
Journal of Software Engineering and Applications, 2012, 5, 777-788
http://dx.doi.org/10.4236/jsea.2012.510090 Published Online October 2012 (http://www.SciRP.org/journal/jsea)

777

A Partial Formalization of the CMMI-DEV—A Capability
Maturity Model for Development

Gokhan Halit Soydan, Mieczyslaw M. Kokar

Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.
Email: gsoydan@ece.neu.edu, mkokar@ece.neu.edu

Received August 2nd, 2012; revised September 5th, 2012; accepted September 16th, 2012

ABSTRACT

CMMI (Capability Maturity Model Integration) is a set of models—collections of best practices intended to help or-
ganizations to improve their processes. CMMI-DEV provides guidance to development organizations. This paper pre-
sents a formalization that captures definitions of a number of concepts of CMMI-DEV and relations among the concepts.
The formalization is expressed in a formal language, OWL. The two main objectives for this formalization was to be
consistent with the CMMI-DEV model and to be operational, i.e., to allow for an automatic determination of a devel-
opment process maturity level based upon data about the practices within a given organization. The formalization is
presented in a number of increments—from more general concepts to more specific. A justification for the selection of
the concepts and relations is given. To assess the validity of the formalization, a number of test cases for the scenario of
automatic determination of the maturity level were developed. Generic OWL reasoners were then used to derive the
maturity levels. While the test results were all positive, the real value of this formalization comes from the fact that it
faithfully captured the main aspects of CMMI-DEV, a well established and accepted model of the assessment of the
maturity of development processes, and that a generic inference engine was able to support the appraisal of the process
maturity of an organization.

Keywords: CMMI-DEV; Process Maturity; Ontology; Automatic Inference; OWL

1. Introduction

The Capability Maturity Model Integration (CMMI) plays
various roles [1]: a process improvement approach [2]; a
way to describe the characteristics of effective processes
[3]; a collection of the essential elements of effective
processes for one or more bodies of knowledge; a process
capability maturity model which aids in the definition
and understanding of an organization’s processes [4]; and
more. In some texts it is referred to as “the CMMI model”,
while some others use “a CMMI model”. This diversity
of interpretations can be viewed as a manifestation of the
dual role that this concept plays: a conceptual framework
for describing characteristics of business processes vs. a
characterization of the business process of a specific or-
ganization. In the first meaning, the CMMI is a collection
of concepts. In the second, it is the concepts mapped to a
specific enterprise. This kind of duality is not a unique
feature of the CMMI modeling framework but is rather
typical of many modeling frameworks. For instance, a
UML model of a software system captures the concepts—
the classes and the associations among the classes. Then
a specific run time system is an instantiation of such con-
stants. In the Semantic Web domain the concepts of a

domain are called Ontology, while the instances of the
concepts are called Annotations (also sometimes referred
to as a markup [5]).

The CMMI Product Suite includes various components
and a CMMI Framework, which is used to generate mul-
tiple models and related training and appraisal materials.
The components used to generate a specific model are
called a constellation. The models are categorized by rep-
resentations and the types of processes. There are two
representations of the model: continuous and staged. The
continuous representation enables selections on the order
of improvement with respect to an organization’s busi-
ness objectives, and allows comparisons within and be-
tween organizations by process areas. The staged repre-
sentation presents a sequence of improvements, advanc-
ing through a predefined and proven path of successive
levels, where each level serves as a basis for the next
maturity level. It allows comparisons within and between
organizations by maturity levels. It provides a single rat-
ing for the appraisal results. In this paper we focus on the
staged representation. The newer releases of the CMMI
models include CMMI for Acquisition [6], CMMI for
Development [1,7] and CMMI for Services [8]. In this

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 778

paper we deal with CMMI-DEV [7], i.e., the specializa-
tion of the CMMI to development. CMMI-DEV is used
by various software organizations to assess the maturity
of their development processes and to plan improvements.

The staged CMMI-DEV model distinguishes five ma-
turity levels as shown in Figure 1. According to CMMI-
DEV, the highest achievable objective for an organiza-
tion is to be at the maturity level 5.

In order to assert a specific maturity level, an organi-
zation must follow an appraisal process which needs to
show that the organization satisfies various requirements
specified in the CMMI-DEV model. This model is rather
complex since it includes many concepts that are interre-
lated in quite complicated ways. In order to assess the
maturity level, an organization may proceed in two steps.
First, it can use experts who are familiar with the CMMI-
DEV model; they can verify that specific practices are
implemented. In the second step, the relations among
practices, goals and process areas need to be checked.
Checking all the relationships among the concepts is a
very tedious process.

The matter is complicated even more when some ele-
ments in the model change. For instance, a new type of
practice is accepted by the industry or a new goal is iden-
tified as necessary to satisfy a specific process area. And
one more issue is that people are prone to errors. In other
words, the tedious process of verifying the relationships
between various practices, goals and process areas in an
organization may be unintentionally erroneous.

A computer based support tool would be able to alle-
viate some of the problems mentioned above. A com-
puter tool would not be prone to errors. It could be faster.
It would be cheaper to use than people. Moreover, if de-
signed properly, any modification in the CMMI-DEV
model could be relatively easily implemented, and a new
version of the tool could be made available to the users in
a relatively short time.

The above discussion provides a motivation for the
work presented in this paper. In order to address the is-
sues mentioned above, a computer-interpretable version
of the CMMI-DEV model would have to be developed.
By “computer-interpretable”, we mean a version of the
model that could be used by a computer (an inference
engine) to actually infer whether a given organization has
achieved a specific maturity level, or infer the highest
level that it can be classified at. For this task, the com-
puter would have to be provided with appropriately struc-
tured input about the software engineering process areas,
goals and practices in the given organization. In order to
facilitate such an inference task, a representation of the
CMMI-DEV model would need to have computer execu-
table semantics.

Towards these goals, in this paper we provide an at-
tempt at a faithful, although not complete, representation
of the CMMI-DEV model in the Web Ontology Language
(OWL) [9], a language with formal, computer-executable
semantics. The first version of such a representation was
developed for CMMI-SW and described in [10]. To avoid

Level Focus Process Areas

5 Optimizing
Continuous

Process
Improvement

Organizational Performance Management (OPM)
Causal Analysis and Resolution (CAR)

4 Quantitatively
Managed

Quantitative
Management

Organizational Process Performance (OPP)
Quantitative Project Management (QPM)

3 Defined
Process

Standardization

Requirements Development (RD)
Technical Solution (TS)
Product Integration (PI)
Verification (VER)
Validation (VAL)
Organizational Process Focus (OPF)
Organizational Process Definition (OPD)
Organizational Training (OT)
Integrated Project Management (IPM)
Risk Management (RSKM)
Decision Analysis and Resolution (DAR)

2 Managed
Basic Project
Management

Requirements Management (REQM)
Project Planning (PP)
Project Monitoring and Control (PMC)
Supplier Agreement Management (SAM)
Measurement and Analysis (MA)
Process and Product Quality Assurance (PPQA)
Configuration Management (CM)

1 Initial

Quality
Productivity

Risk
Rework

Figure 1. CMMI-DEV Model.

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 779

confusion, the term “faithful” needs to be clarified. In
this paper, faithful means that a generic OWL inference
engine can correctly derive the maturity level of an or-
ganization’s development process, provided the engine is
supplied with the data about the organization as described
in this paper.

A computer-interpretable version of the CMMI-DEV
model could also play the role of an enabler of the inter-
operability among software process management systems.
When two process management systems share a formali-
zation of the same model, they could exchange informa-
tion about the process areas covered by particular proc-
esses, their goals and practices that are in use. The im-
portant aspect of this scenario is that the two systems
would be able to “understand” the meaning of the ex-
changed information, in the sense that they would be able
to (automatically) draw conclusions of the implications
of a specific process areas, goals and practices.

This paper is organized as follows. In the next section
we discuss the main usage scenario that we considered as
a potential application of our CMMI-DEV model formal-
ization, i.e., the automatic inference of the maturity levels.
Section 3 provides a description of the CMMI-DEV model
formalization. The formalization is introduced in incre-
mental fashion, in three increments, from the most gen-
eral classes and properties to the lower-level subclasses.
Section 4 presents a description of the approach to the
validation of the formalization. In particular, it describes
the test data and the tools used for inferring maturity levels.
Section 5 gives a brief description of related work. And
finally, Section 6 presents our conclusions and sugges-
tions for future research.

2. Usage Scenario of the CMMI-DEV
Formalization

In the intended usage scenario, an organization collects
information about its specific and generic practices that it
uses in its software development process, expresses this
information in terms of the CMMI-DEV formalization
and then invokes a model interpreter tool to check the
consistency of the representation and to derive the levels
of maturity of the organization’s development processes.
While it is possible that some of the practices in an or-
ganization have different names than the practices listed
in the CMMI-DEV model, it would be the responsibility
of the organization to associate its local practices with
the practices recognized in the model. If the model is
logically inconsistent, some remedial action would have
to be taken to eliminate the source(s) of inconsistency.

As was mentioned earlier, in this paper we describe a
formalization of the CMMI-DEV model in the Web On-
tology Language (OWL) [9], a primary language for the
Semantic Web [11]. According to the approach practiced

in the Semantic Web, the modeling consists of two phases:
1) The representation of the generic concepts of a domain
as an ontology that includes classes, properties (relations)
and constraints; and 2) The capturing of the instances of
the classes and the properties that are specific to a case
being modeled by the ontology.

Since we used OWL as the language to formalize
CMMI-DEV model, we followed the same approach as
in the Semantic Web. First, we formalized CMMI-DEV
as an ontology. This ontology captures the main concepts
of this model. Note that the use of the term “ontology”
makes use of the interpretation of this notion that is used
in knowledge representation [12] and not as it is used in
philosophy [13]. We call this formalization the CMMI-
DEV Ontology. This ontology is then used to annotate
specific and generic practices of a specific organization.
In the next step, a generic OWL reasoner, e.g., Pellet [14],
Racer [15], BaseVISor [16] or OWLIM 2.9.1 [17], is
used to check the consistency of the representation and
then to derive the classification of the level of maturity of
the organization’s development process.

3. Structure of the CMMI-DEV Ontology

The CMMI-DEV model is a very complex structure. Its
description is provided in natural language text plus some
graphics. In some cases, it is supported by figures and
tables. A graphical representation of the CMMI model
(as presented in [7]) is shown in Figure 2. This graphical
representation, along with textual descriptions, was helpful
in selecting concepts to be captured in the CMMI-DEV
formalization.

The OWL-DL code for the full-scale ontology is lo-
cated at:
http://www.ece.neu.edu/groups/scs/onto/CMMI-DEV/.
The ontology includes 313 classes and three kinds of
properties. Some of the classes are primitive (or declared),
i.e., they have some necessary restrictions that need to be
satisfied by an individual to be an instance of one of
those classes. The defined classes are those that have both
necessary and sufficient conditions for an instance to be
member of such a class. 86 classes in the CMMI-DEV
ontology are defined classes. For these classes, not only
an individual needs to satisfy the restrictions of the class
definition to be an instance of a given class, but also an
OWL reasoner can infer whether a given individual is a
member of such a class. This fact is important for the
automatic inference of the membership of an organiza-
tion in particular maturity levels of the CMMI-DEV
model.

3.1. Top Level Classes and Properties

The goal of the work described in this paper was to cap-
ture the main parts of the model, i.e., identify various

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 780

Figure 2. CMMI model: graphical representation.

concepts and relationships to be represented in the on-
tology. The top level of the ontology is shown in Figure
3. Concepts are represented as OWL classes and rela-
tionships as OWL properties.

Our first decision was to proceed in an incremental
top-down fashion. In the first step (increment) we have
identified four top-level classes: Maturity_Level, Pro-
cess_Area, Goal and Practice. All these classes are shown
in Figure 3 as rectangles.

The decision to consider these four classes in the on-
tology was based on the statements in the CMMI docu-
ment [7]. Maturity levels are the basis of classification in
the staged CMMI-DEV model, so the Maturity_Level
class had to be included. Goals are a required component
of the CMMI-DEV model. Practices are expected com-
ponents of the model. Process Areas are used in the
CMMI-DEV document [7] as containers of both goals
and practices. This is also indicated in Figure 2.

Relations among specific classes are shown in Figure
3 as arrows with associated labels representing relation
names. The top level of the ontology includes three rela-
tions, or properties in the terminology of OWL: consistsOf,
satisfiedBy and achievedBy. We tried to choose relations
names so that they somewhat reflect their nature within
the model. The relationships among the four top-level
classes are patterned upon the hierarchy shown in Figure
1 which suggests this kind of relationships.

The consistsOf property is supported by the CMMI-
DEV description [7], which states that “A maturity level
consists of related specific and generic practices for a pre-
defined set of process areas that improve the organiza-
tions overall performance.” Moreover, the CMMI-DEV
document [7] states that: “The maturity levels are meas-

Figure 3. Top level of the CMMI-DEV ontology.

ured by the achievement of the specific and generic goals
associated with each predefined set of process areas.”

The existence of a satisfiedBy relationship between
Process_Area and Goal is supported by the definition of
process area in [7]: “A cluster of related practices in an
area that, when implemented collectively, satisfies a set
of goals considered important for making improvement
in that area.” We chose satisfiedBy rather than satisfy
primarily because generic goal is defined in [7] as: “A
required model component that describes characteristics
that must be present to institutionalize processes that im-
plement a process area.” Another potential candidate for
the name of this relationship could be present.

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 781

Finally, the relationship between Goal and Practice was
named achievedBy, mainly because specific practice is
defined in [7] as: “An expected model component that is
considered important in achieving the associated specific
goal. The specific practices describe the activities ex-
pected to result in achievement of the specific goals of a
process area.”

Another possibility would be to introduce a ternary re-
lation between Process_Area, Goal and Practice. The fol-
lowing statement in [7] seems to suggest that there is a
linear chain of relations between Maturity_Level, Proc-
ess_Area and Goal. “To reach a particular level, an or-
ganization must satisfy all of the goals of the process area
or set of process areas that are targeted for improvement,
regardless of whether it is a capability or a maturity level.”
Moreover, the analysis of tables in [7] that group prac-
tices shows that in fact only relationships between Pro-
cess_Area and Goal, as well as between Goal and Prac-
tice are actually used. This revealed that only two binary
relations can be used to represent the description of what
might seem like a ternary relation.

The CMMI-DEV model describes relationships among
the practices. This aspect was not modeled in our onto-
logy, primarily because our focus at this time was on the
ability to infer the maturity levels of an organization’s
development processes. The ontology would need to be
expanded to capture such inter-practice relationships.

3.2. Second Increment of the CMMI-DEV
Ontology

The second increment of the ontology introduces the classes
at one level deeper in the ontology (Figure 4). Four new
classes (two subclasses of Goal and two subclasses of

Practice) and one new property are added to the classes
shown in Figure 3. The subClassOf relation between two
classes is represented in this figure by an arrow with a
hollow arrow end pointing to the superclass.

The class Goal introduced in Section 3.1 does not have
a direct corresponding component in the CMMI-DEV
representation in Figure 2. Instead, Figure 2 shows model
components of “specific goals” and “generic goals”. Never-
theless, we introduced Goal as a top-level class (Figure 3)
and then added two subclasses, i.e., Specific_Goal and
Generic_Goal, in Figure 4. Similarly, the class Practice
is introduced as a superclass of Specific_Practice and
Generic_Practice. The primary reason for the introduc-
tion of these superclasses is to show the commonalities
between generic and specific practices, and between ge-
neric and specific goals. They also play similar roles in
the CMMI-DEV model. And finally, in this way we do
not need to introduce additional properties between ge-
neric goals and generic practices, as well as between spe-
cific goals and specific practices. The achievedBy prop-
erty is sufficient to represent both of the relations.

Maturity Levels
One of the primary considerations behind this work was
the automatic inference of the maturity level from the
data about generic and specific practices within a com-
pany. As with any formalization, the choice of the for-
malization language imposes some constraints on what
can be represented in the ontology, as well as how it can
be done. Since we chose OWL as the formalization lan-
guage for our ontology we had to construct the ontology
in such a way that the automatic inference of maturity
levels from information about specific practices is possi-
ble.

Figure 4. Second level of detail of the CMMI-DEV ontology.

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 782

OWL facilitates various kinds of inferences, e.g., sub-

sumption, satisfiability, instance retrieval and type infer-
ence. Subsumption reasoning allows the inference that
one class is a subclass of another. This inference is based
upon the intentional definitions of the classes using pri-
marily property restrictions—defining a class as those
individuals that on a given property have values from
another class. Satisfiability reasoning allows one to infer
whether a proposed type of individual (class) is satisfi-
able, i.e., whether it can be instantiated concretely. In-
stance retrieval allows one to infer which of the indi-
viduals are instances of a particular class. Type inference
derives the classes that a given individual is an instance
of.

One of the first decisions that we had to make was
how the concept of maturity level should be represented.
In OWL, each maturity level could be modeled as a
property, an instance or a class. In the first case, there
would be five properties corresponding to the five matu-
rity levels. This option was rejected mainly because
OWL does not have much support for defining properties
in terms of other concepts and does not provide means
for property inference. The second option would result in
having one class—Maturity Level—with five individuals,
each being a maturity level. This option was rejected for
at least two reasons. First, according to [7], maturity levels

are organized in a hierarchy where the higher levels in-
clude all of the features of the levels below them and
introduce some additional features. This aspect can be
captured by the OWL subclass relation and by the inheri-
tance property associated with this relation. But it would
be difficult, if possible at all, to capture this kind of rela-
tionship between two consecutive maturity levels if they
were represented simply as instances of only one class.
An additional problem with this conceptualization would
be that this would imply that there should be only one
way of achieving a given maturity level, which again would
go against the spirit of CMMI. Consequently, we intro-
duced the Maturity_Level class, as shown in Figure 3,
and then modeled the dependencies among the maturity
levels using the subClassOf property of OWL as shown
in Figure 5.

In this conceptualization, a company can be identified
with a maturity level. Since Maturity_Level is the lowest
possible level and all of the features of this level are also
included in all upper levels, a company can be safely
identified with this level. This class thus plays a double
role—as a generic class of maturity levels and as a class
representing maturity level 1. Then an OWL reasoner can
be used to infer whether the company also satisfies higher
maturity levels. Thus the kind of inference used for this
purpose is type inference, as described above. For such

Figure 5. Maturity levels.

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 783

an inference to be possible, the classes representing par-
ticular maturity levels (except level 1) must be defined
classes. Towards this aim, we defined appropriate re-
strictions for each maturity level class. In OWL, such
restrictions are anonymous classes. Figure 5 shows for
each maturity level an anonymous class that is equivalent
to a given maturity level. This is indicated by bidirec-
tional “isa” arrows between a maturity level class and an
anonymous class. The anonymous classes are defined by
restriction expressions. Below we show how restrictions
are represented in OWL. Due to the size of the OWL
code, only a small part of the restriction on the Matu-
rity_Level_2 class is shown.

<owl:intersectionOf rdf:parseType=“Collection”>
<owl:Restriction>
<owl:someValuesFrom

rdf:resource=“#Configuration_ Management”/>
<owl:onProperty>
<owl:ObjectProperty rdf:about=“#consistsOf”/>
</owl:onProperty>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:about=“#consistsOf”/>
</owl:onProperty>
<owl:someValuesFrom rdf:resource=“#Measurement_

and_Analysis”/>
..................
</owl:Restriction>
</owl:intersectionOf>
Since the Maturity_Level_2 class has a number of re-

strictions, they are captured as an intersection of particu-
lar restrictions. In this case we show that each instance of
Maturity_Level_2 must have at least one association with
Configuration_Management and one with Measurement_
and_Analysis through the consistsOf property. In plain
English terms, this means that a company to be classified
as an instance of maturity level 2 must include in its
software process the process areas of Measurement and
Analysis and Configuration Management. All restrictions
can be viewed at
http://www.ece.neu.edu/groups/scs/onto/CMMI-DEV/cm
mi.owl.

3.3. Third Increment of the CMMI-DEV
Ontology

In this increment, the ontology of the CMMI-DEV model
is expanded by providing definitions for the subclasses of
Process_Area, Specific_Goal, Generic_Goal, Specific_
Practice and Generic_Practice. Due to the relatively large
size of the ontology, it is difficult to show it in a graphi-
cal form. For this reason, in Table 1 we show the defini-
tion of one subclass—Requirements_Management.

A full version of this table would show all the sub-
classes of Process_Area in the first column. We chose
the names of the subclasses of Process_Area that are
similar to the process areas in the CMMI-DEV model.
They are grouped under four subclasses, one for each
maturity level: Process_Area_Level_2, Process_Area_
Level_3, Process_Area_Level_4 and Process_Area_Level_
5. Requirements_Management shown in Table 1 is a
subclass of Process_Area_Level_2.

The second column contains the Specific_Goal and
Generic_Goal subclasses. Following the convention used
in the description of the CMMI-DEV model [7], the name
of each subclass is prefixed by SG for Specific_Goal and
GG for Generic_Goal. Following the prefix of SG, there
is a number, which acts as an enumerator for the sub-
classes of Specific_Goal and Generic_Goal. So SG_1_
Manage_Requirements in Table 1 is the class for the
specific goal numbered 1. The convention for the GG
prefix accepted in [7] is that the number after the GG
prefix is an indicator that shows the corresponding Pro-
cess_Area_Level_<x>, where x is an integer. So the class
GG_2_Institutionalize_a_Managed_Process represents a
goal associated with the process areas associated with the
maturity level 2.

The third column contains the Specific_Practice and
Generic_Practice subclasses. The name of each subclass
is prefixed by SP for Specific_Practice and GP for Ge-
neric_Practice. Following the prefix, there are two num-
bers separated by a dot, where the first number corre-
sponds to a Specific_Goal or a Generic_Goal. The sec-
ond number enumerates the subclasses of Specific_Prac-
tice and Generic_Practice.

The subclasses at a row are related to each other through
properties and restrictions. The subclasses in column one
are restricted to such instances that on property satis-
fiedBy have at least one (existential restriction) value
from a specific subclass of Goal. In other words, the sub-
classes of Process_Area are defined by the satisfiedBy
property and a subclass of Specific_Goal or Generic_
Goal. The Goal class is defined by the allValuesFrom
restriction (necessary and sufficient) on property achie-
ved By with values in the class Practice. However, a
relatively rich subclassification of Goal provides more
information than this restriction. Each subclass of Goal is
defined as an existential restriction to particular subclasses
of Practice on property achievedBy. So for instance, SG_
1_ManageRequirements must have at least one of the
five practices as value of achievedBy.

In total, there are 49 Specific_Goal subclasses. In or-
der to enhance the readability of the ontology, the 49
subclasses are grouped into 22 intermediate subclasses,
which have the naming convention <name>_Goal, where
name is the name of the Process_Area that is related to

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 784

the subclass of Specific_Goal grouped under this subclass.
For instance, the goal SG_1_Manage_Requirements falls
under the Requirements_Management_Goal intermediate
class. These intermediate subclasses of Specific_Goal,
which are used solely for the grouping, are not shown in
Table 1.

4. Validation of the Formalization

In the previous sections we showed how the CMMI-DEV
ontology presented in this paper was constructed. The
main purpose of this discussion was to show the relation
between the CMMI-DEV model described in [7] and the
ontology, and show that the ontology is a relatively faith-
ful formalization of the model. The goal was to convince
the reader that this is actually the case. Obviously, this is
a subjective judgment. Since, as stated in the Introduc-
tion section, the main usage scenario for this ontology
that guided its development was the automatic inference
of the maturity level of an organization’s development
process, we also tested this formalization on a number of
cases. For this purpose, a set of test cases was developed
and then OWL inference engines were used for the
automatic inference of facts entailed by the ontology. In
particular, the derivation of the maturity level of an or-
ganization was demonstrated. In this section we describe
some of our experiments.

4.1 Test Data

We used the results of the SEI Appraisal Program [18] to
assess the validity of our formalization. SEI has designed
“the Standard CMMI Appraisal Method for Process Im-
provement (SCAMPISM) to provide benchmark quality
ratings relative to CMMI models” [19]. These results
show the assigned maturity level of the staged version of
CMMI-DEV model for the appraised organizations, based
on the process areas determined by the appraisal method.
In order to attain a maturity level, an organization should
have “satisfied” or “not applicable” ratings for the proc-
ess areas that maturity level consists of. For our experi-
ments, fifteen organizations were selected from the ap-
praisal results. The appraisal results for the fifteen organi-
zations and the ratings for the process areas applied by
each organization are shown in Table 2. The organiza-
tions in Table 2 are labeled O1 through O15. Each row
shows which organizations cover the process area repre-
sented by the row and whether the process area is satis-
fied (S), not applicable (NA) or out of scope (OS). Table
3 shows the legend for all the labels in Table 2.

All the data from Table 2 was annotated in terms of
the CMMI-DEV ontology so that it could be processable
by an OWL reasoner. Moreover, instances of all the classes
from the CMMI-DEV ontology (Generic_Goal, Specific
_Goal, Generic_Practice and Specific_Practice) had to be

Table 1. Example relationships among subclasses of Pro-
cess Area, Goal and Practice.

Process Area Goal Practice

Requirements
Management

SG 1 Manage
Requirements

SP 1.1 Understanding
Requirements

SP 1.2 Obtain Commitment to
Requirements

SP 1.3 Manage Requirements
Changes

SP 1.4 Maintain Bidirectional
Traceability of Requirements

SP 1.5 Ensure Alignment
between Project Work and
Requirements

GG 2 Institutionalize
a Managed Process

GP 2.1 Establish an
Organizational Policy

 GP 2.2 Plan the Process

 GP 2.3 Provide Resources

 GP 2.4 Assign Responsibility

 GP 2.5 Train People

 GP 2.6 Control Work Products

GP 2.7 Identify and Involve
Relevant Stakeholders

GP 2.8 Monitor and Control the
Process

GP 2.9 Objectively Evaluate
Adherence

GP 2.10 Review Status with
Higher Level Management

created. Those instances need to be present for a particu-
lar organization in order to satisfy the restrictions of the
maturity level that the organization has been assigned.
The overall number of instances that had to be created
was quite large. For instance, for an organization to be at
the maturity level 5, at least 255 instances need to be
created. For other levels these numbers are 215 for level
3 and 92 for level 2. All fifteen annotation files, one for
each company, can be viewed at
http://www.ece.neu.edu/groups/scs/onto/CMMI-DEV/.

4.2. Testing

As the first step, both the CMMI-DEV ontology and the
OWL files that contained the test cases were checked for
consistency using an ontology consistency checker Cons-
VISor [20]. The result of the tests on the final version of
these files was that all the ontologies were consistent.

In the next step, two OWL reasoners were used to de-
rive development process maturity levels of the 15 or-
ganizations. The reasoners were BaseVISor [16], OWLIM
2.9.1 [17] and Pellet 2.3.0 [14]. All three inference en-
gines are available for free for research purposes. All of
them were able to process the reasoning tasks for all 15

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development

Copyright © 2012 SciRes. JSEA

785

Table 2. Test cases.

 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

AppR 3 5 3 5 5 3 2 5 2 3 2 5 3 2 5

REQM S S S S S S S S S S S S S S S

PP S S S S S S S S S S S S S S S

PMC S S S S S S S S S S S S S S S

SAM NA S S NA NA S S NA NA S S S S NA NA

MA S S S S S S S S S S S S S S S

PPQA S S S S S S S S S S S S S S S

CM S S S S S S S S S S S S S S S

RD S S S S S S OS S OS S OS S S OS S

TS S S S S S S OS S OS S OS S S OS S

PI S S S S S S OS S OS S OS S S OS S

VER S S S S S S OS S OS S OS S S OS S

VAL S S S S S S OS S OS S OS S S OS S

OPF S S S S S S OS S OS S OS S S OS S

OPD S S S S S S OS S OS S OS S S OS S

OT S S S S S S OS S OS S OS S S OS S

IPM S S S S S S OS S OS S OS S S OS S

RSKM S S S S S S OS S OS S OS S S OS S

DAR S S S S S S OS S OS S OS S S OS S

OPP OS S OS S S OS OS S OS OS OS S OS OS S

QPM OS S OS S S OS OS S OS OS OS S OS OS S

OPM OS S OS S S OS OS S OS OS OS S OS OS S

CAR OS S OS S S OS OS S OS OS OS S OS OS S

Table 3. Legend for the test cases from Table 2.

Acronym Description Acronym Description

AppR Appraisal Result OPF Organizational Process Focus

REQM Requirements Management OPD Organizational Process Def.

PP Project Planning OT Organizational Training

PMC Project Monitoring and Cntrl IPM Integrated Project Mngmnt

SAM Supplier Agreement Mngmnt RSKM Risk Management

MA Measurement and Analysis DAR Decision Analysis & Resol.

PPQA Process & Prod. Qual. Assrn. OPP Organizational Proc. Perf.

CM Configuration Management QPM Quality Project Mngmnt

RD Requirements Development OPM Org. Performance Mngmnt

TS Technical Solution CAR Causal Analysis & Resol.

PI Product Integration S Satisfied

VER Verification NA Not Applicable

VAL Validation OS Out of Scope

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 786

cases within seconds. All the test cases resulted in correct
(expected) inference. In other words, for all the fifteen
test cases listed in Table 2, BaseVISor, OWLIM and
Pellet derived that the organizations satisfied the levels
specified in the table, as well as all the levels below the
highest level.

5. Related Work

Our literature search has identified a number of efforts on
implementing formal ontologies for software engineering
in general ([21]). However, our interest was specifically
related to the use of automatic inference of the CMMI-
DEV maturity levels of software engineering processes.
Below we list the efforts that are related to the use of
ontologies for software engineering process improvement
in general and the CMMI-DEV model in particular.

The work reported in this paper is based on, and is an
extension of, the (unpublished) work reported at the 2006
ISWC Workshop on Semantic Web Enabled Software
Engineering (SWESE) [22]. The ontology described in
[22] was modified to account for the migration of the
CMMI-SW [23] to CMMI-DEV V.1.3 [7].

Mendes and Abran [24] have initiated a project for the
development of a software engineering domain ontology
based on the Software Engineering Body of Knowledge
(SWEBoK) [25]. Although OWL was used to implement
the ontology, we were not able to access the ontology
and possibly base our ontology on some results of this
work. Moreover, the goal of the development of the
SWEBoK ontology was different than ours. As stated in
[24], their project had five objectives: “characterizing the
software engineering discipline contents; providing ac-
cess in terms of topics to the software engineering body of
knowledge; promoting a consistent view of software en-
gineering; clarifying the location and setting the boundaries
of software engineering with respect to other related dis-
ciplines; creating a basis for curriculum development and
individual certification.”

Liao, Qu and Leung [26] introduced an ontology named
Software Process Ontology (SPO) to express software
processes at the conceptual level. The focus of this on-
tology was on the software engineering process and the
integration of various process assessment paradigms. For
this reason, the ontology has two subclasses for linking
SPO with ontologies for CMMI and ISO/IEC 15504.
However, to the best of our knowledge, this ontology did
not support the inference of the maturity levels.

Chang-Shing Lee, et al. [27,28] conducted research on
the application of ontologies to project management. As
part of this research, they have reported on the develop-
ment of a “CMMI ontology”. Their ontology includes
many concepts that come out of the CMMI model [7],

like the key process areas of Requirements Management
and Software Project Planning. However, since the goal
of their project is different from ours, their ontology has
very little resemblance with the CMMI-DEV ontology
presented in this paper. The structure of their ontology is
based on their own conceptualization of both the classes
and the relations among the classes, while in our case the
intent was to just capture the CMMI-DEV concepts (as
faithfully as possible) in a formal representation rather
than introduce a new conceptualization. Consequently,
while the ontology discussed in [27,28] serves the pur-
pose intended by its authors, it would not be possible to
infer the maturity level of an organization by using off-
the-shelf ontology inference engines.

Gazel, Sezer and Tarhan [29] created a software proc-
ess assessment tool called Ontology-based CMMI Map-
ping and Querying Tool (OCMQT) which is an Eclipse
plug-in extension to EPF Composer. A CMMI ontology
based on CMMI-Dev 1.2 was created. Users can view a
CMMI ontology, create a software process ontology, con-
struct a mapping ontology which maps the software pro-
cess ontology to the CMMI ontology and query all the
three ontologies. It is stated in [29] that the ontology
captures both continuous and staged representations of
CMMI. However the details of the ontology are not pro-
vided in the paper. Although some similarities to the on-
tology described [22] seem to be apparent, e.g., the pro-
perty names, it is not clear whether this ontology supports
the inference about the maturity levels.

Rungratri and Usanavasin [30] have constructed an on-
tology called Project Assets Ontology (PAO) and a CMMI
Maturity/Capability assessment tool called CMMI v.1.2
based Gap Analysis Assistant Framework (CMMI-GAAF).
PAO is an extension to the older version of the CMMI
ontology by Soydan and Kokar [22]. It includes typical
work products, data type properties defining project as-
sets and evidences of information related to the typical
work products. CMMI-GAAF uses project assets from an
organization and PAO to make an assessment on the
CMMI practices and goals performed and achieved. The
tool produces a report called Practice Implementation
Indicator Description (PIID), which shows the achieved
and absent practices and goals to achieve maturity levels
in an organization. While this paper presents an ontology
and a tool for comprehensive assessment of an organiza-
tion in achieving maturity levels, it doesn’t make use of
ontology inferencing capabilities.

A number of efforts were devoted to developing con-
ceptual ontologies (although not represented in a formal
knowledge representation language). The reasoning com-
ponents of these systems follow a specially developed
algorithm that processes fuzzy rules. Wang et al. [31] use
a fuzzy ontology and ontology-based semantic inferenc-
ing to a CMMI-based system for student performance in

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development 787

the After School Alternative Program in Taiwan. Also,
Wang et al., Lee et al., [32] and Wang et al. [33] have
developed an ontology-based intelligent estimation agent
which uses fuzzy inference and a CMMI-based project
planning ontology. This agent estimates the total cost of
a project. Lee, Wang, Liu and Lin [34] developed a Cus-
tomer Relationship Management (CRM) ontology using
CMMI project planning. The intent was to use the ontol-
ogy in business process planning. Lee and Wang [35]
worked on a project in which they used an ontology, natural
language processing and the intelligent agent technology
for generating summaries of evaluations of the software
engineering process with respect to CMMI. In a similar
vein, Lee et al. [36] applied a CMMI based ontology
approach to project monitoring and control. Sang Hun
Lee et al. [37] discussed the relation between the CMMI
reference model and the OTK ontology development
methodology.

The need for the use of ontologies in software engi-
neering has been recognized by many other researchers
and organizations. In most cases the purpose of develop-
ing a software engineering ontology has been to establish
a common vocabulary and to provide formalization of
software engineering concepts [21,38-40]. To the best of
our knowledge, none of the existing ontologies allow for
the automatic inference of maturity levels as described in
this paper.

6. Conclusions and Future Work

The main purpose of the work described in this paper
was to demonstrate the capability of automatic classifica-
tion of maturity levels based upon some characteristics of
the software engineering processes used by an organiza-
tion. Towards this aim, a comprehensive formalization of
the CMMI-DEV model as an ontology was implemented
in OWL-DL. The ontology includes 313 classes and three
properties. 86 of the classes are defined classes; others
are primitive classes.

The ontology has been validated on fifteen cases (fifteen
organizations) extracted from the set of results developed
by the SEI Appraisal Program. In order to annotate these
organizations, a large number of instances had to be
added to the base CMMI-DEV ontology. The number of
instances ranged from 92 to 255, depending on the ma-
turity level of an organization. All of the fifteen test cases
are accessible at:
http://www.ece.neu.edu/groups/scs/onto/CMMI-DEV/.
The particular test cases at this URL are identified as
cmmi_test1.owl through cmmi_test15.owl.

The BaseVISor, Pellet and OWLIM inference engines
were used successfully to derive the maturity levels of
the organizations based on the supplied data, and for all
of the test cases the inference engines derived the same

conclusions as in the appraisal results.
Since the CMMI-DEV Ontology has computer-ex-

ecutable semantics, it can be used for automatic reason-
ing about the maturity levels of organizations, based
upon some data provided by the organization. An OWL
reasoner can be used for this purpose. The ontology
could also be used in other scenarios, including process
improvement and process optimization. And finally, the
ontology can be used for passing information about par-
ticular aspects of the software engineering processes,
both within and among software organizations.

Although the validation results indicate that the onto-
logy faithfully captures the concepts and constraints of
the CMMI-DEV model, the ultimate value of the onto-
logy can only be appreciated if the community accepts it
and decides to use it for both capturing process informa-
tion and for interchange of information among various
tools and various users. Towards this aim, we have pub-
lished the ontology on our web site. This ontology can be
treated as a “core ontology” that can be extended to more
fully capture the concepts that are needed by the potential
users.

The ontology is available at:
http://www.ece.neu.edu/groups/scs/onto/CMMI-DEV/cm
mi.owl.

REFERENCES
[1] M. B. Chrissis, M. Konrad and S. Shrum, “CMMI: Gui-

delines for Process Integration and Product Improvement,”
3rd Edition, Addison-Wesley, Boston, 2011.

[2] Carnegie Mellon Software Engineering Institute, “What
Is CMMI?” 2008.
http://www.sei.cmu.edu/cmmi/general/

[3] Carnegie Mellon Software Engineering Institute, “The
CMMI Version 1.2 Overview Presentation,” 2008.
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overvi
ew07.pdf

[4] Capability Maturity Model, “Wikipedia,” 2008.
http://en.wikipedia.org/wiki/Capability_maturity_model

[5] J. Heflin, “OWL Web Ontology Language Use Cases and
Requirements,” 2004.
http://www.w3.org/TR/webont-req/

[6] B. Gallagher, M. Phillipsand, K. Richter and S. Shrum,
“CMMI-ACQ: Guidelines for Improving the Acquisition
of Products and Services,” 2nd Edition, Addison-Wesley,
Boston, 2011.

[7] CMMI for Development, “CMMI-DEV V1.3,” Technical
Report, Software Engineering Institute, Pittsburgh, 2010.

[8] E. Forrester, B. Buteau and S. Shrum. “CMMI for Ser-
vices: Guidelines for Superior Service,” 2nd Edition, Ad-
dison-Wesley, Boston, 2011.

[9] W3C, “Web Ontology Language (OWL),” 2004.
http://www.w3.org/2004/OWL/

[10] G. H. Soydan, “An OWL Ontology for Representing the

Copyright © 2012 SciRes. JSEA

A Partial Formalization of the CMMI-DEV—A Capability Maturity Model for Development

Copyright © 2012 SciRes. JSEA

788

CMMI-SW Model,” M.S. Thesis, Northeastern Univer-
sity, Boston, 2006.

[11] W3C, “Semantic Web Activity,” 2006.
http://www.w3.org/2001/sw/

[12] T. R. Gruber, “A Translation Approach to Portable On-
tology Specifications,” Knowledge Acquisition, Vol. 5,
No. 2, 1993, pp. 199-220. doi:10.1006/knac.1993.1008

[13] M. Bunge, “Treatise on Basic Philosophy: Ontology I:
The Furniture of the World,” Springer, Dodrecht, 1977.

[14] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz,
“Pellet,” 2005. http://pellet.owldl.com/

[15] V. Haarslev, R. Miller and M. Wessel, “Racer,” 2005.
http://www.sts.tu-harburg.de/ r.f.moeller/racer/

[16] C. J. Matheus, K. Baclawski and M. M. Kokar, “BaseVI-
Sor: A Triples-Based Inference Engine Outfitted to Proc-
ess RuleML & R-Entailment Rules,” Proceedings of the
Second International Conference on Rules and Rule
Markup Languages for the Semantic Web, Washington,
10-11 November 2006, pp. 67-74.

[17] A. Kiryakov, D. Ognyanov and D. Manov, “WISE Work-
shop,” Springer, Dodrecht, 2005.

[18] Carnegie Mellon Software Engineering Institute, “List of
Published SCAMPI Appraisal Results,” 2005.
http://seir.sei.cmu.edu/pars/pars_list_iframe.asp

[19] Carnegie Mellon Software Engineering Institute, “CMMI
Appraisals,” 2006.
http://www.sei.cmu.edu/cmmi/appraisals

[20] K. Baclawski, M. M. Kokar, R. Waldinger and P. A.
Kogut, “Consistency Checking of Semantic Web Ontolo-
gies,” Lecture Notes in Computer Science, Vol. 2342,
2002, pp. 454-459.

[21] C. Calero, F. Ruiz and M. Piattini, “Ontologies for Soft-
ware Engineering and Software Technology,” Springer,
Dodrecht, 2006.

[22] G. H. Soydan and M. M. Kokar, “An OWL Ontology for
Representing the CMMI-SW Model,” The 2nd Interna-
tional Workshop on Semantic Web Enabled Software En-
gineering, Athens, 6 November 2006.

[23] CMMI for Software Engineering, “Staged Representation,
(CMMI-SW V1.1, Staged),” Technical Report, Software
Engineering Institute, Pittsburgh, 2002.

[24] O. Mendes and A. Abran, “Software Engineering Ontol-
ogy: A Development Methodology,” Metrics News, Vol.
9, No. 1, 2004, pp. 68-76.

[25] P. Bourque and R. Dupris, “Guide to Software Engineer-
ing Body of Knowledge,” IEEE Computer Society Press,
Washington, 2005.

[26] L. Liao, Y. Qu and H. Leung, “A Software Process On-
tology and Its Application,” ISWC2005 Workshop on
Semantic Web Enabled Software Engineering, 2005.

[27] C.-S. Lee, M.-H. Wang and J.-J. Chen, “Ontology-Based
Intelligent Decision Support Agent for CMMI Project
Monitoring and Control,” International Journal of Ap-
proximate Reasoning, Vol. 48, No. 1, 2008, pp. 62-76.

[28] C.-S. Lee and M.-H. Wang, “Ontology-Based Computa-
tional Intelligent Multi-Agent and Its Application to

CMMI Assessment,” Applied Intelligence, Vol. 30, No. 3,
2007, pp. 203-219. doi:10.1007/s10489-007-0071-1

[29] A. T. S. Gazel and E. Sezer, “An Ontology Based Infra-
structure to Support Ontology-Based Software Process
Assessment,” Gazi University Journal of Science, Vol. 25,
No. 1, 2012, pp. 155-164.

[30] S. Rungratri and S. Usanavasin, “Project Assets Ontology
(PAO) to Support Gap Analysis for Organization Process
Improvement Based on CMMI v.1.2,” Proceedings of the
Software Process, Berlin, 10-11 May 2008, pp. 76-87.

[31] M.-H. Wang, Z.-R. Yan, C.-S. Lee, P.-H. Huang, Y.-L.
Kuo, H.-M. Wang and B.-H. Lin, “Apply Fuzzy Ontology
to CMMI-Based ASAP Assessment System,” IEEE
World Congress on Computational Intelligence, Barce-
lona, 18-23 July 2010.

[32] C.-S. Lee, M.-H. Wanga, Z.-R. Yana, C.-F. Lob, H.-H.
Chuangb and Y.-C. Linb, “Intelligent Estimation Agent
Based on CMMI Ontology for Project Planning,” Pro-
ceeding of the 2008 IEEE International Conference on
Systems, Man and Cybernetics, 12-15 October 2008, pp.
228-233.

[33] M.-H. Wang, C.-S. Lee, Z.-R. Yan, H.-H. Chuang, C.-F.
Lo and Y.-C. Lin, “A Novel Fuzzy CMMI Ontology and
Its Application to Project Estimation,” Journal of Internet
Technology, Vol. 9, No. 4, 2008, pp. 317-325.

[34] C.-S. Lee, Y.-C. Wang, W.-M. Liu and Y.-C. Lin, “CRM
Ontology Based on CMMI Project Planning for Business
Applications,” Proceedings of the 6th International Con-
ference on Machine Learning and Cybernetics, Hong
Kong, 19-22 August 2007, pp. 2941-2946.

[35] C.-S. Lee and M.-H. Wang, “Ontology-Based Computa-
tional Intelligent Multi-Agent and Its Application to
CMMI Assessment,” Applied Intelligence, Vol. 30, No. 3,
2009, pp. 203-219. doi:10.1007/s10489-007-0071-1

[36] C.-S. Lee, M.-H. Wang, J.-J. Chen and C.-Y. Hsu, “On-
tology-Based Intelligent Decision Support Agent for
CMMI Project Monitoring and Control,” International
Journal of Approximate Reasoning, Vol. 48, No. 1, 2008,
pp. 62-76. doi:10.1016/j.ijar.2007.06.007

[37] S. H. Lee, H.-J. Choi and S. Kim, “Analysis of Ontology
Development Methodology Based on OTK and CMMI
Level 4,” International Conference on Advanced Com-
munication Technology, 15-18 February 2009, pp. 585-
590.

[38] R. A. Falbo and G. Bertollo, “Establishing a Common Vo-
cabulary for Software Organizations Understand Software
Processes,” EDOC International Workshop on Vocabular-
ies, Ontologies and Rules for the Enterprise, VORTE’,
The Netherlands, 20 September 2005, pp. 25-32.

[39] R. A. Falbo, F. B. Ruy and R. D. Moro, “Using Ontolo-
gies to Add Semantics to a Software Engineering Envi-
ronment,” 17th International Conference on Software En-
gineering and Knowledge Engineering, Taiwan, 14-16 July
2005, pp. 151-156.

[40] T. Singarayan, “A Framework for Semantic-Enabled Soft-
ware Engineering,” 2007.
www.semantic-conference.com/2007/conferenceglance.html

http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1007/s10489-007-0071-1
http://dx.doi.org/10.1007/s10489-007-0071-1
http://dx.doi.org/10.1016/j.ijar.2007.06.007

