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ABSTRACT 
Interval constraint propagation (ICP) algorithms allow to solve problems described as constraint satisfaction problems 
(CSP). ICP has been successfully applied to vehicle localization in the last few years. Once the localization problem has 
been stated, a large class of ICP solvers can be used. This paper compares a few ICP algorithms, using the same expe-
rimental data, in order to rank their performances in terms of accuracy and computing time. 
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1. Introduction 
Most of the early published papers on constraint pro-
gramming date back to the seventies and were defined 
for discrete domains [1-3]. In the eighties, Gallaire [4], 
Jaffar and Lassez [5] noted that logic programming was 
just a particular kind of constraint programming. Logic 
programming as well as constraint programming implies 
that the user states what has to be solved instead of how 
to solve it.  

Among the techniques used for solving a CSP (Con-
straint Satisfaction Problem), Constraint Propagation is 
the most used. It is based on combining systematic search 
methods and consistency techniques. Mainly three kinds 
of consistency concepts such as node consistency, arc 
consistency and path consistency are known. The most 
popular is arc consistency, achieved by the AC-3 algo-
rithm [3] and by many other algorithms (such as AC-5 
[6], AC-6 [7], etc.). 

Those works only use binary CSPs (each constraint 
involves at most two variables). However, many real-life 
problems are naturally modeled as non-binary CSPs: the 
constraint involves more than two variables [8].  

Two approaches were developed to deal with non bi-
nary CSPs. The first approach translates a non binary CSP 
into different binary CSPs [9,10]. After this so called 
“binarization” step, the classical techniques in binary 
CSP can be used to solve the transformed CSP. The 
second approach directly deals with non binary con-
straints; for instance, GAC-4 [11] is a generalization of 

AC-4 to non binary constraints. In 1987, Cleary [12] and 
Davis [13] were the first to deal jointly with constraint 
propagation on interval analysis. In 1989, Hyvonen [14] 
designed a generalized constraint propagation scheme 
based on interval arithmetic. A narrowing algorithm was 
proposed by Cleary [12] and improved by Benhamou 
[15]. Later, that algorithm was renamed HC3 [16] be-
cause it is very close to the classical AC-3. Next, Ben-
hamou proposed HC4 [16] that does not need the de-
composition of constraints. However HC4 suffers from 
the dependency problem (see section 2.3). To cope with 
this problem, BC3 [17] was developed but suffers of 
slowness. BC4 [16] merges both BC3 and HC4 and re-
duces the computation time. BC5 [18], by using the in-
terval Gauss-Seidel method, further reduce the compu-
ting time. 3B algorithm [19] was led by the search of the 
strongest contractions rather than the smaller computa-
tion time. Interval Constraint Propagation (ICP) was in-
troduced in the mobile robotic area ten years ago. It was 
mainly used for outdoor vehicle localization [20-22] and 
underwater robot localization [23]. Those works use a 
Forward-Backward propagation technique based on pri-
mitive constraints (following the Waltz algorithm [24] 
principle). The main advantage of ICP over Bayesian 
algorithms is that ICP guarantees that the actual position 
of the robot is contained in a box. Bayesian algorithms 
[25] can only associate a probability to such a box. Con-
sequently, safety cannot be guaranteed by Bayesian al-
gorithms. 

All those techniques decompose their constraints into 
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primitive ones (binary constraints). Decomposing con-
straints into primitive constraints implies creating many 
auxiliary variables that should be also narrowed and can 
interfere the narrowing of the primary variables. Some 
comparisons [18, 16, 26] have been realized between 
ICP algorithm applied to theoretical problems taken from 
areas like chemistry, astrophysics, etc. For every prob-
lem, one CSP is formalized and solved. The computation 
time and precision are then analyzed. We will extend this 
work to the vehicle localization problem where the CSP 
evolve with a sliding time window. Our goal is to com-
pare the most achieved ICP algorithms found in the state 
of the art, in order to show which one of those algorithms 
is the more suitable for the vehicle localization (in terms 
of the processing time and the precision of the results). 
Section 2 introduces interval analysis. ICP (Interval 
Constraint Propagation) algorithms are discussed in Sec-
tion 3. The localization process including models and 
sensors is presented in Section 4. Section 5 shows our 
experimental results before concluding in Section 6. 

2. Basics of Interval analysis and Constraint 
Propagation 

2.1. Overview of Interval analysis 
Interval analysis [27] was introduced in the sixties in 
order to solve the problem of approximations made dur-
ing calculations. The key idea of interval analysis is to 
represent numbers by intervals which included the real 
values. An interval is represented using [ ]. For example:  
[ ] [ , ] { | } ( )x x x x x x x= = ∈ ≤ ≤ ∈ I is the in-
terval containing x. A set of rules have been defined to 
perform all the usual operations on intervals. The vehicle 
configuration is represented by several intervals. To es-
timate and handle the sets implied in our problem, we 
use the concept of boxes as bounded configurations: a 
box 3[ ] ( )∈x I is a Cartesian product of interval do-
mains. 

2.2. Inclusion Function 
For any function f defined as combinations of arith-
metical operators and elementary functions, interval 
analysis defines the inclusion function (also called inter-
val extension)  f[ ] as: 
  [], ([ ]) ([ ])x D f x f x∀ ∈ ⊂      (1) 

The easiest way to obtain the inclusion function is to 
replace all the variables by their intervals. For instance,  

  2, ( ) 2 4x D f x x x∀ ∈ = + +     (2)  

has the following inclusion function:  

  2
[], ([ ]) [ ] 2[ ] 4x D f x x x∀ ∈ = + +    (3) 

2.3. The dependency problem 
Interval arithmetic handles multiple occurrences of a 
same variable as many different variables. For instance, 
another inclusion function of Equation (2) is  

 2
[],2, ([ ]) ([ ] 2)x D f x x∀ ∈ = +          (4)  

f[] has two occurrences of the variable [x] whereas f[],2 has 
only one. The images of the interval I = [−3, 4] are f[] (I) 
= [−8, 36] and f[],2 (I) = [0, 36]. The interval image  
computed by f[],2 is sharper than the one produced by f[]. 
It is well known that the problem of finding the optimal 
interval image is complicated by the multiple occur-
rences of a variable: it is the dependency problem [28]. 

2.4. Constraint Satisfaction Problem 
Constraint satisfaction problems (CSP) are mathematical 
problems that are solved by finding states satisfying the 
constraints. A constraint restricts the possible solutions. 
A  Constraint Satisfaction Problem is defined by: 
• a set of variables {x1, x2, .., xn},  
• a set of domains {D1, D2, ..,Dn}, such as for each varia-
ble xi , a domain Di with the possible values for that va-
riable are given, 
• a set of constraints {C1, C2, .., Cm}, which are relations 
between the variables. Constraint propagation consists of 
iterating domain reductions, by using the set of m con-
straints, until no domain can be contracted. Interval Con-
straint Satisfaction Problem defines each domain as an 
interval. The Cartesian product of the contracted interval 
domains is our solution box which is guaranteed to con-
tain the real vehicle localization. Such contractions can 
be achieved by various algorithms that are  described in 
the next section. 

3. Constraint Propagation Algorithms 
3.1. HC3 
HC3 [12] enforces consistency over simple (primitive) 
constraints. Let’s consider the constraint z = cos(2x − y)  
with [x], [y], [z] the intervals to contract. This constraint 
is not a primitive one. It is called “user constraint” or 
“complex constraint”. A primitive constraint involves 
only one arithmetic operator or one of the usual functions 
like sin(), cos(), exp(), etc. The complex constraint is first 
decomposed into primitive operations: 

       
2

( )

a x
b a y
z cos b

= ×
 = −
 =

              (5) 

Then two phases are realized to contract the intervals: 
- Forward propagation allows to narrow the left terms (a, 
b and z) of Equation (4) 
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[ ] [ ] (2 [ ])
[ ] [ ] ([ ] [ ])
[ ] [ ] ([ ])

a a x
b b a y
z z cos b

= ∩ ×
 = ∩ −
 = ∩

            (6) 

- Backward propagation which reduces the right terms (x, 
a, y and b) of Equation (4) 

    

[ ] [ ] ([ ] / 2 )
[ ] [ ] ([ ] [ ])
[ ] [ ] ([ ] [ ])
[ ] [ ] ([ ])

x x a
a a b y
y y a b
b b arccos z

= ∩
 = ∩ +
 = ∩ −
 = ∩

             

(7) 
A well known drawback of this method is that the de-
composition into primitive constraints introduces new 
variables in the CSP. This hinders efficient domain tigh-
tening. Previous works on vehicle localization use the 
same Forward/Backward propagation as HC3. 

3.2. HC4 
HC4 [16] does not decompose complex constraints into 
primitive ones. It follows a loop propagation and process 
constraints individually using HC4-revise function. 
HC4-revise reduced domains by removing inconsistent 
values across them and returns the new narrowed do-
mains to HC4. HC4-revise uses a binary tree representa-
tion of constraints, where leaves are constants or va-
riables and nodes represent elementary operation sym-
bols such as +, −, sin(), etc.  HC4-revise works in two 
phases: 
• The first phase called “forward evaluation phase” goes 
through the graph from the leaves to the root of the tree. 
It evaluates recursively the interval of sub-expression 
represented by a current node by using a natural exten-
sion of the underlying functions. 
• The second phase is called “backward propagation 
phase”. It traverses the tree from the root to the leaves. It 
applies on each node a contraction operator (a projec-
tion). The contraction operator narrows the interval of 
the current node by removing inconsistent values w.r.t 
the basis operator of its ascendant node. 
 
The main limitation of HC4 is its sensitivity to the mul-
tiple occurrences of variables[17]. For instance, when 
considering a constraint like: 2 2x x y× + = , with 
( , ) [ 2, 4 ][ 1,1]x y ∈ − × −  HC4 (and HC3) would not re-
duce the initial box. But they would reduce perfectly the 
initial box when the constraint is stated like 2 2 2x y+ = . 

3.3. BC3  
BC3 [17] tightens the domains with a search procedure 
based on bisection over natural interval extension of 
constraints. The following example shows the algorithm 

principle. Let y−x=0 be a constraint and 
( , ) [0,1] [0,8]x y ∈ × . The left bound of Iy is box consis-
tent since. 0 ∈ 0 − 2 × Ix = [-2,0]. And on the other hand, 
the right bound of Iy is not box consistent because 0 ∈ 8 
− 2 × Ix = [6, 8]. The domain of y is divided to find the 
most consistent value, in the way as follows: 
[0, 8] is divided into [0, 4] and [4, 8] 
[0, 4] − 2 × Ix = [-2, 4] 
[4, 8] − 2 × Ix = [2, 8] ⇒ [4, 8] is eliminated 
[0, 4] is divided into [0, 2] and [2, 4] because the bound 
4 is not box consistent 
[0, 2] − 2 × Ix = [-2, 2] 
[2, 4] − 2 × Ix = [0, 4] 
[2, 4] is divided into [2, 3] and [3, 4] 
[2, 3] − 2 × Ix = [0, 3] 
[3, 4] − 2 × Ix = [1, 4] ⇒ [3, 4] is eliminated 
... 
The final domain of y is Iy = [0, 2]. The same technique 
is  applied to determine Ix = [0, 1]. This algorithm is 
more time consuming than HC3 and HC4 but it does not 
suffer from the dependency problem. 

3.4. BC4 
BC4 [16] combines BC3 and HC4. It fights the draw-
backs of HC4 (multiple occurrences) and BC3 (slow-
ness). It adapts its computation technique to the number 
of occurrences of each variable in a constraint. HC4 re-
duces the domain of variables that occur only once in a 
constraint. Variables occurring more than once are nar-
rowed by searching “extreme quasi-zeros” using BC3 
combined with an interval Newton method described in 
[17]. 

3.5. 3B  
3B algorithm [19] also referred as strong consistency 
algorithm, computes the projection of sets of constraints 
over the variables. It combines constraints in order to 
improve  the precision of domains narrowing. Instead of 
projecting constraint one by one, it projects the whole set 
of constraints of the CSP. For example, let’s consider 
two variables xk and yk  such as  
( , ) [ 2, 2] [ 2,2]k kx y ∈ − × −   with the following con-
straints: 

  
0
0

k k

k k

x y
x y
+ =

 − =
         (8) 

The domains [−2, 2] are consistent solutions which ca n-
not be further reduced if we take constraints one by one. 
However, we can notice that for x = −2  the first con-
straint gives y = 2 and the second y = −2  which are not 
rigorously correct. 3B takes into account both constraints 
and leads then to the solution [0, 0] which is mathemati-



Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization 

Copyright © 2012 SciRes.                                                                                 JSEA 

160 

cally correct. 3B uses a low level algorithm in order to 
contract the intervals; we have chosen to use BC4 which 
combines the advantages of BC3 and HC4. 

4. Localization process 
4.1. Sensors 
4.1.1. Odometers  
Odometers are set on the two rear wheels of our vehicle. 
They give the distance traveled by each wheel indepen-
dently. The accuracy of an odometer depends on its 
number of steps and its maximum error is known to be 
one step. Consequently the real value of the displacement 
of a non sliding wheel can be bounded by [δp]=[δpodo−1, 
δpodo+1] with δpodo the number of measured steps. When 
considering sliding, the movement of a sliding wheel can 
be deduced from a non-sliding one by adding a sliding 
noise [εodo]. The displacement with a sliding wheel  is 
defined by: 
  [δp]=[δpodo−1−εodo , δpodo +1+εodo]      
(9) 
 
4.1.2. Gyro 
A gyro is a heading sensor which measures the rotational  
speed in an inertial reference system. It is are based on a 
technique that consists in vibrating silicon structures that 
use the Coriolis force to output angular rate indepen-
dently of acceleration. Our gyro measures the yaw rate 
from  which we deduce the elementary rotation [δθ] . 
  [δθ] = [δθgyro − εgyro, δθgyro + εgyro]          
(10) 
 
4.1.3   Global Positioning System receiver  
The GPS satellites orbit at a height of 20.190 km and 
synchronize their transmissions so that their signals are 
sent at the same time. When a GPS receiver reads the 
transmission of three or more satellites, it calculates the 
arrival time differences and its relative distance to each 
satellite. Our GPS receiver performs the necessary cal-
culation and  returns latitude and longitude coordinates 
which are converted as a position [y] = ([x], [y])T in a 
Cartesian local frame. Furthermore, the GPS receiver 
computes the measurement imprecision εgps on-line and 
sends it into the GST NMEA frame.  

  [ ] , ,

, ,

,

,

gps x gps gps x gps

gps y gps gps y gps

x x

y y

ε ε

ε ε

  − +  =
  − +  

y   (11) 

4.2. The bounded displacement model 
The initial imprecise configuration of the vehicle is 
represented by a box [x] = ([x][y][θ])T. (x, y) are the 
coordinates of the rear axle center and θ is the orientation 

of a local frame attached to the vehicle. The prediction 
step consists in moving a box between the steps k−1 and 
k:  

 

1 1

1 1

1

[ ]
[ ] [ ]cos([ ] )

2
[ ]

[ ] [ ]sin([ ] )
2

[ ] [ ]

k
k k k

pred k
k k k k

k k

x s

x y s

δθ
δ θ

δθ
δ θ

θ δθ

− −

− −

−

 + + 
 
   = + +  
 

+ 
 
 

  (12) 

where [ ] are intervals including the real values. [δsk ] is 
obtained from the odometers measurement: 

  
[ ]([ ][ ] [ ][ ])

[ ] l l r r
k

w p w p
s

P
π δ δ

δ
+

=    

 (13) 
where  wr stands for the radius of the right wheel, wl is 
the radius of the left wheel and  P represents the odo-
meter's resolution. 

4.3. The CSP 
We consider from time k-w+1 to time k (the current time) 
all the state equations: the contractions are done in a 
window of length w and the CSP is defined by 3×w con-
straints.  The constraints at time k are given by: 

  

1 1

1 1

1

[ ]
[ ] [ ] [ ]cos([ ] )

2
[ ]

[ ] [ ] [ ]sin([ ] )
2

[ ] [ ] [ ]

k
k k k k

k
k k k k

k k k

x x s

y y s

δθ
δ θ

δθ
δ θ

θ θ δθ

− −

− −

−

 = + + 
 
 = + + 
 

= + 
 
 

 (14) 

where 
• [δsk], [δθk] are given by the odometers and gyro mea-
surements thanks to Equations (13) and (10). 
• [xk] and [yk] are initialized with GPS measurements (see 
Equation (11)). 
• [θk] is initialized to ]−π, π]. 
• [xk−1], [yk−1] and [θk−1] are obtained from the resolution 
of the previous CSP (at time k−1). 

5. Results 
HC4, BC3, BC4 and 3B-BC4 have been used in order to 
solve the CSP (14). We had used C source code from the  
RealPaver Solver [29] on a PC equipped with an Intel 
Core i7 CPU 960 @ 3.20GHz running under Ubuntu 
12.04 LTS. The solving has been realized off-line, for 
each algorithm, with a set of real data that have been 
collected on the Satory test track (Fig. 1) with LIVIC’s 
prototype running at an average speed of 50km/h. A sol-
id-state vertical gyro VG400CC provides the yaw rate 
data. Thanks to an Ag GPS132, the global localization is 
performed. GPS measurements and gyro/odometer data 
acquisitions are realized at a 5Hz frequency; time-
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stamped data are used off-line. The centimeter reference 
used for the evaluation of the positioning method is a 
RTK GPS. In order to determine the best suited windows 
size w, w has been varied between 1 to 200 (see Fig. 2). 
We had computed the average area size of the localiza-
tion box for one lap’s track. The graph of Fig. 2 corres-
ponds to an hyperbolic function. The higher is the win-
dow size, the lower is the localization error. The area 
decreases of 15% (from 760 to 650 m2) for w=20. En-
larging the w value only improves of 4% the size of the 
area. 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Satory's track 
 
 

 
 

 
 
 
 
 
 
 
  

Table 1. Duration of the algorithm for a CSP. 

Algorithms HC4 BC3 BC4 3B-BC4 

Durations (ms) 0.52 1.02 0.58 1400 
 
Fig. 2 shows that the computing time increases linearly 
with w. Computing time has  been measured for a full 
lap:  2000 CSPs have been solved. Similar results has 
been obtained for BC3 and BC4. Table 1 shows the av-
erage time taken by the algorithms for solving the CSP at 
every time step. Each  CSP has 3w equations (we had 
chosen w = 20). HC4 uses forward/backward and is the 
quickest algorithm (each CSP is solved in 0.52 ms).   
BC3 is more time consuming than HC4: bisection is  
less time efficient than forward/backward. BC4 fights the 
slowness of BC3 by using HC4 when a variable occurs 
only once. Equation (14) shows that each variable occurs 
only  once on each line of the CSP. Consequently BC3 
uses only  HC4 and the computing times are similar. 

The little difference is due to the BC4 embedded test 
which chooses  between HC4 and BC3. 3B-BC4 should 
be more efficient  for the tightening of the variables; 
unfortunately, it suffers  from a prohibitive computing 
time and cannot be real time (it takes 9.4 s for a 200 ms 
experiment).  The interval error of an estimated state a 
is defined by [a-aref , a -aref] where aref is the reference 
state. Consequently, a localization algorithm exhibits 
good results if its corridor is thin and if it always in-
cludes the zero value (it  means that the algorithm im-
precision embraces the reference).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

The GPS sensor provides consistent measurements  
(measurements which embrace the reference) with im-
portant variations (see Fig. 3). BC4 smoothes in the GPS 
measurements and acts like a classical Bayesian filter 
(for instance, an Extended Kalman Filter). HC4, BC3 
and BC4  have similar localization results (see Fig. 4). 
3B-BC4 provides slightly better localization results than 

  
Figure 1: Satory's track 

 
Figure 2: Average localization area and computing time 

 
Figure 3: Interval error 

 
Figure 4: Size of the localization area 



Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization 

Copyright © 2012 SciRes.                                                                                 JSEA 

162 

the other algorithms. All the compared algorithms pro-
vide consistent results contrarily to Bayesian filters that 
can lose their consistency [30]. 

6. Conclusion 
Constraint propagation algorithms are often used to solve 
once an unique system. We have used them on evolving 
CSPs having a time window in order to solve a localiza-
tion problem. We aim at localizing a vehicle equipped 
with odometers, gyro and GPS. At every time step, the 
imprecise displacement of the vehicle is measured and 
the position of the vehicle is corrected with a GPS mea-
surement. When a GPS measurement is available, we 
generate a new small CSP (3 equations) which is added 
to the current CSP where the three oldest lines are de-
leted. We have compared 4 constraint propagation algo-
rithms (HC4, BC3, BC4 and 3B-BC4) on the same expe-
rimental data. Contrarily to previous works, we shows 
that it is not necessary to break the constraints into ele-
mentary ones [21]. Furthermore, avoiding the use of 
elementary constraints do not increase the computing 
time (with ref. to [21]). The 4 tested algorithms provided 
similar results, although 3B-BC4 provides slightly better 
contractions than other ones. HC4 and BC4 have similar 
computing time. BC3 is twice slower than HC4 and BC4. 
3B-BC4 is too slow and is not suited for real time issue.  
Consequently, we recommend the use of HC4 or BC4 for 
vehicle localization. Further work will deal with an au-
tomatic adjustment of the CSP window in order to obtain 
the best result according to the CPU and the data flow. 
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