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ABSTRACT

In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network
is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct
adaptive approach is performed after the training process is achieved. A Lyapunov-Base training algorithm is proposed
and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation
results obtained verify the effectiveness of the proposed control method.
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1. Introduction

For several decades, the problem of adaptive control of
complex dynamic systems causes the interest of automa-
tion specidists. The use of Proportional-Integral-Deriva
tive (PID) controllersis simple to perform, that give poor
performance if there are uncertainties and nonlinearities
in the system to be controlled. In several references like
[1-3], neural networks are presented as tools to solve
control problems due to their ability to model systems
without analyzing them theoretically and their posses-
sions a great capacity for generalization, which gives
them a good robustness to noise [4].

Severa strategies of the neural adaptive control exist
which we quote: direct adaptive neura control, indirect
adaptive neuronal control, adaptive neural internal model
control, adaptive depth control based on feedforward ne-
ural networks, robust adaptive neural control, Feedback-
Linearization based neural adaptive control, adaptive ne-
ural network model based nonlinear predictive control
[5-13]. Each strategy has neural adaptive control archi-
tecture, the algorithms used during the calculation of the
parameters and stability conditions. It has three types of
neural adaptive control architectures. The first type of
architecture consists of a neural controller and a system
to be controlled. The second type of neura architecture
includes a controller, a system to be controlled and his
neural model. The third type of architecture is composed
of a neurona controller, one or more robustness filter, a
system to be controlled and his neural model.

The adjustment of the model parameters and the con-
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troller is performed by neural learning algorithms that are
based on the choice of the criterion to minimize, a mini-
mization method and the theory of Lyapunov for stability
and borniture of all signals existing. Several minimiza-
tion methods exist which are presented: simple gradient
method, gradient method with variable pitch, Newton
method and Levenberg-Marquardt method [14].

The contribution of this paper is to propose an adap-
tive Lyapunov-Based control strategy for complex dyna-
mic system. The control structure takes advantage of
Artificial Neural Network (ANN) learning and generali-
zation capabilities to achieve accurate speed tracking and
estimation. ANN-Based controllers lack stability proofs
in many control structure applications and tuning them in
a cascaded control structure is a difficult task to under-
take. Therefore, we proposed a Lyapunov stability-Based
adaptation technique as an alternative to the conventional
gradient-Based and heuristic tuning methods. Thus, the
stability of the proposed approach is guaranteed by Lya
punov Stability direct method unlike many computa-
tional intelligence- Based controllers.

The different sections of this paper are organized as
follows: in Section 2, we present the considered recurrent
neural network and the proposed Lyapunov learning al-
gorithm used for updating the weight parameters of the
model system.

The proposed adaptive control approach training while
a Lyapunov Stability-Based adaptation algorithm is de-
tailed in Section 3. Numerical results are reported and
discussed in Section 4, and a conclusion is drawn in Sec-
tion 5.
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226 Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems

2. Neural Network Modeling Approach

Neural network modeling of a system from samples af-
fected by noise usually requires three steps. The first step
is the choice of neural network architecture, that is to say,
the number of neurons in the input layer which is a func-
tion of past values of the input and output, the number of
hidden neurons, the number of neurons in the output
layer neurons and the organization of them. The work
[15,16] show that every continuous function can be ap-
proximated by a neural network with three layers, the
activation functions of neurons are respectively the sig-
moid function for hidden layer neurons and linear func-
tion for neurons in the output layer. There are two types
of architectures of multilayer neural networks:. neural
networks, non-curly (static networks) and neural net-
works curly or recurrent (dynamic networks). Neural net-
works are non curly most used in the identification and
control systems [17]. They may not be powerful enough
to model complex dynamic systems with respect to neu-
ral networks curly. Different types of recurrent neural
networks have been proposed and have been successfully
applied in many fields [18-25]. The structure of fully
connected recurrent neural networks which was proposed
by Williams and Zipser [26], is most often used [27,28]
because of its generality. The second step is learning or
in other words, estimating the parameters of the network
from examples of input-output system identification. The
methods of learning are numerous and depend on several
factors, including the choice of error function, the initia-
lization of weights, and the selection of the learning al-
gorithm and the stopping criteria of learning. Learning
strategies were presented in severa research works that
we cite [29-31]. The third step is the validation of the
neural network obtained using the testing criteria for
measuring performance. Most of these tests require a
data set that was not used in learning. Such a test set or
validation should, if possible, cover the same range of
operation given that all learning.

2.1. Architecture of the Recurrent Neural
Networ k

In this work, we consider a recurrent neural network
(Figure 1) for identification of complex dynamic systems
to a single input and single output. The architecture of
these networks is composed of two parts: a linear model
the linear behavior of the system and a non-linear ap-
proach to nonlinear dynamics.
where:

¥(k) istheoutput of the neural network at time k,

u andy arerespectively theinput and output system to
identify,

f(x)=

© il and f,(x)=x arethe activation fun-
+

1+e*
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Figure 1. Architecture of the considered neural network.

ctions of neurons,

n, the number of neurons in the hidden layer respec-
tively of the model and controller,

The coefficients of the vector of parameters of the ne-
ural model w are decomposed into 7 groups, formed re-
spectively by:

W111 Wlln,
w=| 1 | the weights between neurons
in the input layer and neurons in the hidden layer,
W
W= : the bias of neuronsin the hidden layer,
W

1
W= [Wfl S Wh ] the weights between neurons in the

hidden layer neurons and output layer,
W= [Wfl] the bias of neuron in the output layer,

\,\,5:[\,\,151...\,\,5

n,

] the wei ghts between neurons of in-

put layer neurons and output layer,
\Nfl anh
w= : the weights between neurons
Woyo o Who
in the hidden layer,
w = [wfl] back weight of neuron in the output layer,

h

X

X' =| : the outputs of the hidden layer of neural
h

X1
model,
n, =n,+n,+n, number of neuronsin the input layer.

v (k) =[y(k-1),-,y(k=n,),u(k-n, -1),
u(k=n -, 9(k=1),, 9(k-n,)]
=[va (K)o, (k)T
()

The vector of parameters of the neural model is de-
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fined as:
w= [Wllll""wlnhn, 'W211*"'!W2nh1'
W3111"'1W31nh 1W4111W5111 2
W W W ,W711]T

The output of neural model y(k) isgiven by:

9(0) = ()3 (1) 3o, ()% (4

. ©)
#3u (K)w () + w (K)
such as:
5 ()= i (K () + 2w (D6 (1)
w2 (K)
X! (K) = f, (5 (k) (5
s(k)=[s(k)-s, (k)] (6)
X ()= X (k). %0 (k) | @)

The neural model of the system can be expressed by
the following expression:

9(k) = f (y(k=2),- y(k=n,),u(k—n-1),

. R ®
ou(k=n -n,), y(k=1),, y(k-n,),w(k))
2.2. Proposed Lyapunov-Base L earning
Algorithms

Severa Lyapunov stability-based ANN learning techni-
ques are also proposed to insure the ANNS' convergence
and stability [32,33]. In this section we present three
learning procedures of neura network.

Theorem 1. The learning procedure of a neural net-
work can be given by the following equation:

A 1 (k)
Wik =wlio+ et (9
’ 7L pleol |
7 [[ow(k)
such as;
O<A<y<p (10)
e(k)=y(k)-¥(k) (11)
| || isthe Euclidean norm.
Proof.

Considering the following quadratic criterion:
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3. (k) =2 (e + L (ae0))* + 2 (aw(r))” (12)

Ae(k)=e(k)—e(k-1)=e(k+1)-e(k) (13
Aw(k)=w(k)-w(k-1)=w(k+1)-w(k) (14)

The learning procedure is to adjust the coefficients of
the neural networks considered by minimizing the crite-
rion J, (k); itisnecessary to solve the equation:

23, _,

(K (15

therefore:

K (16)
:w(k)+%e(k)%

B ae(ic) Y (K)
+7Ae(k)m

According to reference [34], the difference in error due
to learning can be calculated by:

e(k+1)=e(k)+Ae(k)

e(k) | (17)
:e(k){sw((kkﬂ (aw(K)) '

The term Ae(k) is then written as follows:

o(k) = ae(k)_T w
se()-| S0 (awi)
2000 T (2 g0 22(K) B .20
{aw(k)_ { raui " “‘)aw<k>]
A, (k)" p . oe(k)[’
pra b e e bl Py
(18)
Therefore:
2 e ’
(k)=-~ ot (19)
A ECOI
" |law(x)

According to Equations (16) and (19), we can write:
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w(k+1)
gl e®
(k) Le( K| o] | et
y k) | pllae(k)|f |ow(k)
7 [[ow(k)
oe(k) [
_ A oe(k) Wi ow(k)
= (k) y (k)aw(k) 7 . 5 0e(k) 2
Ty low(k)
—w(k)-2 1 oe(k)
=w(k)-~ WED ()20
T [low(k)
w(k)+ 4 — 1 (k)
=w(k)+ Tov %) 2w
7 |ow(k)
(20)

The parameters 1, S, y are chosen so that the
neural model of the system must be stable. In our case,
the stability analysis is based on the famous Lyapunov
approach [35]. It is well known that the purpose of iden-
tification is to have a zero gap between the output of the
system and that of the neural model. Three Lyapunov
candidate functions are proposed:

Thefirst candidate Lyapunov function is defined by:

V()= (e(t))’ (21

Thefunction V(t) satisfiesthe following conditions:
V(t) iscontinuousand differentiable.

V(t)=0 s e(t)=0.
V(t)>0, Ve(t)=0.
The neural model is stable in the sense of Lyapunov if

V(t)<0 orsimply AV (k)<0.
Theterm AV (k) isgiven by the following equation:

AV (k)= (e(k+1)" - (e(K))) (22)

From Equation (22), AV (k) may be as follows:
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AV (k) =5 (e(k)+ ae())’ - (e(K)))
= Ae(k (e(k)+%Ae j (23)

) (k)
- Ae(k)e(k)+%(Ae(k))2

From the above equations, we obtain:

AV (k)

A ] oe(k)[ 2] ee(k) [
:_7(6('()) ow(k)| | rlow(k) (24)
8 oe(k)[ 8 oe(k)|
1+7 aw(K) 2[1+}/ 8W(k) J

like:
ezl ee®) ’
},( (k)) aW(k) (25)
WD |
7 |ow(k)

The proposed neural model is stable in the sense of
Lyapunov if and only if:

4| oe(k)
ow(k
o rlow() >0 (26)
2 l+£ 6e(k)
7 {|ow(k)
noting that:
d = max ﬂ = max M 27)
ow(k) ow(k)
Therefore, we will have:
2
i 6e(k) idZ
ow(k
1-— 7 (k) ~>1-—7 >0 (29
5| 1. A[ %K) 2(1+ﬂd2j
7 |ow(k) 4
The stability condition becomes:
A-28 < 2
<— 29
p e (29)
The second candidate Lyapunov function is:

V(k)=5(e0) +5(ae() @0
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To meet the three conditions of stability of Lyapunov

candidate functions proposed parameters A, f and y

Given that:
AV(k):e(k)(ae(k)J (Aw(k)) must verify:
ow(k) (a1 AL B 1
+(Ae(k) [ J Aw(k)
(2e() ow(k) (i) Frrn L (39)
Using Equations (19) and (20), the above relation becomes: ¥ d
2 then:
AV (k) = e(k)(Ae(k)) +(ae(k)) A<y<p (40)
2 2 Theorem 2. The parameters of the neural network can
] —j(e(k))z svev((kk)) ) j 2;((';)) be adjusted using the following equation:
B 6e<k>H2 WEGl
7 ||ow(k) 7 || ow(k) w(k+1)=|1-
i\ H Ll
Then the second stability condition is ow(k) (4D
A-p 1 ay(k)
TSF (33) +2 " (k) | el ow(k)
The third and last candidate Lyapunov function is
:1 2,17 2 Proof.
V(k) Z(e(k)) +2/1(Ae(k)) (39 Using the following Lyapunov function
Theterm AV (k) isasTfoIIows V(k):%(e(k))2+%(Ae(k))2+1||w(k)||2
AV (k) =e(k oe(k) 1 2
( )_e( ) 8W(k) +E"Aw(k)"
y The learning procedure of the neural network is stable
(Aw(k))+%(Ae(k))(§Wi(kk))] (Aw(k)) if:
) AV (k) = (e(k))(ae(k)) +|ae(k)[
() (ae(k)) +Z-(ae(k) . :
] ] +(W(k)) (Aw(k))+||Aw(k)|| <0
—i(e(k))z oe(k) oe(k) Using the above equation, we can write
ow(k ow(k 2 2 T
o ) WL avio= (o]« e +(w(i)] (aw)
1. B 2elK) , 2] %) +(e(K))(ae(K)) = “
7 {|ow(k) 7 | ow(k)
suchas r>0
(35) therefore:
Thethird stability condition is: ) T
: : [aw(i)]"+ ek +(w(k))" (aw(k))
1 B oelk) (3) +(e(k)) (e(k) +
7 |ow(k)| | |ow(k)
therefore: —||A L I;)) J (45)
£21—i221— 1 . (37)
v d oe(k) +[ e(k) ]
ow(k) w(k
JSEA
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For Equation (45) has a unique solution requires that:

w25 L U ] »
then:
w(k)+e(k) 2;((‘;))
" re(k)[f “
4[1+ Aw(k) J

Theterm Aw(k) can bewritten asfollows:

sy

Aw(k) = - -
2[1+ J

For avery small variation, we can write Equation (48):

[w(k)+e(k)gvev((';))J

Aw(k)=— .
[ o)

ow(k)
therefore:

Ae(k)
Aw(k)

(49)

2} k) aw(k) (50)

iy M\U
ow(k)

+ k) oY(k)

2P+W®H] on(k)
ow(k)
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Theorem 3. The updating of the neural network pa-
rameters can be made by the following equation:

w(k+1) =] 1-———— w(k)
2[1+ oyt ]
ow(k)
ay(k)
e(k) (51)
Er
ow(k)
+(1-a)Aw(k)
with: O<a <1
Proof.
From Equations (14) and (41), we can write:
w(k+1)=w(k)+Aw(k+1)
= w(k)+Aw(k)
= wW(k)+aAw(k+1)+(1-a)Aw(k)
- w(k)

(52)

2[1+

2y
ow(k)
29(k)

k
z@+awnuj ouii
ow(k)

+(1-a)Aw(k)

+

The choice of initia synaptic weights and biases can
affect the speed of convergence of the learning algorithm
of the neural network [36-47]. According to [48], the
weights can be initialized by a random number generator
with a uniform distribution between —¢ and 6 or a
normal distribution N $o, 6?).

For weights with uniform distribution:

o<s | 3 (53)
\/ (n +1)(1+ > (y/m(O))ZJ
For weight with anormal distribution
9<3s I 1 (54)
\/ (n, +1)[1+ > (¥ (o))"’]
where: S~ 2.29
JSEA
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2.3. Organizational of the Learning Algorithm of
Neural Model

The proposed Lyapunov-Based used to training dynamic
model of the system is presented by the flowchart in Fig-
ure 2, reads asfollows:

Step 1.

We fix the desired sgquare error &,, the parameters
(n,,n,,n.,n), the number of samples N, the maxi-
mum number of iterationsitr , the number of neurons in
the first hidden layer n, .

The weights w(0,0) are initialized by a random
number generator with a normal distribution between
-6 and 6.

where;
s [ es| 1
1 L
(nr + ) (l//e) \/(nr +1)[1+Z(l//m(o))2j
m=1
(55
W, = max (max (wm(k))j (56)
Initialize:
- the output of the neural network
9(0,0)=0 (57)
- the vector of outputs of the hidden layer:
x"(0,0)=[0---0]' (58)
- the vector potentials of neuronsin the hidden layer:
s(0,0)=[0---0]" (59)
- the input vector of the neural network:
v (0.0)=[¥(0).++¥(0),u(0).+u(0),0--0]' (60)
Step 2:
initialize:
w(0,k)=w(k-1) (61)
y(0.k)=9(k-1) (62)
x"(0,k) =x"(k-1) (63)
s(0,k) =s(k-1) (64)
Step 3:
Consider an input vector network
1//(k):[y(k—l),m,y(k—na),u(k—nk -1,
u(k-n -n,), §(k-1),-,9(k-n,)]

and the desired value for output  y(k).
Step 4:

Copyright © 2012 SciRes.

Calculate the output of the neural network  ¥(i, k).

Step 5:

Calculate the difference between the system output
and the mode! e(i, k).

Step 6:

Calculate the square error J, (i,k).

Step 7:

Adjust the vector of network parameters w(i,k) us-
ing one of the three following relations:

wi k)=| 1- L w(i-1K)
2[ 1+ oY(i-L1K)
ow(i -1,k) (65)
1 y(i-1k)
+ -1k
o 1. |O¥(-1K) ST
ow(i —Lk)
w(i, k)= w(i —1k)
+i e(i-1k) Hi- ]"k)
y 1+/)’Hay(u LK)H ow(i-1k)
ow(i —1,k)
(66)
with 0<A<y<p
w(i,k)=|1- ay(O:-lk) —~ [w(i-1k)
2[l+ 8W(i—l,k) ]
N a - V(i —1,k)
2[1+ o5(i-1k) z]e( lk)a""(i—l )
ow(i —1k)
+(1-a)Aw(i -1k)
(67)

with O<a <1

Step 8:

If the number of iterations i =itr or J, (i,k)<4,,
proceed to Step 9.

Otherwise, increment i and return to Step 4.

Step 9:

Save:
- the weights of the network at time k:
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Initialize the number of neuronsin the hidden layer
n,, parameters (n,,n,,n.,n ), the coefficients of

the neura network w , the maximum number of
iterations itr , squared error desired &,

"*

Initialization: w(0,k "(0,k) 1 s(0,k) -
‘v'
Application of theinput vector y/(k)and the desired

output y(k)

i=1
>y
Calculation of the output of the neural network
9(i.k)
v
Calculating the difference between the system
output and the model  e(i, k)

Calculation of J,(i.k)

v

Adjusting the parameters of the neural network
4 w(i,k)

Figure 2. Flowchart of the learning algorithm of the neural
network.

w(k) =w(i,k) (68)
- the output of the neural network:

y(k)=9(i.k) (69)
- the vector of outputs of the hidden layer:

X" (k) =x"(i,k) (70)
- the vector potentials of neuronsin the hidden layer:

s(k) = s(i,k) (71)

Step 10:

Copyright © 2012 SciRes.

If k=n, proceed to Stepll.

Otherwise, increment k and return to Step 2.

Step 11:

Stop learning.

The flowchart of thisalgorithmisgivenin Figure 2.

2.4. Validation Tests of the Neuronal Model

The neuronal model obtained from the estimation of its
parameters is valid strictly used for the experiment. So
check it is compatible with other forms of input in order
to properly represent the system operation to identify.
Most static tests of model validation are based on the
criterion of Nash, on the auto-correlation of residuals,
based on cross-correlation between residues and other
inputs to the system. According to [49], the Nash crite-
rion is given by the following equation:

3 (y(K) - J(R)):
Q=100%]| 1-— = 72)

3 wo-(1% y(k)jjz

k=1

N isthe number of samples.
In [50-52], the correlation functions are:
- autocorrelation function of residuals:

R.(7)
_tz_:[e(k)—[;ild D[e(k 0- [ ki_le(k)j]

ey
(73)

- crosscorrelation function between the residuals and the
previous entries:

Re(7) =
Sor () i)

(Sl )] o[ E0]

(74)

Ideally, if the model is validated, the results of correla-
tion tests and the Nash criterion following results:

. 17=0
R%(T):{Oiio

Typically, we verify that Q=100% and the func-
tions R are null for the interval 7 e[-20,20] with a
confidence interval 95%, that isto say that:

, Re(r)=0Vz and Q=100%.
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196 _o 19

RN

3. Adaptive Control of Complex Dynamic
Systems

In this section, we propose a structure of neura adaptive
control of a complex dynamic system and three learning
algorithms of aneuronal controller.

3.1. Structure of the Proposed Adaptive Control

In this work, the architecture of the proposed adaptive
control isgiven in Figure 3.

The considered neura network is first trained off-line
to learn the inverse dynamics of the considered system
from the input-output data. The model following adap-
tive control approach is performed after the training pro-
cess is achieved. The proposed Lyapunov-Base training
algorithm is used to adjust the considered neural network
weights so that the neural model output follows the de-
sired one.

3.2. Learning Algorithms of Neural Controller

Three learning algorithms of the neural controller are
proposed.

Theorem 4. Learning the neuronal controller may be
effected by the following equation:

we(k+1)
=wc(k)
3 - ;™
A A0 [ e fou(k-)
7 owe(k)| 7 || owe(k)
ay(k)
& )awc(k)
with:
Ay By >0 (76)
Bisq
71
%Asq 77
"
Ao
"

r isthereference signal.

(78)
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On-line update of

ANN by
f a_
y(kon) [ 127
y(k-1)
Recurrent (k)
u(k-1 y
rm(_kL Reference [ (K Neural ( Q System >
. Network -1
. : Fz:
u(k=2) =1
u(k-n,)
v

Figure 3. Structure of the proposed adaptive control.

Wc=[wcf1,~--,wcl

ny

2 2
Ny 'WC.Ll’” '7WCnh1'

qul""'wq’nh!wcfllwcfv
W, WES Wy W, |
are the weight of the neuronal controller.

Proof.

The control system consists of using an optimization
digital non-linear algorithm to minimize the following
criterion:

(e (K)) +2 (86, (K)) + 22 (Awe(K))’
2 (79)

(80)

(k1) = wehu(k—2)+ Y we xe! (k)
. (81)

+§Wq5j¢i(k)+wcfl

xch(k):[xclh(k), -,xc:h(k)JT (82)
xc (k) = f,(sc; (k) (83)
2(9=[sa(0). s (] @
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sc; (k)= iwc}m(pm (k)+ %“Wc?mxc,':1 (k-1)

] = (85)
+We?
Au(k-1)=u(k-1)-u(k-2) (86)
Ae, (k) =¢ (k)-&(k-1) (87)
The minimum of criterion J_ (k) isreached when:
o

The solution of Equation (88) calculates the weight of
the neuronal controller as follows:

we(k+1)= WC(k)_%ec (k) svicc((ll‘())
B oe (k) o
_ZAec (k)W—ZAU(k—l)

ou(k—1)
owe(k)
(89)

Theterm Ae, (k) defined by:

C

se, (k) :( %€ (k) J swe(K)

owe(k)

oe, (k) Y A g 08 ()
(awc(k)] ( 7, ) (i)
B, o, (k)
_ZAeC(k)awTk)

(
—ﬂAu(k—l)au(k_l)J

" owe(k)

oe, (k) [ ’

owe(k)

e, (k)
owe(k)

A
-2 Ae (k
7 eC( )

_ﬂAu(k_l){ e (k) ] (%(k—l)

7 owe(k) | | owe(k)

__Ae
7166( )

a6, (k) [

26, (K) [

A
==, %) owc (k)

= _A Ae (k
7

" owe (k)

—ﬁAu(k—l){ 2%, (k) J

~—

2

ou(k-1)
owe(k)

B, o, (k)
—71 Ae (k awo(K]

" ou(k—1)

aec(k) 2 2

A
= &) owc(k)

7

~—

au(k-1)[°
owe(k)

oy
—-—Ae, (k
" ( )

(90)
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therefore:
g (o 209 2
Aec(k): - 2 GWC(k) 2 (91)
B, | 0. (k) a, [ou(k—1)
1+—= —
7 8WC(k) " 6WC(k)

Using the above equations, the relationship giving the
vector wc(k+1) minimizing the criterion J (k) can
be written as follows:

we(k+1)
=Wc(k)—%ec(k)svi°c((ll(())
2 A0
B T (k) owc(k) oe, (k)
1, e afou(k-y)
7 [[owe(k) owc (k)

2
"

ou(k-1)[”
pwc (k) e, (K)
au(k-1)[ | owe(k)
owe(k)

oe, (k)|

C

owe(k)

Ve

oe, (k)
owe(k)

o [|ou(k-1)[°

1+ A
7 | owe(k)

"

o ||ou(k-1)[
7 | owe(k)

oe, () [

owe(k)

2

ou(k-1)

A
- owc(K)

Ve

Y

7

1

2
x

7

2

oe, (k)
owe(k)

ou(k-1)

By
1+ awe (k)

7

(92)
It is necessary to check the stability of this procedure to
adjust the weight of the correction before applying. In this
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case, the candidate L yapunov function may be as follows: According to Equation (32), the term AV (k) is writ-
ten asfollows:

1 1
V(k)=3(a (k) +S(aa (k) (@)
2 2
2 _f(%(k))z aa\f/cc((i)) ffl aav?/cc((i))
AV(k)erC(k)eC(k)+(AeC(k)) = - 2 2|+ : 2 2
LAl e fouk-1) Ao, afoutk-1)
7 owe(k)| 7 | owe(k) 7 [owe(k)| 7, | owe(k)
For the procedure to adjust the parameters of the con- 2 2
troller is stable, it must: 1ZM 6ec(k) o 5U(k_1) (96)
1| 26 (K) 2 7 |owe(k) owe(k)
7 avvcc(k) The second condition for stability is obtained by the
_ ! . =20 (95) following Lyapunov function:
Bl oe (k)| . afou(k-1) 1 y 2
1 ~L = - — —_
" 7 aWC(k) 71 aWC(k) V(k) - 2(80 (k)) + 2;1 (Ae (k)) ©7)
then: From the Equation (35), we can write:

A 2| oe, (k) oe, (k)
_ _Z(eC(k)) awc(k) B 8WC(k) 9
Lalem ekl alea®] «fauk-y)
7 owe(K)| 7| owe(k) 7 |owe(k)[ 7, | owe(k)
The learning algorithm parameters of the controller are Using the following Lyapunov function:
stableif: 1 7 2 a 2
V(k)==(e (k)) +=—(Ae (k)) +=—(Au(k-1
12[1_% N Y T (k)= (& (k) oy (e (k) 5 -(au( ()1)00)
7 )| owe(k)| 7 | owe(k) The adjustment procedure is stable if the parameters:
we( + a°()T we A (Au (k_l)T e
[ ] (et 0006 22| o) 2 ot 2D (e
o)+ 1 oe. (k) i) [2u(k=D) 2
e O e ()
A oe, (k) oe, (1) [ o |au(k=2)[[ ae. (k) [
) = He ()5, owc(K) ) awc(k) () | Jowe(q
1+ﬁ () afoauk-0f|  alee®] afout-2f | aloe®)], alou-1f
7 [owe(k) 71 owe(k) 7 owe(k)[ 7| owe(k) 7 [[owe(k) owe(k)
(101)
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The third stability condition is: au(k _1)
2 LizmaX[ J (104)
L Afee)) e ) 102 owe(k)
+71 owe(k) - owe(k)| (102 Therefore:
Assuming: ﬁ21— i} >1- 1 5 (105)
A d; Gec(k)
dlzmax[ % (k) ]zmax(H (k) J (103) owe(k)
owe(k) owe(k) The fourth condition for stability is obtained by the
following Lyapunov function:
_l 2 ﬂ 2 N )2
V(k)_z(ec(k)) +221(Aec(k)) +%(Au(k 1) (106)
Theterm AV (k) isasfollows:
AV (k)
oe, (k ! 2 oe, (k ! . ou(k-1
() 2] i) 2 s 00 S22 L ) e )
oe, (k) ) ] oe, (k) ) Neu(k-2)[f 2
() S| ()2 s 09 20| i)+ 2120 (s )
(o (0 oe, () [ AEOI ou(k-1)
_ no 7 fowe(k) 7 |owe(k) owc(k)
Lale® | el alea] afouk-y" | ale®)] afouk-1)
+—= — 1+—= — 1+ —= —
7 lowe(k)| -y || owe(k) 7 owe(k)| 7 || owe(k) 7 owe(k)| 7y |l owe(k)
(107)
For the learning algorithm is stable, it must: a 1Y 1
, , —%121—(—} 2l-— (109)
oy |ou(k=1)|" au(k-1" 108 " L ou(k-1)
AETCIRETCIE (108 owe(K)
According to Equations (96), (105) and (109), we can
therefore: write:
ou(k-1)[” au(k-1)[°
1 . +ﬁ+ a, aWC(k) IS +ﬁ aWC(k) ! leﬁ (110)
8ec(k) N 8ec(k) N 6ec(k) N
owe(k) owe(k) owe(k)
The stability conditions can be so: oe, (k) _
The term is calculated by the following equ-
B owe(k)
7 ations:
a oe (k)  oe(k) ou(k+n -1)ou(k-1)
Pk WD Bwe(k) au(ken 1) ou(k-1) owe(k) »
A y(k)  ou(k+n -1) 6u(k—1)( )
no " au(k+n -1 ou(k-1) owe(k)
Copyright © 2012 SciRes. JSEA
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ou(k+n -1)

) (K)

au(ken -1 " (s

(k)+ 5w (K)

j=1

(k)
ou(k+n 1)
(113)

(K))W (k) (119)

Theorem 5. The procedure for adjusting the parame-
ters of neuronal controller can be described by the fol-

lowing equation:
we(k+1)

~—

b

ou(k—1)
owe (k)

we(k)  (115)

(k)

oy (k)
owe(k)

1
+
2
2[1+

Proof:

ou(k-1)
owe(k)

ZJec(k)awc(k)

From the following Lyapunov function:

1 1

V(k) =5 (& (k) + 5 (ae (k)

1

2 1 2 1 2
5 (A0 s Jwe(k) 2 awe ()

(116)

The procedure for adjusting the parameters of the neu-

ronal controller is stable if:

AV (k) = (A&, (k)" +(ae,(K))(& (K))

+(Au(k—1))2 +

+(W(:(k))T (awe(k))=-r,

suchas: 1,20
Equation (117) becomes:

Jawe(K) [1+ % (k)

owe(k)

ec(k)jT

2

oe, (k)

+[wc(k)+awc(k)

lawe (k)| (117)
ou(k-1)[
owe(k)

(118)

(Awc(k))+r, =0

If the above equation has a unique solution, the term

r, isasfollows:

we(k)+e (k)

2

oe, (k)
owe (k)

2
4(1+ % (k) H +

owe (k)
Copyright © 2012 SciRes.

(119)
ou(k—1)

owe(k)

ZJ
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The equation for adjusting the parameters of the neu-
ronal controller can be written:

Awc(k) =—

we(k)+e, (k){ (jv(\a/cc((kk))J

therefore:
we(k+1)

e, (k)
owe(k)

2

ou(k-1)
owe(k)

ZJ

oe
2| 1+

owe(k

1

: (k)
)

ou(k-1)
owc (k)

wc(k
2}

e, (k)

oe, (k)|
owe(k)

ou(k-1)
owe(k)

2]e°(k)awc(k)

=

1
2

1
* Jau(k-1)
owe(k)

chk
e

oy(k)

oy (k)
owe(k)

+
2[1+

ou(k-1)
owe(k)

TC(k) owe(k)

(122)

Theorem 6. The procedure for adjusting controller
parameters can be made by the following equation:

we(k+1)

N

(k)
1+‘ awe (k)

[2

au(k-1)[
owe(k)

] (122)

ay(k)

2

3y(k)

ou(k-1) owe (k)

owe (k)
+(1-ar) Awe(k)

Proof:

owe (k)

2]ec(

Using the Equation (121), we may write:

JSEA



238 Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems

we(k+1)

=we(k)+Awc(k+1)

= we(k)+Awc(k)

= we(k)+aAwe(k +1)+(1-a ) Awe(k)

T Tomwr e
oe (k ou(k-1
ik 6vicc(k) owc(K) J
B a K) oe, (k)
2[1 oe (k)| [ou(k-1) J owe(k)
i owe (k) owe(k)
+(1-a)Awc(k)
T Ts0r peap
oy(k ou(k-1
2[“ awc(k)| 1 awe(k) J

o e (K) y(k) (123
g [ Jeu(k-g)] " owelk)
owe (k) owe(k)

2[1+
+(1-a)Awc(k)

Flowchart of the learning algorithm of the neural con-
troller

Once the modeling phase is completed, the calculation
of parameters of neuronal controller is carried through
the following steps:

Step 1:

We fix the desired sguare error &,, the parameters
(n,,n,,n.,n ), the number of samples N, the maximum
number of iterations itr , the number of neurons in the
hidden layer n, .

The weightswc are initialized by a random number
generator with a normal distribution between —6, and

6.
where:
65— — (124)
(n +1)"(o.)
with:
Pe = NN (ﬁnﬁx (o (k))) (125)
Step 2:

Copyright © 2012 SciRes.

Initialize:
we(0,k) =we(k-1) (126)
u(0,k)=u(k-1) (127)
xc"(0,k) = xc" (k-1) (128)
s, (0,k)=s,(k-1) (129)
Step 3:
Consider an input vector of the network
o(K)=[9(k=1),+9(k-n,),u(k-2),
...,u(k—nb),r(k),---,r(k—nc)}T
and the reference signal r (K) .
Step 4
Calculate the output of the neuronal controller
u(i,k-1).
Step 5:

Calculate the output of the neural model  §(i k).

Step 6:

Calculating the difference between the reference signa
and the output of neural model e, (i k).

Step 7:

Calculate the square error J_ (i,k).

Step 8:

Adjust the vector of network parameters wc(i,k)
using one of the three following relations:

we(i, k)
—1- 1
ol | i-1K) * Jleu(i-1k-1)[
Tlowe(i-1k)| | awe(i-1k)
-we(i—1,k) (130)
. 1
2[1+ y(i-1k) [F [ou(i-1k-1) 2]
owe(i—L k)| | awe(i-1k)
o og(i-1k)
'e‘:(l_]"k)—awc(i—l,k)
we(i, k) =we(i-1,k)
A 1 _l(131)
Bl A Y(i-1k) | eyfou(i-1k-1)
L [ owe(i—1k) owe(i—1,k)
oy(i -1 k)
'ec('-lk)m
JSEA



Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems

with Brs1, Bsq A
71 Ve e
we(i, k)

2[1+

-we(i-1,k)

+
2[1+

e (i-1k)

a
2

9(i-1K)

au(i-1k-1)
owe(i-1k)|

awe(i -1K)

ZJ

(132)

(24
2

o9(i-1k)
owe(i-1k)

o9(i-1k)
owe(i—1,k)

+(1-a)Awc(i-1,k)

Step 9:

If the number of iterations i=itr or J (i,k)<d,,
proceed to Step 10.

Otherwise, increment i and return to Step 4.

ou(i-L1k-1)
owe(i —1k)

Step 10:
Save:
- the weights of the network at time k:
we(k) =we(i, k) (133)
- the output of the neuronal controller:
u(k-1)=u(i,k-1) (134)
- the vector of outputs of the hidden layer:
xc" (k) =xc" (i, k) (135)

- the vector potentials of neurons in the hidden layer:

s (k)=s.(i,k) (136)
Step 11:
If k=N, proceedto Step 12.
Otherwise, increment k and return to Step 2.
Step 12:
Stop Learning.
These steps are represented by the following flowchart,
Figure4.

4. Numerical Results and Discussion

Let consider the nonlinear system described by the fol-
lowing equation of state:

X =%
2
X, = (10cos(u)—77\/M) —ux,—tX +e  (137)
y=X%

Copyright © 2012 SciRes.

239

Initialize the number of neuronsin the hidden layer
n, , parameters(n,,n,,n.,n, ) , the coefficients of the
neural network wc , the maximum number of

iterations itr , squared error desired &,

k=0
>y
Initialization: we (0,k) u(0,k-1) xc" (0,k) s (0K)-
v
Application of theinput vector p(k) andthe

referencesignal r (k)

i=1

L 4
Calculation of the release of neuronal controller
u(i,k-1)

v
Calculation of the output of neural model
¥ (i k)
v

Calculating the difference between the reference
signal and the output of neural model e, (i k)

i:i:| v

Calculation J_(i k)

A v

Adjusting the parameters of the neural network
we (i, k)

Yes

Saving the: we(k),u(k-1),xc" (k)5 (k)

Figure 4. Flowchart of the proposed Lyapunov-Base learn-
ing algorithm of the controller neural network.

with:

u and y are respectively the input and output sys-
tem.

& isanoisesuchas |¢|<0.1.

The Figure 5 showsthe evolution of system parameters
(7,7 and u).

The sequences of input and output those used to cal-
culate the parameters of the neural model are shown in
Figure 6. These sequences show the system response to
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Figure 5. Evolution of the system parameters: (a) Parameter #; (b) Parameter z; (c) Parameter u.
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Figure 6. Training data-pattern: (a) Input sequences; (b) Output sequences.
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Figure 7. Validation tests of the moddl: (a) Auto-correlation of residuals; (b) Cross correlation function between input and

output residues.
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Evolution of the difference between
the reference signal and the system output
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Figure 10. Results of adaptive control system in the case of a triangular reference signal: (a) Control signal applied to the
system; (b) Response of the system; (c) Evolution of the difference between the reference signal and the system output; (d)

Sensitivity of the process.

Table 1. Values of the Nash criterion of candidate neural modelsusing Theorem 1 with (A =1, =y =2).

Neurggal n =1 n =1 n =1 n =1 n =1 n =1 n=2 n=2 n=2 n=2 n=2
mol
parameters n=1 n=1 n=1 n=1 n=1 n=1 n=1 n =2 n =2 n=2 n=2
n =1 n=1 n=1 n=1 n=1 n=1 n=1 n=1 n=2 n=2 n=2
n =0 n =0 n=0 n =0 n=0 n=0 n =0 n=0 n=0 n =1 n=2
n =1 n=2 n =3 n,=4 n =5 n =6 n =7 n =8 n =8 n==8 n =8
cr,i\:zfi'z)n 71% 74% 7% 79% 83% 88% 92% 94% 91% 89% 88%
Table 2. Values of the Nash criterion of candidate neural models using Theorem 2.
n=1 n =1 n=1 n=1 n =1 n=1 n =2 n=2 n =2 n =2 n =2
Neurona n=1 n =1 n =1 n =1 n =1 n =1 n =1 n=2 n=2 n=2 n=2
model n =1 n =1 n =1 n =1 n =1 n =1 n =1 n =1 n=2 n=2 n=2
paameters -0 n=0 n=0 n=0 n=0 n=0 n=0 n=0 n=0 n =1 n=2
n =1 n =2 n =3 n=4 n =5 n =6 n="7 n =8 n =8 n =8 n =8
cr’i\:gﬁ:)n 2% 75% 76% 79% 84% 89% 91% 95.5% 92% 90% 88%
Table 3. Values of the Nash criterion of candidate neural models using Theorem 3 (a = 0.7).
n =1 n =1 n =1 n =1 n =1 n =1 n=2 n,=2 n=2 n=2 n=2
Neuronal n=1 n =1 n =1 n =1 n =1 n =1 n=1 n=2 n=2 n=2 n=2
model n =1 n=1 n=1 n=1 n=1 n=1 n=1 n=1 n =2 n =2 n=2
parameters =0 n =0 n =0 n =0 n =0 n =0 n =0 n =0 n =0 n =1 n =2
n =1 n =2 n=3 n=4 n =5 n =6 n="7 n =8 n =8 n =8 n =8
cr,i\::sil?)n 2% 74% 7% 80% 86% 89.5% 92% 97.4% 93% 90.2% 89.1%

arandom signal of zero mean and variance 1.

The evolution of the Nash criterion of different candi-
date models of the system (Tables 1-3) can be concluded
that n,=2, n=2, n.=1, n. =0, =07, 8 neu-
rons in the hidden layer use of Theorem 3 for the learn-
ing phase, is necessary and sufficient for a neuronal mo-
del of asatisfactory precision.

The autocorrelation functions of residuals and cross-
correlation between input and residuals (Figure 7) are

Copyright © 2012 SciRes.

within the confidence intervals, thus validating the use of
the network chosen as amodel of the system studied.
After the learning phase of the neuronal model com-
pleted, the structure proposed of neural adaptive control
is applied to the system. In this case, the learning algo-
rithm of the neural controller uses Theorem 6. The re-
sults are presented in Figures 8, 9 and 10. It appears
from these figures that this control strategy provides sat-
isfactory results. Indeed, the system follows the reference
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signal appropriately by responding to the objectives: re-
jection of disturbances, the control performance, robust-
ness and system stability.

5. Conclusion

In this paper, we have proposed adaptive control struc-
ture for a complex dynamic system using a recurrent
neural network. Before, the application of the proposed
adaptive neuro control, the recurrent neural has been
trained off-line to implement the inverse dynamic of the
considered system using a proposed Lyapunov-Base sys-
tem training algorithm. The simulation results obtained
show the effectiveness of the recurrent neural network
structure and its adaptation algorithm to simulate the in-
verse dynamics of the system, and to control it in closed
loop with good tracking performance.
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From the above equations, we can write;
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