
Journal of Software Engineering and Applications, 2012, 5, 873-882
http://dx.doi.org/10.4236/jsea.2012.511102 Published Online November 2012 (http://www.SciRP.org/journal/jsea)

873

Rapid and Flexible User-Defined Low-Level Hybridization
for Metaheuristics Algorithm in Software Framework

S. Masrom*, Siti Z. Z. Abidin, N. Omar

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia.
Email: *suray078@perak.uitm.edu.my, sitizaleha533@salam.uitm.edu.my, nasiroh@tmsk.uitm.edu.my

Received September 23rd, 2012; revised October 21st, 2012; accepted October 30th, 2012

ABSTRACT

The metaheuristics algorithm is increasingly important in solving many kinds of real-life optimization problems but the
implementation involves programming difficulties. As a result, many researchers have relied on software framework to
accelerate the development life cycle. However, the available software frameworks were mostly designed for rapid de-
velopment rather than flexible programming. Therefore, in order to extend software functions, this approach involves
modifying software libraries which requires the programmers to have in-depth understanding about the internal working
structure of software and the programming language. Besides, it has restricted programmers for implementing flexible
user-defined low-level hybridization. This paper presents the concepts and formal definition of metaheuristics and its
low-level hybridization. In addition, the weaknesses of current programming approaches supported by available soft-
ware frameworks for metaheuristics are discussed. Responding to the deficiencies, this paper introduces a rapid and
flexible software framework with scripting language environment. This approach is more flexible for programmers to
create a variety of user-defined low-level hybridization rather than bounded with built-in metaheuristics strategy in
software libraries.

Keywords: Software Framework; Scripting Language; Metaheuristics; Low-Level Hybridization; User-Defined

Strategy

1. Introduction

Since the last decade, rapid software development has
emerged as a preferable approach in software engineer-
ing especially for developing computer applications with
complex computations such as distributed, scheduling
and optimization systems [1]. The main critical factor for
developing such kind of systems is time but complexity
of programming development has led to very lengthy
completion. As a result, in many aspects, rapid software
development is able to provide easier, effective and pro-
ductive method for each stage of the development. In
order to facilitate rapid software development, a lot of
innovations and improvements have been studied and
invented. The ideas vary from diverse perspectives that
include software design [2,3], software architecture [4],
software modeling [5] and programming paradigm [6-8].

In the perspectives of programming paradigm, script-
ing language has been widely accepted by programmers
for two reasons. Firstly, scripting language has simpler
language structure as compared to other kinds of pro-
gramming languages. Therefore, scripting language is
usable for gluing together different complex algorithms

from the low-level implementation of a software library
[9]. Secondly, it can be used for developing strong func-
tionality programs in a complex computer application
such as distributed and collaborative application [10],
grid computing [11] and agent based system [12].

In optimization based software, where the system
foundation is structured with complex computational al-
gorithm, scripting language programming is highly ap-
plicable for rapid development. Examples of complex
computational algorithm for optimization application
include metaheuristics and metaheuristics hybridization.

In many cases, metaheuristics hybridization is more
useful for different kinds of real life problems [13]. The
main intention for metaheuristics hybridization is to com-
pensate one single metaheuristic limit with the strength
of other algorithms.

The metaheuristics hybridization techniques can be
classified either as high-level or low-level hybridization.
The level of hybridization is used to differentiate the
strength of combination between the hybrid algorithms
[14,15]. In high-level hybridization, the components
from different hybrid algorithms are not strongly de-
pendent because the implementation retains original
identity or behavior of the hybrid algorithms. In contrast, *Corresponding author.

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 874

low-level hybridization requires internal structure modi-
fication, which committed with internal components ex-
change from the hybrid algorithms. Thus, the compo-
nents from the hybrid algorithms are strongly connected
to work together in finding optimal solutions.

The development of metaheuristics hybridization is
very lengthy and difficult [5] especially to the low-level
hybridization. Thus, in order to reduce the development
time and difficulty, programmers might rely on software
framework that provides software library for metaheuris-
tics algorithm. Software framework promotes rapid im-
plementation because the configurations for metaheuris-
tics and hybridization in the software library could be
simply specified with Graphical User Interface (GUI).
GUI provides convenient and easy to learn interface for
supporting interactions between software user (pro-
grammer) and software framework. However, in imple-
menting low-level hybridization, GUI is not a suitable
technique for enabling software library modification be-
cause the interactions between GUI functions and other
functions is defined by built-in functions and application
program interface (API) within the software library [16].
Therefore, in order to implement low-level hybridization
with software framework, an easy and flexible program-
ming environment at front-end software should be pro-
vided which could be supported by scripting language.

The remainder of this paper is organized as follows:
Section 2 presents background of problem related to the
software frameworks for metaheuristics. Then, the ge-
neral concept of metaheuristics and formal definition of
low-level hybridization is given in Section 3. The limita-
tions of common programming approaches in software
frameworks for metaheuristics are discussed in Section 4.
Section 5 explains the proposed software framework be-
fore the concluding remarks in Section 6.

2. Background of the Problem

The research on rapid software framework for metaheu-
ristics is still an ongoing research. Generally, there are
two major issues in the development of rapid software
framework for metaheuristics. These issues include im-
plementation technique and algorithm strategy. Figure 1
shows the related issues.

Figure 1. Development issues in rapid software framework
for metaheuristics.

The first issue is categorized as metaheuristics imple-
mentation technique, which can be single or hybrid. Single
implementation does not combine one metaheuristic
paradigm with other algorithms but hybrid techniques
involve cooperation of different algorithms. There are
varieties of techniques applied metaheuristics hybridiza-
tion. Generally, these techniques can be divided into
high-level and low-level [14,15]. In high-level hybridiza-
tion, the hybrid algorithms establish their communication
through a well defined interface [14]. Therefore, the im-
plementation does not involve internal structure modifi-
cations and retains original behavior of the hybrid algo-
rithms. Besides, the components of hybrid algorithms are
not dependent on each other. In contrast, low-level hy-
bridization needs internal structure modification of the
different hybrid algorithms. Thus, the original behavior
of algorithms would be changed and different compo-
nents from the hybrid algorithms are strongly connected
to each other. Therefore, implementing low-level hy-
bridization is more complicated than high-level hybridi-
zation.

Many researchers have agreed that relying on single
metaheuristics is quite restricted in achieving best solu-
tion for real-life optimization problems [14,15]. There-
fore, hybrid metaheuristics have been widely accepted as
an effective approach as compared to single implementa-
tion. Nevertheless, many of available software frame-
works facilitate more functionality on single metaheuris-
tic [5]. This is due to the simpler structures of single
metaheuristics. Some of the software frameworks for
single implementation are JCLEC [17], JEO [18], TEA
[19], JSwarm [20] and NetLogo [21]. JCLEC, JEO and
TEA support Genetic Algorithm (GA) while NetLogo
and JSwarm facilitate Particle Swarm Optimization (PSO)
algorithm only.

However, a number of rapid software frameworks
have been invented and introduced for hybrid metaheu-
ristics such a HeuristicLab [22], ParadisEO [23] and Dis-
tributed BEAGLE [24]. Unfortunately, many of these
software frameworks are majorly developed for high-
level hybridization due to the fact that high-level hy-
bridization is less complicated than low-level. Imple-
menting high-level hybridization with software frame-
work might involve simple configurations of combina-
tion that are not modifying internal structure of the hy-
brid algorithms. Therefore, the programmer can rely on
pre-defined hybridization strategies located in software
library.

Instead of the implementation techniques, algorithm
strategy is the second issue in rapid software framework
for metaheuristics. The algorithm strategy can be pro-
vided as built-in or user-defined [5]. Built-in strategies
only supported pre-defined metaheuristics components in
software library, which is less flexible and complex for

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 875

program amendment. In contrast, user-defined strategies
allow programmers to extend or create new metaheuris-
tics components according to their needs. With user-de-
fined, a variety of new algorithm strategy such as hy-
bridization scheme could be created at front-end software
framework. As for example, with user-defined high-level
hybridization, dynamic parallel algorithms could be im-
plemented as provided in OpenTS software framework
[25]. However, no low-level modification involves in
implementing user-defined high-level hybridization. Hence
the combination configurations could be defined simply
with GUI or through template program.

Based on the reviewed literature, it can be concluded
that software frameworks for metaheuristics and its hy-
bridization are intentionally developed only to support
rapid software development. The frameworks are not
governed for flexible programming environment that
support low-level hybridization as described in Figure 2.
The grey box represents common features provided by
the available software frameworks.

In addition, Figure 2 also shows the limitation of the
software frameworks in providing user-defined strategy
for metaheuristics and its hybridization. User-defined
strategy supports high flexibility for programmers to
develop low-level metaheuristics hybridization. Many
empirical experiments have shown that low-level hybri-
dization is increasingly significant to metaheuristics stra-
tegy improvement [5]. However, difficulty in the deve-
lopment might discourage researchers for exploring new
strategy.

3. General Concept of Metaheuristics and
Low-Level Hybridization

There are fives common questions for using metaheuris-
tics in solving optimization problems. These questions
are about the design of metaheuristics components which
is composed of encoding method for solution representa-
tion, neighborhood structure, search strategy, fitness func-
tion and penalty function. Figure 3 shows the relation-
ship of each component.

The encoding and decoding are two essential steps in
designing metaheuristics for a particular optimization
problem. It must be suitable and relevant to the search
operators and solution evaluation technique [26]. There-
fore, the encoding and decoding plays an important role
in the efficiency and effectiveness of a particular meta-
heuristics.

The search space consists of a finite set of decision
variables for each solution representation. At the first
search, the solutions will be randomly selected to go through
fitness evaluation process according to a particular search
strategy and objective. Different metaheuristics has dif-
ferent search strategy and operators.

Figure 2. Common features of metaheuristics software
framework.

Figure 3. Metaheuristics components.

Fitness function is an important element of a metaheu-
ristics that formulates the search objective. It describes
the quality or fitness of solutions and will guide the
search toward better solutions [26]. Depending on the
problem, a fitness function might be subjected to some
kinds of constraint that is formulated in a penalty func-
tion.

The neighborhood structure is relatively important for
some kind of metaheuristics. These metaheuristics are
classified as single-based metaheuristics such as Simu-
lated Annealing, Tabu Search and Variable Neighbor-
hood Search. Different from population-based, the single-
based metaheuristics implement generation and replace-
ment of solutions from a single solution. The set of solu-
tions for replacement is determined from the solution
neighborhood. Therefore, in single-based metaheuristics,
the structure of neighborhood plays a crucial role in their
performance.

3.1. Metaheuristics Hybridization

Since every metaheuristics has distinct search strategy,
each operator or component from different algorithms
might be crossover to be new hybrid algorithms with

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 876

better performance. This process is called metaheuristics
hybridization. When a metaheuristic changes its original
paradigm by adding new components from other algo-
rithms, it is described as implementing low-level hy-
bridization [15].

In this paper, the metaheuristics that receive new com-
ponents from other algorithms is referred to as master-
metaheuristics. A master-metaheuristics can be included
with new components from one or many sub-metaheu-
ristics. Since the variation of low-level hybridization
techniques is too broad, the hybridization techniques
focus in this research is limited to hybridization among
the family of population-based metaheuristics (p-meta-
heuristics) only. Besides, the modification process is re-
stricted to be occurred in the search strategy component
which is referred to as Proprietary components by [5].
The illustration of low-level hybridization for proprietary
components of metaheuristics is given in Figure 4.

The details about low-level hybridization of p-meta-
heuristics are further described in the next sub-section as
a formal definition.

3.2. Formal Definition of Low-Level
Hybridization

The low-level hybridization of p-metaheuristics can be
formally defined as a composition of (m,s) where:
 The ,m s M are different algorithms from the set of

p-metaheuristics  1 2, , , nM a a a  . The parameter

Figure 4. Low-level hybridization of proprietary compo-
nents.

ter m and s are devoted to master-metaheuristics and
sub-metaheuristics respectively in which only one m
can be integrated with more than one s.

 Each metaheuristic M is composed of general com-
ponents  , , and proprietary components G S f Ω

 1 2 ,, , nx xC x . While general components are
common to all M algorithms, they have distinction
with proprietary component.

 S is one of the general components that define solu-
tion representation in a search space. The search
space consists of a finite set of decision variables iV
where  1, , n  . The type of variables can be in
discrete, continuous or mixed form [27].

i

 Another general component for M is objective func-
tion f S R  that assigns a cost value MIN and
MAX to each solution of S. The set of constraints
among the variables is defined in a set of penalty
functions  1 2 3, ,, :x if f f f  V C where Ω

 1, ,  . i n
 The proprietary components C are exclusive of their

respective metaheuristics M which can be crossover
into the routine of another metaheuristics M. It creates
specific metaheuristics paradigm and characteristics
that consists of different parameters with different
types T. The parameters can be associated with dy-
namic or constant value. The dynamic values can be
determined by dynamic behaviour either self-adaptive
A or time-varying V. The sets of  1 2 ,, , nA a a a 
and  1 2 ,, , nV v v v  consist of different functions
with different types T. Each function calculates an
appropriate parameter value in relation to a particular
metaheuristics condition.

4. Programming Approach in Metaheuristics
Software Framework

There are two types of programming approaches that can
be implemented by programmers when developing meta-
heuristics with software framework as depicted in Figure
5.

The first type is through GUI approach at front-end
software framework. This method is more suitable for
simple operations such as to configure algorithms para-
meters or to call some executable functions but it has
limited capability for implementing extensive program
modification. Therefore, this approach has insufficient
functions for supporting flexible user-defined low-level
hybridization. In contrast, the second type of programm-
ing approach is related directly to software libraries
which are located at back-end software framework.
Usually, template program is provided for simple soft-
ware operations but in order to perform extensive modi-
fication, the programmers have to explore and modify
some of the software libraries. Although this approach is

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework

Copyright © 2012 SciRes. JSEA

877

hybridization (e.g. MDF and ParadisEO), the strategies
have been restricted to built-in metaheuristics compo-
nents in software libraries. In order to perform extensive
modification for user-defined strategy, the programmers
have to modify software libraries which have been
developed in JAVA, C++ or C#. These programming
languages are difficult for novice programmer.

 Despite the fact that GUI is easier than template, it has
restricted program modification. While hybridization
techniques could be enabled in HeuristicLab with GUI,
the implementation supports only for built-in high-level
hybridization. In MDF software framework, the resear-
chers introduce modeling technique for designing new
hybridization strategies. The program codes are auto-
matically generated based on user-defined model but the
strategies are still bounded with available metaheu-
ristics components in software library. In order to create
new functions or components, the developer has to un-
derstand the detail of software working structure.

Figure 5. Programming approaches.

highly flexible than GUI, the task for modifying pro-
grams in software library is too complicated [5]. Since
the process of finding the best hybridization strategy
involves repeating tasks include redeveloping and vali-
dating, this approach is very costly and time consuming.

The implementation of flexible user-defined low-level
hybridization is hindered by the limitation of these pro-
gramming approaches. The GUI approach restricts users
to modify software libraries while the template and soft-
ware library modification involve tedious and compli-
cated tasks. Nevertheless, these approaches are mostly
adapted by the available software frameworks for meta-
heuristics. Table 1 summarizes the available software
frameworks with its programming approaches (GUI,
template, software library) and implementation supports
(single, high-level hybridization, low level hybridiza-
tion).

In order to resolve these deficiencies, an alternative
solution is by providing scripting language programming
environment at front-end software framework. While
scripting language is less complicated to be used, it is
also applicable for the development of complex func-
tional programs. Therefore, scripting language can sup-
port rapid and flexible user-defined low-level hybridi-
zation for metaheuristics.

As shown in Table 1, most of available software frame-
works provide template programming approach and
some software with GUI. Therefore, they are only ca-
pable to support single and high-level implementation
due to the GUI and template limitations. Although
available software frameworks are useful for low-level

5. The Proposed Software Framework

The proposed software framework is designed with
three-tier architecture namely front-end scripting language,
intermediate compiler and back-end software libraries as
illustrated in Figure 6.

Table 1. Available software frameworks for metaheuristics.

 GUI Template Single Software library High-level hybrid Low-level hybrid

iOpt [28]  x  JAVA x x

Hotframe [29] x   JAVA  x

Mallba [30] x   JAVA  x

JEO [18] x   C++ x x

EasyLocal++ [31] x   C++  x

HeuristicLab [22]  x  C#  x

JSwarm [20] x   JAVA x x

MDF [5] x   C++  

TEA [19] x   C++ x x

OPT4J [32]    JAVA x x

ParadisEO [23] x   C++  

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 878

Figure 6. The proposed software framework.

5.1. The Back-End Software Library

The back-end software libraries consist of high perfor-
mance program codes for different metaheuristics. High
performance programs are developed with JAVA. The
basic feature of the back-end software architecture is to
support generic and extensible environment for imple-
menting different kind of metaheuristics and optimiza-
tion problems. The class architecture is illustrated in
Figure 7.

The back-end programs are bundled with a collection
of software libraries that consists of five main elements,
one is a collection of controller classes and the rest is a
set of interface classes. The set of interface classes com-
prise of general interface, proprietary interface, adaptive
interface and time-varying interface. The interface classes
are highly flexible for extensible through inheritance
implementation. Therefore, the software frame-work can
be used for developing different metaheuristics algo-
rithms. In this paper, the focus is given to Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA).

The general interface consists of different classes for
general metaheuristics components while proprietary inter-
face provides specific component classes for specific
metaheuristics. As shown in Figure 7, specific compo-
nents for GA are selection, crossover and mutation while
specific components for PSO are position and velocity
update.

In addition, self-adaptive and time-varying interfaces
facilitate dynamic behavior of metaheuristics parameters
such as mutation rate for GA, inertia weight and con-
striction parameters for PSO. Self-adaptive behavior

Figure 7. Back-end software architecture.

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 879

determines parameters value with regards to metaheuris-
tics search ability namely exploration and exploitation. In
metaheuristics, exploration ability promotes high accu-
racy of solutions while exploitation facilitates fast con-
vergence speed. Therefore, the balance of both abilities is
very important to the performances of metaheuristics
algorithms. Based on empirical studies, it is found that
one of the successful ways to balance the search ability is
by providing self-adaptive environment [33]. Neverthe-
less, besides self-adaptive, time-varying behavior is also
contributes to improvement of metaheuristics perform-
ance. By providing time-varying behavior, the explora-
tion and exploitation search abilities can be dynamically
adjusted according to number of iteration.

The low-level hybrid controller is an important ele-
ment that consists of low-level hybrid engine for imple-
menting low-level hybridization. It is a JAVA codes ge-
nerated by scripting compiler at the intermediate soft-
ware framework.

5.2. The Intermediate Compiler

Scripting compiler is intermediate software between
scripting program and software library that translates the
scripting language codes for low-level metaheuristics
hybridization into JAVA program. The JAVA program
will be saved at back-end software to operate as a main
program that defines class interactions between software
libraries. It might also consist of new instantiations of
metaheuristics components.

5.3. The Front-End Scripting Language

The front-end software framework is supported with
scripting language to be used by programmers for defin-
ing and developing new low-level hybridization of
metaheuristics. The steps for basic operations in creating
low-level hybridization are given in Figure 8.

The scripting language is not just usable for calling
pre-defined operations from software libraries but capa-
ble in creating new functions of metaheuristics compo-
nents. The scripting language is capable to fulfill these
requirements since it has the following special characte-
ristics:
 The scripting language tend not to have strong typing

rules and not error-prone.
 In particular, scripting language tend to have power-

ful data structure and operations, which are tightly
built-in with the language.

These special characteristics have given additional
advantages to developers to use scripting language for
many purposes such as to support rapid software deve-
lopment, API manipulation for back-end software libra-
ries and software functions extension. These purposes are
essential to the development of flexible user-defined

Figure 8. Basic operations of low-level hybridization.

low-level hybridization. The following parts discuss how
scripting language can be used to fulfill these require-
ments.

5.4. Scripting Language for Rapid Software
Development

Scripting languages are simpler than application pro-
gramming languages like C, C++ and JAVA. Thus,
scripting language will considerably increase the effi-
ciency of development. Some of the key enhancing fea-
tures in scripting languages with regards to efficiency
include simplify, expressiveness, and easiness.

Scripting language consists of simplify instructions
which reduces the development errors for programming.
A single statement of a scripting language can describe
many instructions. In other words, scripting languages
are normally expressiveness. It can generate roughly 10
to 100 times shorter code compared to application pro-
gramming languages. For example, one statement in Tcl
can represents more than 100 instructions while in C
programming language, it means for several (5 to 10)
instructions only.

5.5. Scripting Language for API

Scripting language can be used to call and communicate
with different program codes from the software libraries
[34]. Thus, scripting language can be used to operate as
an API between the different programs or applications
software.

The API with scripting language could be imple-
mented at front-end software framework while the soft-
ware libraries at back-end software are written with ap-

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 880

plication programming language such as JAVA or C++.
Therefore, scripting language and application program-
ing language are complimentary to each other. Pro-
gramming with scripting language promises better pro-
ductivity for integrating different software codes and
libraries while application programming language sup-
ports high efficiency performance for algorithm imple-
mentation.

5.6. Scripting Language for Flexible Software
Extension

At the beginning, conventional scripting languages have
some limitations, which restrict their efficiency and ex-
pressiveness. For instance, they have limited capability
for concurrency, data structuring and object-oriented
programming. Responding to the deficiencies, language
developers have created advanced scripting languages
such as Perl, Python and among others. Perl provides
compact but very powerful sets of data types and data
structures for example list, stack and queue. Python also
has a great feature comparable Perl, but it is based on
object-oriented programming. In addition, the Tcl is an
excellent language for writing system or hardware pro-
gram without using intermediate language to machine.
With the very powerful sets of data types and data struc-
tures, scripting languages are not just able to invoke and
glue together other programs, but they are also appropri-
ate for writing new complex program as flexible as ap-
plication programming language.

With the flexibility, software designer interest has
been attracted to invent different types of scripting lan-
guages for different types of computer applications. As
for example, the JACIE scripting language has been in-
vented for developing collaborative and distributed ap-
plication [10]. In addition, in order to develop grid based
application Gaussion script has been introduced [11].
More than that, a group of researcher has created Japlo
scripting language useful for rules based programming
similar to Prolog language [35]. The Japlo language works on
top of JAVA and it has better functionality than the Pro-
log itself.

In addition, there are also available scripting languages
for implementing metaheuristics based application. Ta-
ble 2 lists the scripting languages for metaheuristics.

Some scripting use XML script which is integrated in
metaheuristics software framework such as Open Beagle
[36], Distributed Beagle [24] and JCLEC [17]. The XML
in JCLEC is used for running different experiments with
different configurations in parallel.

A scripting programming language is proven to be
useful for facilitating user-defined strategy. The T++
scripting language for example, has been designed to
support flexible user-defined strategy [25]. The language
is incorporated in OpenTS software framework but it is
only usable for high-level hybridization. More interesting,
in METASIS software framework [37], the scripting with
Sequential Interactive Synthesis System (SIS) could en-
able user-defined strategy for low-level hybridization. How-
ever, SIS is specifically usable for synthesizing and op-
timizing sequential circuits only. Thus, it has a limit to be
employed for different kinds of optimization problem.

6. Conclusions

Rapid programming is significant to the development of
metaheuristics based applications. Therefore, the imple-
mentation needs software framework in order to reduce
development time and difficulty. However, for imple-
menting low-level metaheuristics hybridization with soft-
ware framework, another complexity has emerged due to
its extensive programming. Current approaches in soft-
ware frameworks have some limitations for supporting
easy and flexible programming. As a result, they lack of
flexibility in providing user-defined hybridization stra-
tegy at front-end software. Besides, the deficiencies would
discourage programmers to develop a variety of low-
level hybridization strategies for metaheuristics algo-
rithms.

In order to enable rapid and flexible front-end pro-
gramming environment, a scripting language should be
developed. The scripting language is not just beneficial
for integrating different metaheuristics programs, but it
also permits the creation of new functionalities beyond
the capability of software libraries. This paper has se-
veral contributions to the metaheuristics community as
well as to the software engineering. Firstly, formal defi-
nition of low-level hybridization provides general views
of the implementation. Secondly, it introduces three-tier
software architecture that promotes rapid and flexible

Table 2. Scripting language for metaheuristics.

Scripting language Software library User-defined strategy High-level hybrid Low-level hybrid

XML [36] C++  x x

XML [24] C++ x  x

T++ [25] C++   x

SIS [37] SIS  x 

Copyright © 2012 SciRes. JSEA

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 881

programming at front-end software. In addition, this pa-
per also provides operation steps for operating low-level
metaheuristics hybridization that can be used for design-
ing structure and details specification of a software
framework.

7. Acknowledgements

The authors would like to thank Kementerian Pengajian
Tinggi MALAYSIA and Universiti Teknologi MARA
for their financial support to this project.

REFERENCES
[1] B. Boehm, “A View of 20th and 21st Century Software

Engineering,” Proceedings of the 28th International Con-
ference on Software Engineering, Shanghai, 2006, pp. 12-
29.

[2] E. Dubois, P. Gray and L. Nigay, “ASUR++: Supporting
the Design of Mobile Mixed Systems,” Interacting with
Computers, Vol. 15, No. 4, 2003, pp. 497-520.
doi:10.1016/S0953-5438(03)00037-7

[3] A. Neyem, S. F. Ochoa, J. A. Pino and R. D. Franco, “A
Reusable Structural Design for Mobile Collaborative Ap-
plications,” Journal of Systems and Software, Vol. 85, No.
3, 2012, pp. 511-524.

[4] R. Weinreich and G. Buchgeher, “Towards Supporting
the Software Architecture Life Cycle,” Journal of Systems
and Software, Vol. 85, No. 3, 2012, pp. 546-561.
doi:10.1016/j.jss.2011.05.036

[5] H. C. Lau, W. C. Wan, S. Halim and K. Toh, “A Software
Framework for Fast Prototyping of Meta-Heuristics Hy-
bridization,” International Transactions in Operational
Research, Vol. 14, No. 2, 2007, pp. 123-141.
doi:10.1111/j.1475-3995.2007.00578.x

[6] S. H. Sadat-Mohtasham and A. Ghorbani, “A Language
for High-Level Description of Adaptive Web Systems,”
Journal of Systems and Software, Vol. 81, No. 7, 2008,
pp. 1196-1217. doi:10.1016/j.jss.2007.08.033

[7] S. Z. Z. Abidin, M. Chen and P. W. Grant, “Designing
Interaction Protocols Using Noughts and Crosses Type
Games,” Journal of Network and Computer Applications,
Vol. 30, No. 2, 2007, pp. 586-613.
doi:10.1016/j.jnca.2006.01.002

[8] T. C. Oliveira, P. S. C. Alencar, C. J. P. de Lucena and D.
D. Cowan, “RDL: A Language for Framework Instantia-
tion Representation,” Journal of Systems and Software,
Vol. 80, No. 11, 2007, pp. 1902-1929.
doi:10.1016/j.jss.2007.01.005

[9] A. Boulis, C.-C. Han and M. B. Srivastava, “Design and
Implementation of a Framework for Efficient and Pro-
grammable Sensor Networks,” Proceedings of the 1st In-
ternational Conference on Mobile Systems, Applications
and Services, 2003, pp. 187-200.

[10] M. A. Ismail, M. Chen and P. Grant, “JACIE—An Au-
thoring Language for WWW-Based Collaborative Appli-
cations,” Annals of Software Engineering, Vol. 12, No. 1,
2001, pp. 47-75. doi:10.1023/A:1013354519370

[11] W. Tongming, Z. Ruisheng, S. Xianrong, C. Shilin and L.
Lian, “GaussianScriptEditor: An Editor for Gaussian
Scripting Language for Grid Environment,” Proceedings
of the 8th International Conference on Grid and Coop-
erative Computing, 2009, pp. 39-44.

[12] X. Hua, L. Qingshan, W. Yingqiang, Z. Chenguang, M.
Shaojie and Z. Guilin, “A Scripting Language Used for
Defining the Integration Rule in Agent System,” IEEE
International Conference on E-Business Engineering,
2008, pp. 649-654.

[13] X. Fu, A. Li, L. Wang and C. Ji, “Short-Term Scheduling
of Cascade Reservoirs Using an Immune Algorithm-
Based Particle Swarm Optimization,” Computers & Ma-
thematics with Applications, Vol. 62, No. 6, 2011, pp.
2463-2471. doi:10.1016/j.camwa.2011.07.032

[14] C. Blum and A. Roli, “Hybrid Metaheuristics: An Intro-
duction,” In: C. Blum, M. J. B. Aguilera, A. Roli and M.
Sampels, Eds., Hybrid Metaheuristics, Springer, Berlin/
Heidelberg, 2008, pp. 1-30.
doi:10.1007/978-3-540-78295-7_1

[15] E. G. Talbi, “A Taxonomy of Hybrid Metaheuristics,”
Journal of Heuristics, Vol. 8, No. 5, 2002, pp. 541-564.
doi:10.1023/A:1016540724870

[16] D. Orenstein, “Application Programming Interface (API),”
Quick Study: Application Programming Interface (API),
2000.

[17] S. Ventura, C. Romero, A. Zafra, J. A. Delgado and C.
Hervás, “JCLEC: A Java Framework for Evolutionary
Computation,” Springer, Berlin/Heidelberg, 2008.

[18] M. G. Arenas, N. Dolin, J. J. Marelo, P. A. Castillo, I. F.
de Viana and M. Schonauer, “JEO: JAVA Evolving Ob-
jects,” Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), 2002.

[19] M. Emmerich and R. Hosenberg, “TEA : A C++ Library
for the Design of Evolutionary Algorithms,” University
of Dortmund, Dortmund, 2001.

[20] C. Pabl, “JSwarm-PSO,” 2006.
http://jswarm-pso.sourceforge.net/

[21] F. Stonedahl and U. Wilensky, “NetLogo Particle Swarm
Optimization Model.”
http://ccl.northwestern.edu/netlogo/models/

[22] S. Wagner and M. Affenzeller, “HeuristicLab: A Generic
and Extensible Optimization Environment,” In: B. Ri-
beiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson and N.
C. Steele, Eds., Adaptive and Natural Computing Algo-
rithms, Springer, Vienna, 2005, pp. 538-541.
doi:10.1007/3-211-27389-1_130

[23] S. Cahon, N. Melab and E. Talbi, “ParadisEO : A Frame-
work for the Reusable Design of Parallel and Distributed
Metaheuristics,” Journal of Heuristics—Special Issue on
New Advances on Parallel Meta-Heuristics for Complex
Problems, Vol. 10, No. 3, 2004, pp. 357-380.

[24] M. Dubreuil and M. Parizeau, “Distributed BEAGLE : An
Environment for Parallel and Distributed Evolutionary
Computations,” Proceedings of the 17th Annual Interna-
tional Symposum on High Performance Computing Sys-
tems and Applications, 2003.

[25] S. Abramov, A. Adamovich, A. Moskovsky, E. Shevchuk,

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1016/S0953-5438(03)00037-7
http://dx.doi.org/10.1016/j.jss.2011.05.036
http://dx.doi.org/10.1111/j.1475-3995.2007.00578.x
http://dx.doi.org/10.1016/j.jss.2007.08.033
http://dx.doi.org/10.1016/j.jnca.2006.01.002
http://dx.doi.org/10.1016/j.jss.2007.01.005
http://dx.doi.org/10.1023/A:1013354519370
http://dx.doi.org/10.1016/j.camwa.2011.07.032
http://dx.doi.org/10.1007/978-3-540-78295-7_1
http://dx.doi.org/10.1023/A:1016540724870
http://dx.doi.org/10.1007/3-211-27389-1_130

Rapid and Flexible User-Defined Low-Level Hybridization for Metaheuristics Algorithm in Software Framework 882

Y. Shevchuk and A. Vodomerov, “OpenTS: An Outline
of Dynamic Parallelization Approach,” In: V. Malyshkin,
Ed., Parallel Computing Technologies, Springer-Verlag,
Berlin/Heidelberg, 2005, pp. 303-312.
doi:10.1007/11535294_26

[26] E. G. Talbi, “Metaheuristics: From Design to Implemen-
tation,” Wiley, London, 2009.

[27] G. R. Raidl, J. Puchinger and C. Blum, “Metaheuristic
Hybrids,” In: M. Pardalos, H. Panos, P. Van and M. Mi-
lano, Eds., Handbook of Metaheuristics, Springer, New
York, 2010.

[28] L. Rapha and C. Voudouris, “HSF: The iOpt’s Frame-
work to Easily Design Metaheuristic Methods,” In: M. G.
C. Resende and J. P. de Sousa, Eds., Metaheuristics:
Computer Decision-Making, Kluwer Academic Publish-
ers, Berlin/Heidelberg, 2004, pp. 237-256.

[29] A. Fink and S. Voß, “Hotframe: A Heuristic Optimization
Framework,” In: S. Voß and D. L. Woodruff, Eds., Opti-
mization Software Class Libraries, Springer, Heidelberg,
2002, pp. 81-154.

[30] E. Alba, et al., “MALLBA: A Library of Skeletons for
Combinatorial Optimisation,” In: R. Feldmann, Ed., Euro-
Par 2002 Parallel Processing, Springer-Verlag, Berlin/
Heidelberg, 2002, pp. 63-72.
doi:10.1007/3-540-45706-2_132

[31] L. D. Gaspero and A. Schaerf, “EASYLOCAL++: An
Object-Oriented Framework for Flexible Design of Local

Search Algorithms,” Software-Practice and Experience,
2003, pp. 1-34.

[32] M. Lukasiewycz, M. Glaß, F. Reimann and D.-I. Sabine
Helwig, “The OPT4J Documentation,” 2009.

[33] K. Suresh, S. Ghosh, D. Kundu, A. Sen, S. Das and A.
Abraham, “Inertia-Adaptive Particle Swarm Optimizer
for Improved Global Search,” Proceedings of the 8ht In-
ternational Conference on Intelligent System Design and
Applications—ISDA2008, Kaohsiung, 26-28 November
2008, pp. 253-258.

[34] G. Zao-Bin, L. Ching and V. Varadharajan, “A Middle-
Ware-Based Script Language,” Proceedings of the Inter-
national Conference on Mobile Business (ICMB’05), 11-
13 July 2005, pp. 690-693. doi:10.1109/ICMB.2005.8

[35] M. Espak, “Japlo : Rule-Based Programming on Java,”
Journal of Universal Computer Science, Vol. 12, No. 9,
2006, pp. 1177-1189.

[36] C. Gagn and M. Parizeau, “Open BEAGLE : A New Ver-
satile C++ Framework for Evolutionary Computations,”
Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2002), 2002.

[37] G. Ranjan, P. Kumar and P. Gupta, “METASIS: A Meta
Heuristic Based Logic Optimizer,” Proceedings of the
50th Midwest Symposium on Circuits and Systems,
Montreal, 5-8 August 2007, pp. 1501-1504.
doi:10.1109/MWSCAS.2007.4488825

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/3-540-45706-2_132
http://dx.doi.org/10.1109/ICMB.2005.8
http://dx.doi.org/10.1109/MWSCAS.2007.4488825

