported by the National
Natural Science Foundation of China (NSFC) under
grant No. 61262010 and the Jiangxi Provincial Natural
Science Foundation of China under Grant No. 2010GQS
0048.

REFERENCES
[1] H. W. Chen, C. L. Liu, Q. P. Tang, K. J. Zhao and Y. Liu,

“Programming Language: Compiling Principle,” 3rd Edi-
tion, National Defense Industry Press, Beijing, 2009, pp.
51-53.

[2] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, “Com-
pilers: Principles, Techniques, and Tools,” 2nd Edition,
Addison-Wesley, New York, 2007.

[3] J. E. Hopcroft, R. Motwani and J. D. Ullman, “Introduc-
tion to Automata Theory, Languages, and Computation,”
Addison-Wesley, New York, 2007.

[4] P. Linz, “An Introduction to Formal Languages and
Automata,” 5th Edition, Jones and Bartlett Publishers,
Inc., Burlington, 2011.

Copyright © 2013 SciRes. JSEA

The Equivalent Conversion between Regular Grammar and Finite Automata

Copyright © 2013 SciRes. JSEA

37

[5] R. E. Stearns and H. B. Hunt III, “On the Equivalence and
Containment Problems for Unambiguous Regular Ex-
pressions, Regular Grammars and Finite Automata,”
SIAM Journal on Computing, Vol. 14, No. 3, 1985, pp.
598-611. doi:10.1137/0214044

[6] V. Laurikari, “NFAs with Tagged Transitions, Their Con-
version to Deterministic Automata and Application to
Regular Expressions,” Proceedings of the 7th Interna-
tional Symposium on String Processing Information Re-
trieval, IEEE CS Press, New York, 2000, pp. 181-187.

[7] C. Allauzen, M. Mohri and B. Roark, “A General
Weighted Grammar Library,” Implementation and Appli-
cation of Automata, LNCS 3317, 2005, pp. 23-34.
doi:10.1007/978-3-540-30500-2_3

[8] H.B. Hunt III, “Observations on the Complexity of Regu-
lar Expression Problems,” Journal of Computer and Sys-

tem Sciences, Vol. 19, No. 3, 1979, pp. 222-236.
doi:10.1016/0022-0000(79)90002-3

[9] A. Brüggemann-Klein, “Regular Expressions into Finite
Automata,” Theoretical Computer Science, Vol. 120, No.
2, 1993, pp. 197-213. doi:10.1016/0304-3975(93)90287-4

[10] X. H. Guo, “Grammar Theory Based on Lattice-ordered
Monoid,” Fuzzy Sets and Systems, Vol. 160, No. 8, 2009,
pp. 1152-1161. doi:10.1016/j.fss.2008.07.009

[11] N. A. Zafar and F. Alsaade, “Syntax-Tree Regular Ex-
pression Based DFA Formal Construction,” Intelligent
Information Management, Vol. 4, No. 4, 2012, pp. 138-
146. doi:10.4236/iim.2012.44021

[12] S. Bhargava and G. N. Purohit, “Construction of a Mini-
mal Deterministic Finite Automaton from a Regular Ex-
pression,” International Journal of Computer Applica-
tions, Vol. 15, No. 4, 2011, pp. 16-27.

http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1007/978-3-540-30500-2_3
http://dx.doi.org/10.1016/0022-0000(79)90002-3
http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1016/j.fss.2008.07.009
http://dx.doi.org/10.4236/iim.2012.44021

