
A Journal of Software Engineering and Applications, 2012, 5, 157-162
doi:10.4236/jsea.2012.512b030 Published Online December 2012 (http://www.scirp.org/journal/jsea)

Copyright © 2012 SciRes. JSEA

Comparison of Interval Constraint Propagation
Algorithms for Vehicle Localization
I. K. Kueviakoe1,2 , A. Lambert3 , P. Tarroux1,4

1 LIMSI, CNRS, 91400 Orsay, France; 2 Univ. Paris Sud, IEF, 91400 Orsay, France; 3 LIVIC, IFSTTAR, 14 route de la minière,
78000 Versailles,France; 4 ENS, 45 rue d'ULM, 75230 Paris, France
Email: kangni.kueviakoe@limsi.fr

Received 2012

ABSTRACT
Interval constraint propagation (ICP) algorithms allow to solve problems described as constraint satisfaction problems
(CSP). ICP has been successfully applied to vehicle localization in the last few years. Once the localization problem has
been stated, a large class of ICP solvers can be used. This paper compares a few ICP algorithms, using the same expe-
rimental data, in order to rank their performances in terms of accuracy and computing time.

Keywords: Interval Analysis; Constraint Propagation; Data Fusion; Vehicle Positioning, GPS.

1. Introduction
Most of the early published papers on constraint pro-
gramming date back to the seventies and were defined
for discrete domains [1-3]. In the eighties, Gallaire [4],
Jaffar and Lassez [5] noted that logic programming was
just a particular kind of constraint programming. Logic
programming as well as constraint programming implies
that the user states what has to be solved instead of how
to solve it.

Among the techniques used for solving a CSP (Con-
straint Satisfaction Problem), Constraint Propagation is
the most used. It is based on combining systematic search
methods and consistency techniques. Mainly three kinds
of consistency concepts such as node consistency, arc
consistency and path consistency are known. The most
popular is arc consistency, achieved by the AC-3 algo-
rithm [3] and by many other algorithms (such as AC-5
[6], AC-6 [7], etc.).

Those works only use binary CSPs (each constraint
involves at most two variables). However, many real-life
problems are naturally modeled as non-binary CSPs: the
constraint involves more than two variables [8].

Two approaches were developed to deal with non bi-
nary CSPs. The first approach translates a non binary CSP
into different binary CSPs [9,10]. After this so called
“binarization” step, the classical techniques in binary
CSP can be used to solve the transformed CSP. The
second approach directly deals with non binary con-
straints; for instance, GAC-4 [11] is a generalization of

AC-4 to non binary constraints. In 1987, Cleary [12] and
Davis [13] were the first to deal jointly with constraint
propagation on interval analysis. In 1989, Hyvonen [14]
designed a generalized constraint propagation scheme
based on interval arithmetic. A narrowing algorithm was
proposed by Cleary [12] and improved by Benhamou
[15]. Later, that algorithm was renamed HC3 [16] be-
cause it is very close to the classical AC-3. Next, Ben-
hamou proposed HC4 [16] that does not need the de-
composition of constraints. However HC4 suffers from
the dependency problem (see section 2.3). To cope with
this problem, BC3 [17] was developed but suffers of
slowness. BC4 [16] merges both BC3 and HC4 and re-
duces the computation time. BC5 [18], by using the in-
terval Gauss-Seidel method, further reduce the compu-
ting time. 3B algorithm [19] was led by the search of the
strongest contractions rather than the smaller computa-
tion time. Interval Constraint Propagation (ICP) was in-
troduced in the mobile robotic area ten years ago. It was
mainly used for outdoor vehicle localization [20-22] and
underwater robot localization [23]. Those works use a
Forward-Backward propagation technique based on pri-
mitive constraints (following the Waltz algorithm [24]
principle). The main advantage of ICP over Bayesian
algorithms is that ICP guarantees that the actual position
of the robot is contained in a box. Bayesian algorithms
[25] can only associate a probability to such a box. Con-
sequently, safety cannot be guaranteed by Bayesian al-
gorithms.

All those techniques decompose their constraints into

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

158

primitive ones (binary constraints). Decomposing con-
straints into primitive constraints implies creating many
auxiliary variables that should be also narrowed and can
interfere the narrowing of the primary variables. Some
comparisons [18, 16, 26] have been realized between
ICP algorithm applied to theoretical problems taken from
areas like chemistry, astrophysics, etc. For every prob-
lem, one CSP is formalized and solved. The computation
time and precision are then analyzed. We will extend this
work to the vehicle localization problem where the CSP
evolve with a sliding time window. Our goal is to com-
pare the most achieved ICP algorithms found in the state
of the art, in order to show which one of those algorithms
is the more suitable for the vehicle localization (in terms
of the processing time and the precision of the results).
Section 2 introduces interval analysis. ICP (Interval
Constraint Propagation) algorithms are discussed in Sec-
tion 3. The localization process including models and
sensors is presented in Section 4. Section 5 shows our
experimental results before concluding in Section 6.

2. Basics of Interval analysis and Constraint
Propagation

2.1. Overview of Interval analysis
Interval analysis [27] was introduced in the sixties in
order to solve the problem of approximations made dur-
ing calculations. The key idea of interval analysis is to
represent numbers by intervals which included the real
values. An interval is represented using []. For example:
[] [,] { | } ()x x x x x x x= = ∈ ≤ ≤ ∈ I is the in-
terval containing x. A set of rules have been defined to
perform all the usual operations on intervals. The vehicle
configuration is represented by several intervals. To es-
timate and handle the sets implied in our problem, we
use the concept of boxes as bounded configurations: a
box 3[] ()∈x I is a Cartesian product of interval do-
mains.

2.2. Inclusion Function
For any function f defined as combinations of arith-
metical operators and elementary functions, interval
analysis defines the inclusion function (also called inter-
val extension) f[] as:
 [], ([]) ([])x D f x f x∀ ∈ ⊂ (1)

The easiest way to obtain the inclusion function is to
replace all the variables by their intervals. For instance,

 2, () 2 4x D f x x x∀ ∈ = + + (2)

has the following inclusion function:

 2
[], ([]) [] 2[] 4x D f x x x∀ ∈ = + + (3)

2.3. The dependency problem
Interval arithmetic handles multiple occurrences of a
same variable as many different variables. For instance,
another inclusion function of Equation (2) is

 2
[],2, ([]) ([] 2)x D f x x∀ ∈ = + (4)

f[] has two occurrences of the variable [x] whereas f[],2 has
only one. The images of the interval I = [−3, 4] are f[] (I)
= [−8, 36] and f[],2 (I) = [0, 36]. The interval image
computed by f[],2 is sharper than the one produced by f[].
It is well known that the problem of finding the optimal
interval image is complicated by the multiple occur-
rences of a variable: it is the dependency problem [28].

2.4. Constraint Satisfaction Problem
Constraint satisfaction problems (CSP) are mathematical
problems that are solved by finding states satisfying the
constraints. A constraint restricts the possible solutions.
A Constraint Satisfaction Problem is defined by:
• a set of variables {x1, x2, .., xn},
• a set of domains {D1, D2, ..,Dn}, such as for each varia-
ble xi , a domain Di with the possible values for that va-
riable are given,
• a set of constraints {C1, C2, .., Cm}, which are relations
between the variables. Constraint propagation consists of
iterating domain reductions, by using the set of m con-
straints, until no domain can be contracted. Interval Con-
straint Satisfaction Problem defines each domain as an
interval. The Cartesian product of the contracted interval
domains is our solution box which is guaranteed to con-
tain the real vehicle localization. Such contractions can
be achieved by various algorithms that are described in
the next section.

3. Constraint Propagation Algorithms
3.1. HC3
HC3 [12] enforces consistency over simple (primitive)
constraints. Let’s consider the constraint z = cos(2x − y)
with [x], [y], [z] the intervals to contract. This constraint
is not a primitive one. It is called “user constraint” or
“complex constraint”. A primitive constraint involves
only one arithmetic operator or one of the usual functions
like sin(), cos(), exp(), etc. The complex constraint is first
decomposed into primitive operations:

2

()

a x
b a y
z cos b

= ×
 = −
 =

 (5)

Then two phases are realized to contract the intervals:
- Forward propagation allows to narrow the left terms (a,
b and z) of Equation (4)

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

159

[] [] (2 [])
[] [] ([] [])
[] [] ([])

a a x
b b a y
z z cos b

= ∩ ×
 = ∩ −
 = ∩

 (6)

- Backward propagation which reduces the right terms (x,
a, y and b) of Equation (4)

[] [] ([] / 2)
[] [] ([] [])
[] [] ([] [])
[] [] ([])

x x a
a a b y
y y a b
b b arccos z

= ∩
 = ∩ +
 = ∩ −
 = ∩

(7)
A well known drawback of this method is that the de-
composition into primitive constraints introduces new
variables in the CSP. This hinders efficient domain tigh-
tening. Previous works on vehicle localization use the
same Forward/Backward propagation as HC3.

3.2. HC4
HC4 [16] does not decompose complex constraints into
primitive ones. It follows a loop propagation and process
constraints individually using HC4-revise function.
HC4-revise reduced domains by removing inconsistent
values across them and returns the new narrowed do-
mains to HC4. HC4-revise uses a binary tree representa-
tion of constraints, where leaves are constants or va-
riables and nodes represent elementary operation sym-
bols such as +, −, sin(), etc. HC4-revise works in two
phases:
• The first phase called “forward evaluation phase” goes
through the graph from the leaves to the root of the tree.
It evaluates recursively the interval of sub-expression
represented by a current node by using a natural exten-
sion of the underlying functions.
• The second phase is called “backward propagation
phase”. It traverses the tree from the root to the leaves. It
applies on each node a contraction operator (a projec-
tion). The contraction operator narrows the interval of
the current node by removing inconsistent values w.r.t
the basis operator of its ascendant node.

The main limitation of HC4 is its sensitivity to the mul-
tiple occurrences of variables[17]. For instance, when
considering a constraint like: 2 2x x y× + = , with
(,) [2, 4][1,1]x y ∈ − × − HC4 (and HC3) would not re-
duce the initial box. But they would reduce perfectly the
initial box when the constraint is stated like 2 2 2x y+ = .

3.3. BC3
BC3 [17] tightens the domains with a search procedure
based on bisection over natural interval extension of
constraints. The following example shows the algorithm

principle. Let y−x=0 be a constraint and
(,) [0,1] [0,8]x y ∈ × . The left bound of Iy is box consis-
tent since. 0 ∈ 0 − 2 × Ix = [-2,0]. And on the other hand,
the right bound of Iy is not box consistent because 0 ∈ 8
− 2 × Ix = [6, 8]. The domain of y is divided to find the
most consistent value, in the way as follows:
[0, 8] is divided into [0, 4] and [4, 8]
[0, 4] − 2 × Ix = [-2, 4]
[4, 8] − 2 × Ix = [2, 8] ⇒ [4, 8] is eliminated
[0, 4] is divided into [0, 2] and [2, 4] because the bound
4 is not box consistent
[0, 2] − 2 × Ix = [-2, 2]
[2, 4] − 2 × Ix = [0, 4]
[2, 4] is divided into [2, 3] and [3, 4]
[2, 3] − 2 × Ix = [0, 3]
[3, 4] − 2 × Ix = [1, 4] ⇒ [3, 4] is eliminated
...
The final domain of y is Iy = [0, 2]. The same technique
is applied to determine Ix = [0, 1]. This algorithm is
more time consuming than HC3 and HC4 but it does not
suffer from the dependency problem.

3.4. BC4
BC4 [16] combines BC3 and HC4. It fights the draw-
backs of HC4 (multiple occurrences) and BC3 (slow-
ness). It adapts its computation technique to the number
of occurrences of each variable in a constraint. HC4 re-
duces the domain of variables that occur only once in a
constraint. Variables occurring more than once are nar-
rowed by searching “extreme quasi-zeros” using BC3
combined with an interval Newton method described in
[17].

3.5. 3B
3B algorithm [19] also referred as strong consistency
algorithm, computes the projection of sets of constraints
over the variables. It combines constraints in order to
improve the precision of domains narrowing. Instead of
projecting constraint one by one, it projects the whole set
of constraints of the CSP. For example, let’s consider
two variables xk and yk such as
(,) [2, 2] [2,2]k kx y ∈ − × − with the following con-
straints:

0
0

k k

k k

x y
x y
+ =

 − =
 (8)

The domains [−2, 2] are consistent solutions which ca n-
not be further reduced if we take constraints one by one.
However, we can notice that for x = −2 the first con-
straint gives y = 2 and the second y = −2 which are not
rigorously correct. 3B takes into account both constraints
and leads then to the solution [0, 0] which is mathemati-

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

160

cally correct. 3B uses a low level algorithm in order to
contract the intervals; we have chosen to use BC4 which
combines the advantages of BC3 and HC4.

4. Localization process
4.1. Sensors
4.1.1. Odometers
Odometers are set on the two rear wheels of our vehicle.
They give the distance traveled by each wheel indepen-
dently. The accuracy of an odometer depends on its
number of steps and its maximum error is known to be
one step. Consequently the real value of the displacement
of a non sliding wheel can be bounded by [δp]=[δpodo−1,
δpodo+1] with δpodo the number of measured steps. When
considering sliding, the movement of a sliding wheel can
be deduced from a non-sliding one by adding a sliding
noise [εodo]. The displacement with a sliding wheel is
defined by:
 [δp]=[δpodo−1−εodo , δpodo +1+εodo]
(9)

4.1.2. Gyro
A gyro is a heading sensor which measures the rotational
speed in an inertial reference system. It is are based on a
technique that consists in vibrating silicon structures that
use the Coriolis force to output angular rate indepen-
dently of acceleration. Our gyro measures the yaw rate
from which we deduce the elementary rotation [δθ] .
 [δθ] = [δθgyro − εgyro, δθgyro + εgyro]
(10)

4.1.3 Global Positioning System receiver
The GPS satellites orbit at a height of 20.190 km and
synchronize their transmissions so that their signals are
sent at the same time. When a GPS receiver reads the
transmission of three or more satellites, it calculates the
arrival time differences and its relative distance to each
satellite. Our GPS receiver performs the necessary cal-
culation and returns latitude and longitude coordinates
which are converted as a position [y] = ([x], [y])T in a
Cartesian local frame. Furthermore, the GPS receiver
computes the measurement imprecision εgps on-line and
sends it into the GST NMEA frame.

 [] , ,

, ,

,

,

gps x gps gps x gps

gps y gps gps y gps

x x

y y

ε ε

ε ε

  − +  =
  − +  

y (11)

4.2. The bounded displacement model
The initial imprecise configuration of the vehicle is
represented by a box [x] = ([x][y][θ])T. (x, y) are the
coordinates of the rear axle center and θ is the orientation

of a local frame attached to the vehicle. The prediction
step consists in moving a box between the steps k−1 and
k:

1 1

1 1

1

[]
[] []cos([])

2
[]

[] []sin([])
2

[] []

k
k k k

pred k
k k k k

k k

x s

x y s

δθ
δ θ

δθ
δ θ

θ δθ

− −

− −

−

 + + 
 
   = + +  
 

+ 
 
 

 (12)

where [] are intervals including the real values. [δsk] is
obtained from the odometers measurement:

[]([][] [][])

[] l l r r
k

w p w p
s

P
π δ δ

δ
+

=

 (13)
where wr stands for the radius of the right wheel, wl is
the radius of the left wheel and P represents the odo-
meter's resolution.

4.3. The CSP
We consider from time k-w+1 to time k (the current time)
all the state equations: the contractions are done in a
window of length w and the CSP is defined by 3×w con-
straints. The constraints at time k are given by:

1 1

1 1

1

[]
[] [] []cos([])

2
[]

[] [] []sin([])
2

[] [] []

k
k k k k

k
k k k k

k k k

x x s

y y s

δθ
δ θ

δθ
δ θ

θ θ δθ

− −

− −

−

 = + + 
 
 = + + 
 

= + 
 
 

 (14)

where
• [δsk], [δθk] are given by the odometers and gyro mea-
surements thanks to Equations (13) and (10).
• [xk] and [yk] are initialized with GPS measurements (see
Equation (11)).
• [θk] is initialized to]−π, π].
• [xk−1], [yk−1] and [θk−1] are obtained from the resolution
of the previous CSP (at time k−1).

5. Results
HC4, BC3, BC4 and 3B-BC4 have been used in order to
solve the CSP (14). We had used C source code from the
RealPaver Solver [29] on a PC equipped with an Intel
Core i7 CPU 960 @ 3.20GHz running under Ubuntu
12.04 LTS. The solving has been realized off-line, for
each algorithm, with a set of real data that have been
collected on the Satory test track (Fig. 1) with LIVIC’s
prototype running at an average speed of 50km/h. A sol-
id-state vertical gyro VG400CC provides the yaw rate
data. Thanks to an Ag GPS132, the global localization is
performed. GPS measurements and gyro/odometer data
acquisitions are realized at a 5Hz frequency; time-

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

161

stamped data are used off-line. The centimeter reference
used for the evaluation of the positioning method is a
RTK GPS. In order to determine the best suited windows
size w, w has been varied between 1 to 200 (see Fig. 2).
We had computed the average area size of the localiza-
tion box for one lap’s track. The graph of Fig. 2 corres-
ponds to an hyperbolic function. The higher is the win-
dow size, the lower is the localization error. The area
decreases of 15% (from 760 to 650 m2) for w=20. En-
larging the w value only improves of 4% the size of the
area.

Figure 1 : Satory's track

Table 1. Duration of the algorithm for a CSP.

Algorithms HC4 BC3 BC4 3B-BC4

Durations (ms) 0.52 1.02 0.58 1400

Fig. 2 shows that the computing time increases linearly
with w. Computing time has been measured for a full
lap: 2000 CSPs have been solved. Similar results has
been obtained for BC3 and BC4. Table 1 shows the av-
erage time taken by the algorithms for solving the CSP at
every time step. Each CSP has 3w equations (we had
chosen w = 20). HC4 uses forward/backward and is the
quickest algorithm (each CSP is solved in 0.52 ms).
BC3 is more time consuming than HC4: bisection is
less time efficient than forward/backward. BC4 fights the
slowness of BC3 by using HC4 when a variable occurs
only once. Equation (14) shows that each variable occurs
only once on each line of the CSP. Consequently BC3
uses only HC4 and the computing times are similar.

The little difference is due to the BC4 embedded test
which chooses between HC4 and BC3. 3B-BC4 should
be more efficient for the tightening of the variables;
unfortunately, it suffers from a prohibitive computing
time and cannot be real time (it takes 9.4 s for a 200 ms
experiment). The interval error of an estimated state a
is defined by [a-aref , a -aref] where aref is the reference
state. Consequently, a localization algorithm exhibits
good results if its corridor is thin and if it always in-
cludes the zero value (it means that the algorithm im-
precision embraces the reference).

The GPS sensor provides consistent measurements
(measurements which embrace the reference) with im-
portant variations (see Fig. 3). BC4 smoothes in the GPS
measurements and acts like a classical Bayesian filter
(for instance, an Extended Kalman Filter). HC4, BC3
and BC4 have similar localization results (see Fig. 4).
3B-BC4 provides slightly better localization results than

Figure 1: Satory's track

Figure 2: Average localization area and computing time

Figure 3: Interval error

Figure 4: Size of the localization area

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

162

the other algorithms. All the compared algorithms pro-
vide consistent results contrarily to Bayesian filters that
can lose their consistency [30].

6. Conclusion
Constraint propagation algorithms are often used to solve
once an unique system. We have used them on evolving
CSPs having a time window in order to solve a localiza-
tion problem. We aim at localizing a vehicle equipped
with odometers, gyro and GPS. At every time step, the
imprecise displacement of the vehicle is measured and
the position of the vehicle is corrected with a GPS mea-
surement. When a GPS measurement is available, we
generate a new small CSP (3 equations) which is added
to the current CSP where the three oldest lines are de-
leted. We have compared 4 constraint propagation algo-
rithms (HC4, BC3, BC4 and 3B-BC4) on the same expe-
rimental data. Contrarily to previous works, we shows
that it is not necessary to break the constraints into ele-
mentary ones [21]. Furthermore, avoiding the use of
elementary constraints do not increase the computing
time (with ref. to [21]). The 4 tested algorithms provided
similar results, although 3B-BC4 provides slightly better
contractions than other ones. HC4 and BC4 have similar
computing time. BC3 is twice slower than HC4 and BC4.
3B-BC4 is too slow and is not suited for real time issue.
Consequently, we recommend the use of HC4 or BC4 for
vehicle localization. Further work will deal with an au-
tomatic adjustment of the CSP window in order to obtain
the best result according to the CPU and the data flow.

REFERENCES
[1] M. Clowes, “On seeing things,” Artificial intelligence, vol. 2,no.

1, pp. 79–116, 1971.

[2] D. Waltz, “Understanding line drawings of scenes with sha-
dows,” Psychology of Computer Vision, McGraw-Hill,New
York, 1975.

[3] A. Mackworth, “Consistency in networks of relations,” Artificial
intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[4] H. Gallaire, “Logic programming: Further developments,” in
IEEE Symposium on Logic Programming, pp. 88–99, 1985.

[5] J. Jaffar and J. Lassez, “Constraint logic programming,” in ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages, pp. 111–119, 1987.

[6] P. Van Hentenryck, Y. Deville, and C. Teng, “A generic
arc-consistency algorithm and its specializations,” Artificial In-
telligence, vol. 57, no. 2, pp. 291–321, 1992.

[7] C. Bessiere, “Arc-consistency and arc-consistency again,” Ar-
tificial intelligence, vol. 65, no. 1, pp. 179–190, 1994.

[8] Z. Yuanlin and R. Yap, “Arc consistency on n-ary monotonic
and linear constraints,” International Conference on Principles
and Practice of Constraint Programming, pp. 470–483, 2000.

[9] R. Dechter and J. Pearl, “Tree clustering for constraint net-
works,” Artificial Intelligence, vol. 38, no. 3, pp. 353–366, 1989.

[10] F. Rossi, C. Petrie, and V. Dhar, “On the equivalence of con-

straint satisfaction problems,” in European Conference on Artifi-
cial Intelligence, pp. 550–556, 1990.

[11] R. Mohr, G. Masini, et al., “Good old discrete relaxation,” in
European Conference on Artificial Intelligence, pp. 651–656,
1988.

[12] J. Cleary, “Logical arithmetic,” Future computing systems, vol. 2,
no. 2, pp. 125–149, 1987.

[13] E. Davis, “Constraint propagation with interval labels,” Artificial
intelligence, vol. 32, no. 3, pp. 281–331, 1987.

[14] E. Hyvonen, “Constraint reasoning based on interval arithmetic,”
in International Joint Conference on Artificial Intelligence, pp.
1193–1198, 1989.

[15] F. Benhamou and W. Older, “Applying interval arithmetic to real,
integer, and boolean constraints,” The Journal of Logic Pro-
gramming, vol. 32, no. 1, pp. 1–24, 1997.

[16] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, “Re-
vising hull and box consistency,” in Int. Conf. on Logic Pro-
gramming, Citeseer, 1999.

[17] F. Benhamon, D. McAllester, and P. Van Hentenryck, “Clp
(intervals) revisited,” tech. rep., Citeseer, 1994.

[18] L. Granvilliers, “Towards cooperative interval narrowing,” Fron-
tiers of Combining Systems, pp. 18–31, 2000.

[19] O. Lhomme, “Consistency techniques for numeric csps,” in
International Joint Conference on Artificial Intelligence, pp.
232–232,1993.

[20] A. Gning and P. Bonnifait, “Guaranteed dynamic localization
using constraints propagation techniques on real intervals,” in
IEEE International Conference on Robotics and Automation, pp.
1499–1504, 2004.

[21] B. Vincke, A. Lambert, D. Gruyer, A. Elouardi, and E. Seig-
nez,“Static and dynamic fusion for outdoor vehicle localization,”
in International Conference on Control Automation Robotics &
Vision, pp. 437–442, 2010.

[22] B. Vincke and A. Lambert, “Enhanced constraints propagation
for guaranteed localization predictive step,” in IEEE/RSJ IROS,
Workshop on Planning, Perception and Navigation for Intelligent
Vehicles, pp. 30–36, 2009.

[23] L. Jaulin, “Localization of an underwater robot using interval
constraint propagation,” International Conference on Principles
and Practice of Constraint Programming, pp. 244–255, 2006.

[24] D. L. Waltz, “Generating semantic descriptions from drawings
of scenes with shadows,” PhD thesis, AI Lab, MIT, 1972.

[25] D. Gruyer, A. Lambert, M. Perrollaz, and D. Gingras, “Experi-
mental comparison of bayesian vehicle positioning methods
based on multi-sensor data fusion,” International Journal of Ve-
hicle Autonomous Systems, vol. 10, no. 3-4, 2012.

[26] G. Chabert and L. Jaulin, “Hull consistency under monotonici-
ty,” International Conference on Principles and Practice of Con-
straint Programming, pp. 188–195, 2009.

[27] R. Moore, Interval analysis. Prentice-Hall Englewood Cliffs, NJ,
1966.

[28] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational
complexity and feasibility of data processing and interval com-
putations. Kluwer Academic Publishers Netherlands, 1998.

[29] L. Granvilliers and F. Benhamou, “Algorithm 852: Realpaver: an
interval solver using constraint satisfaction techniques,” ACM
Transactions on Mathematical Software, vol. 32, no. 1, pp.
138–156, 2006.

[30] A. Lambert, D. Gruyer, B. Vincke, and E. Seignez, “Consistent
outdoor vehicle localization by bounded-error state estimation,”

Comparison of Interval Constraint Propagation Algorithms for Vehicle Localization

Copyright © 2012 SciRes. JSEA

163

in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1211–1216, 2009. Best Paper Award Finalist.

