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ABSTRACT

This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases
conventional and neural. The most important aspects of design building blocks of adaptive internal model control are
the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algo-
rithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these
limitations, we chose the architectures of neural networks deduced from the conventional models and the Leven-
berg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of
thislatest control showed compensation for disturbance, good trajectory tracking performance and system stability.

Keywords: Adaptive Internal Model Control; Recurrent Neural Network; DC Motor; Parametric Adaptation Algorithm;

L evenberg-Marquardt

1. Introduction

During recent decades, adaptive interna model control
has been studied in several research works of which we
mention [1-11]. It has been exploited in several industrial
fields. It is usualy interesting for its performances in
servo and control where systems to be controlled are dy-
namic, complex, finite dimensional, open-loop stable and
in addition if they have numerous delays and disruptions.

Another advantage of the structure of this control lies
in its simple construction and easy interpretation of the
roles of its building blocks. It includes an internal model
which is an explicit process model to be controlled, a
controller which can be chosen the inverse of this model
and, if necessary, robustness filters.

The modeling process is to find a model whose dyna-
mic behavior of the process approach based either on the-
oretical analysis, either on an experimental analysis, or
on theoretical and experimental analysis. This model will
be used to make predictions of the output of the process
for learning the controller, and even to simulate the pro-
cesses within the control system [12-16].

The inversion of model is one of the main problems of
the approach of adaptive internal model control, since the
direct inversion of the model for most physical systems
provides an unrealizable structure (systems characterized
by afunction of transfer with the order of numerator less
than the order of the denominator, the systems of non-
minimum phase systems with delay, etc.). In this context,
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our work presents solutions that enable the design of a
controller who comes to the best of the inverse model
[17-23].

In the case of a model which is not perfect, a robust
filter is useful to avoid destabilization of the command
structure in the presence of modeling errors and/or major
disturbances [24]. The robustness filter is usualy synthe-
sized based on the Nyquist criterion [25].The method of
synthesis of thisfilter is based on small gain theorem [26,
27]. By cons, this filter does not affect system stability
but slows down the system in the case of perfect model
[28].

Thus neural network based control systems which have
the desirable proprieties of nonlinear mapping, generali-
zation and learning can offered as candidates for solution
to high performance electrical drives.

Our objective is to apply a neural network adaptive
control scheme to a Drive Motor system. The proposed
scheme can control the speed of the considered Motor
Drive system to tack the reference speed with fast and
damped response.

The rest of the paper is organized as follows: In Sec-
tion 2, we present a description discrete time models of
the considered DC Motor Drive. The adaptive conven-
tional internal model control scheme application of the
considered system is developed in Section 3. The Section
4, provide the neural adaptive internal model control
scheme to our system. The stability analysis of these two
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adaptive internal model control systems is developed in
Section 5.A comparative study between these two control
schemes is illustrated in Section 6 and a conclusion is
drawn in Section 7.

2. Description of DC Motor

A DC motor can be used in a variety of industrial appli-
cations [29]. The type DC motor is characterized by the
following equations [30]:

The electrical equation:

di (1)

U (t)=E(t)+Ri(t)+ L% (1)
The mechanical eguation:
C.()=C (t)+ded—t(t)+ folt) @
The electromechanical coupling equations:
E(t) = K.o(t) ®
Con (1) = Ky (1) @

with:

U(t) isthe armature voltage (V), E(t) theback EMF
(V), R the armature resistance (), i(t) the armature
current (A), L the armature inductance (H), C(t) the
motor torque (N.m), C(t) the load torque (N.m), J
the rotor inertia (kg-m?), f the viscous friction coefficient
(N-m-srad™), o(t) the rotor speed (rad-s™), K, the
back EMF (V-s-rad™), K., is the back torque (V-s-rad™).

From the above equations, the DC motor is schemati-
caly asfollows (Figure 1):

with: Laplace transforms of U (t), C,(t), C,(t)
and o(t) are respectively U(s), C,(s), C (s) and
Q(s); s isalaplacevariable.

The transfer function between the input and output of
the DC motor can be written as follows:

Q(s) - KU (s)-C, (Ls+R)
LIS +(Lf +RI)s+ (R +KK,,)
The study of the stability of the system can be made by

the Routh criterion (or Routh-Hurwitz) which is to form
the following table (Table 1).

Whether D(s)=LJs’ +(Lf + RI)s+(Rf + KK, )
with:

®)

L) (Rf+K.K,,)
(Lf +RJ) 0

1
° (LfF+RY)

(6)

Theterms LJ, (Lf +RJ) and d, arestrictly posi-
tive so this system is stable.

From the Equation (5), the load torque can be consi-
dered as a perturbation.

The discrete time model system can be calculated by
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Figure 1. Block diagram of a DC motor.
Table 1. Table of coefficients.
53 LJ (Rf + KeKp)
st (Lf+ RJ) 0
s do

replacing in Equation (5)s by the approximate expression
z:
z-1
S= Z_TS (7)
Hence the expression of discrete system:
Q(2) =
(2T,)" KU (D) -C, (L(z-1)) 2T + R(2T,)°
LI(z-2)* +(Lf +RI)(z-1) 2T, +(RF + K K, )(T,)*

©)

3. Adaptive Conventional Internal M odel
Control System of DC

The basic structure of the adaptive conventional internal
model control with robustness filter of DC motor is
shown in figure 2 [31].

where: M . . (2) a model parameters of the
process (n,.mnn), F(K) the reference signal at instant
k, y(k) the system output, C(z) the controller, y(k) the
model output, & (k) the difference between the refer-
ence signal and the output system, ¢(k) the difference
between the output of the system and that of the model,
u(k-1) the command, F(z) the filter robustness,
r*(k) theinput of the controller, v(k) the disturbance
affecting the output system such as |v(k)| <10™.

The Figure 2 can be redrawn as follows (Figure 3).

For having & (k) =0 and robustification in the sense
of stability margin, the controller, the model and the filter
robustness must satisfy the following relations:

FOCOMy, y non =1 ©
FO=1 (10)
The robustness filter is often taken asfirst order:
(1-a)
F(2) = 11
@)= (11)

with O<a <1
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Figure 2. Basic structure of the adaptive conventional in-
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Figure 3. Structure of adaptive conventional internal model
control with robustnessfilter in the feedback loop.

In our work, wefix a=107.

The disturbance affects both the output and system sta-
tus. The model of DC motor which is of type ARMAX
(Autoregressive moving average model with exogenous
inputs model), is therefore given by the following equa-
tion:

9(k):_"zalAy(k_i)+§l;qU(k_nk_i)

" (12)

+2.Gp(k=i)

i=1

p(k) is anoise. It can be replaced by their estimated
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value apriori or aposteriori:
p(K) = y(k) - (k) 13
From Equation (12), we obtain:

509 = 3 ay(k=1)+3 bu(k-n, ~1) Y e (k)

i=1

(14)
with: a = A +¢
The model of the motor is as follows:
Ny _ n .
(Za z! j ¥(2) +(th‘”k" ju(z)
§(2) == (15)

e )
1+> ¢z"
i=1

e )
The relations 1+ ¢z"

i=1

N .
d (ZQZW'] can be

written:
N Ne
1+ZC' ’”CH(Z—ZC,) (16)
(nzb:h z " j =phz ™ rﬁ (z-2b) (17)
with: {Zb,--,Zb, .} and {Zc,--,Zc, | are respec-

tively the zeros and poles of the model.
If |Zb1|*”"|anb,1| are less than or equal to 1, the in-
verse model of the system expressed by:

u(k—l):—Z%y(m n, —i)—i%u(k—i)

This inverse moddl is used in adaptive conventional
internal model control system replacing the y(k) by
r*(k) . In this case, the control applied to DC motor is
given by:

& B

u(k-1) ==Y > y(k+n -i)-> Lu(k-i)
:1b1 N |:2b1 (19)
é (k+nk)+.21:%r*(k+ -i)

From the above equation, we can deduce:

(Bar rae(vFer )
u(z)=~-"= T (20)
207
If |Zb1|,---,|Zbrb| are strictly greater than 1 such as
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n, <n, —1, the system is unstable. One method of inver-
sion that proposed in [32] is to partition the model into
two parts: one part contains the stable zeros and the other
contains the unstable zeros. In this case, the controller is
chosen as the inverse of the stable part. In addition,
Frank imposes a transfer equal to unity for the unstable

part.
Such as:
o
[1(z-2h)
lim—_=——— = =1 (21)
T Tl-z8)z"
i=1 N
[1(z-2h)
So we multiply the refation (20) by =
[1(1-2b)z"

-1

to ensure stability. Equation (20) becomes:
SR BCESIR

=1 i=ng+1

u(z)=

For direct and inverse models are physically feasible,
the parametersn,,n,,n.and n, are chosen:

N =n,
n, <n, (23)
n =0

It is possible to rewrite the Equations (14) and (19)
under the following matrix forms:

(k) =6y (k) (24)
u(k-1) =6c"p(k) (25)

In which the vectors of parameters and observations
are defined by:

0" =[a, .8, b b GGy | (26)

o :%[_aiv""_ana7_b2""7_bnb’l'cl""’cnc:| 27)
() =[y(-1) - y(k-n,),u(k—n, -1),
o u(k=n =), (k=1),-, §(k-n) ]
¢(k)=[y(k+nk—1),---,y(k+nk—na),u(k—z),

...'u(k—no),r*(k+nk),~-,r*(k+nk_nc):|T

(28)
The vectors of observations written yet in the forms:
v (k) =y (K)o vy (K)] (29)
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o' (K)=[ e (k). 0, (K)] (30)

with n, =n,+n,+n,

The number of parameters to adjust in this command
structure n, =2*n, .

The adjustment procedure of the vector of model pa-
rameters @ at each sampling period can be made by the
parametric adaptation algorithm to minimize the follow-
ing quadratic criterion:

3 = S(y(k)-5(K)) (3D

This agorithm which is part of the simple gradient
methods can be expressed in terms of criterion (32) as
follows:

23, (K)
06 (k-1)

0(k)=06(k-1)-P(Kk)

According to [33-35], this procedure is given by the
system of equations:

(32)

0(kK)=0(k-1)+P(k)y° (k)e(k) (33)

Ay (K) = 2o (k=1)+ (1~ ) (34)

A, (k)=1 (35)
P(k)
L L p g P Dr Ry (PG | @)
() /EEBJFWT(k)P(k—l)y/(k)
§(k/k-1)=9°(k)=0" (k-2)y°(k)  (37)
e(k)=y(k)-9°(k) (38)
with:
_ élfk) _ y(k-1)
& () y(k=-n,)
A by (k)) u(k-n,-1)
o(k)=| i |w(k)= : (39)
Ano(k) u(k-n,—n,)
& (k) 5 (k-1)
6,09 | P(k-n) |

Initialization for the matrix P(k) , the parameter vec-
tor &(k), the growth factor 4, (k) and the decay factor
2, (k) isoftenasfollows:
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6(0)=[0,--0]' (40)
P(0) = | (41)

| being the identity matrix of dimensions (n,,n,)

and «, can be chosen equal to a10° according to Lan-
dau.

4 = 4,(0) =0.95 (42)
4,0 =1 (43)

The model output can be written as follows:
(k) =" (K)w (K) (44

The difference between the system output and the
model output can be expressed by the Equation (45):

&(k)=y(k)-¥(k) (45)

The input of the equalizer is given by the following
equation:

r'(k)=(1-a)(r(k)-&(k))+ar’ (k-1)  (46)
From Equation (27), the vector of the controller pa
rameters Gc(k) estimated at timek is defined by:

o~

ec(k):Fﬁ()[—éi(k),---,—éna(k),—@(k), (47)

~ ~ ~ T
"'_bno (k)’lci(k)'”'cnc (k):|
The command applied to the DC motor is given by:
~T
u(k-1)=6c (k)e(k) (48)

The difference between the reference signal and the
system output is determined by:

& (k) =r(k)-y(k) (49)

4. Adaptive Neural Internal Model Control
System of DC

The structures of internal model control using nonlinear
neural networks have been proposed in [36-38]. The Fi-
gure 4 illustrates the structure of an adaptive neura in-
ternal model control of DC motor, where the model and
the controller are replaced by recurrent neural networks
with multilayer internal and externa closure.

The choice of the structures of neural networks takes
into account the knowledge and assumptions about the
behavior of the system [39-43]. The Figures 5 and 6 pre-
sent respectively the architecture of the model and the
neuronal controller.

where:

fl(x):f __3 and f,(x) are the activation functions
+e

of neurons,
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Figure 4. Basic structure of adaptive neural internal model
control with filter robustness of DC motor.
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Figure 6. Neural controller of the DC motor.

n, the number of neurons in the hidden layer respec-
tively of the model and controller,

The coefficients of the vector of parameters of the
neural model ware decomposed into seven groups, for-
med respectively by:

Wy Wy
w=| : | the weights between neurons
Woo o W

in the input layer and neurons in the hidden layer,

e

W

1

W2 =

the biases of neuronsin the hidden layer,

JSEA



Adaptive Internal Model Control of a DC Motor Drive System Using Dynamic Neural Network 173

w? =[\A§‘1~~- vvf‘nh} the weights between neurons in

the hidden layer neurons and output layer,
w = [wflJ the bias of neuron in the output layer,

WP = wi--w, | the weights between neurons of in-
put layer neurons and output layer,

W W
w= i the weights between neurons
Woo o Wa

2

in the hidden layer, w’ = |:V\61:| back weight of neuron
in the output layer,
X
X'=| the outputs of the hidden layer of neural
h

X1
model,
The parameters of the vector of parameters of the con-
troller neural Wc are also broken down into seven groups,
formed respectively by:

We, e We,
wet=| : the weights between neu-
Wy, - We,
ronsin theinput layer and neuronsin the hidden layer,
W,
We? = the biases of neurons in the hidden
Wcrfhl
layer,

we® =[chl--- chth the Weights between neu-
rons in the hidden layer neurons and output layer,
We* =[We; | the bias of neuron in the output layer,
We® = |:WC151“'WC15n,:| the weights between neurons of
input layer neurons and output layer,

chl ch”h
Wt =| the weights between neu-
Wed, - Wep

ronsin the hidden layer,
We” =[We/, | back weight of neuron in the output

layer,

Zlhl
"= the outputs of the hidden layer of neu-
h
Znhl
ral controller.

The two vectors of model parameters and the neural
controller are respectively the following forms:

Copyright © 2012 SciRes.

W:[Wllll"'vwlnhn, 1W121""1Wr2hl’
\Afl""’\,\fnh'\l\lfl’vvfl’ J
SRR R

We = [Wc}l, s W WED, -+ WE?

N1’

WC1311 t -chnh 'chl’WClSl’ (50)
e WS, WES, Wl W, |

These two vectors are of size (n,,1), such as
Ny =N, *N +2%n +2+n +(n,)%.

In this section, the number of fitting parameters
n =2xn,.

The output of neural model of DC motor §(k) and

the output of the controller neural u(k—1) are respec-
tively the following forms:

9<k>:m419<k—1>+j”z_“1vvaxr<k>

n (51)
+;iji (K)+wy
u(k—1) =Welu (k- 2)+ 3 W " (k)
) = (52)
+;Wq?¢i (k)+We;
with:
5 ()= 2w (9+ LW (k)
+W),
X' (k)= f,(s; (k) (54)
S, (k) = iz:l:WCji(pi (k)+§WCji;(i (k—l) (55)
+We?,
27 (k)= f,(S; (k) (56)

Note by g( ) nonlinear function representing the
neuronal controller and h( ) nonlinear function repre-
senting the neural model of the controlled system. We
can then express respectively u(k-1) and §(k) by
the following expressions:

u(k-1)=g(y(k+n -1, y(k+n -n,),

u(k=2),--,u(k-n)),r'(k+ny), (57
o, (k+n —n,),We) = g (@ (k),We)

JSEA



174 Adaptive Internal Model Control of aDC Motor Drive System Using Dynamic Neural Network

§(K)=h(y(k=1),--y(k=n,),
u(k-n.-1),---,u(k-n,-n,),y(k-1), (58)

<+, 9(k=n,),w) = h(y (k),w)

The neural model is updated to minimize the error
function J, (k) defined by:

1 “ 2
3, (k) =5 (y()-9(k)) (59)
The adjustment of the online parameter vector w of
this model by Levenberg-Marquardt, which belongs to
the class of gradient methods of second order, is per-
formed as follows [44-48]:

W(k)=W(k-1)+(F, (k) H(k)e(k)  (60)
such as:
Fr(k) G(k)+/1(k 1) (61)
G(k)= H(kK)HT (k) (62)
dy(k
H(k)=| —~ (63)
( ) [ dw ~W(k-1)

§(k)=h(v (k). W(k-1)) (64)

e(k)=y(k)- (k) (65)

3, (k)= 5 e()) (60

[
10,if 3, (K)> J, (k1)

ﬂz{o.lif 3, (k)< 3, (k-1) ©9)

The update of parameters depends on the desired per-
formance indices (accuracy, stability). She is stopped if
the number of iterations is reached or J, (k)<d, or
[H(K)|<d, or A(k)=4,.

With | || isthe Euclidean norm.

In our work, wefix &, =10"° and &, =10.

The neural model parameters W(k) and the learning
rate A(k) must beinitialized asfollows:

The matrix elements W'(0), W*(0), W*(0),
and W (0) areininterval [-0.5,0.5] [48].

WP (0) =[0---0]' and W(0)=0 .

A(0) =0.1 according to Bishop [49].

where;

| the identity matrix of size (n,,,n,).

WA (0)

Copyright © 2012 SciRes.

50 _[3(K) 3K FK) 3(K)

o | ot e e,
() 3(06) (k) F(K)
oo, e, owt o

LK) (k) (k) (k)T
a\len, 5\/\!161 a\Nr?hnh Ml
F. (k) is a positive definite matrix and can therefore
be invertible using the Cholesky method [50,51].
If al conditions are met a good identification, the

model output y(k) is then a good approximation of the
output system y(k) , which alows writing:

y(k)= 9(k) (70)
r(k)=r"(k) (71)

The learning of neural controller is implemented so as
to minimize the following quadratic criterion:

3.(K)=1(r (k) y(K)) (72)

Using the Levenberg-Marquardt method, the vector of
parameters of the controller Wc is adjusted online by
the following equations:

We(k) =We(k—1)+(Ge(k)+ A(k-1)1) " D(k)e ()

(73)

~ (k) (k)
D(k) _( dwe jWC—WC(kl) _( dwe JchVC(k—l) o
Ge(k)=D(k)D" (k) (75)
a(k)=r(k)-y(K)=r(k)-9()  (76)
§(k)=h(y (k) W(k)) (77)

o () =[50c-1), (). u(k-, 1),
”"u(k_nk_nb)-9(k_1)"”a§’(k_nc)]T

(78)

u(k-1) = g(g(k),We(k-1)) (79)
)=[I(k+n-1), -, 9(k+n-n,).u(k-2),

k= )or (ken ) (ken =n) |

(80)

3 (K)=3(& (k) @)
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1A (K=1),if 2(k=1)>5,
(k):{éo,if a(k-1)<s, (82
10,if J, (k) > 3, (k-1)
:{O.Lif 3, (k)< 3, (k-1) ®3

The online adjustment of the parameters must be re-
peated until such time as the number of iterations is
resched or J,(k)<d, or [D(k)|<&, or A(k)=35,.

The neural controller parameters V/\/?:(k) and the po-

sitive definite matrix A (k) must be initialized as fol-
lows:
The elements of matrices

We (0),We (0),We (0)We (0) and W (0) are in the
interval [-0.5,0.5].
We'(0)=[0-+-0] and We (0)=0, 4(0)=0.1.

5. Stability Analysis

If the system to be controller is stable, and if its model is
perfect, then the system controlled by the adaptive internal
model control structure is stable if and only if the con-
troller is stable [1,28,52]. The parametric adaptation al-
gorithm and the Levenberg-Marquardt algorithm are a-
gorithms stable. The neural model, neural controller and
the conventional model are stable. We can therefore con-
clude that the control systems mentioned previously of the
DC motor are stable.

6. Comparative Study

In our work, we will assume that C, (t), K, and K
are variable during the time (Figure 7).
The considered DC motor having the following char-
acteristics:
R=12Q, J=24x10"kg-m?, L=0.18H,
f =6x10°N-s-m-rad™.

The choice of the sampling period can have a dramatic
effect on the results of the identification and control. If
the sampling period is chosen large enough, this causes a
bad description of the dynamics of the system and can
lead to failure. By cons, if the sampling period is low,
then the values of some parameters may become very
small, so it is difficult to estimate with good accuracy.
According to [53], the sampling period T, can be de-
termined from the step response of the process. In this
sense, |sermann proposed choose T, satisfying:

1 1
1—5T95 <T, < ZTQS (84)

where Ty, represents the response time to 95% of the
system.

Copyright © 2012 SciRes.
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Figure 7. DC motor parameters: (a) Load torque; (b) Back
EMF; (c) Back torque.

The Figure 8 shows that:
0.55< Ty <1.6s (85)
So:
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From Table 2, the best model to correctly approach

represent the system response to a random signal of zero
the system dynamics model is M, -

mean and variance 1.

2,n,=2and n =0.

Wefix n,=2,n

To validate the model chosen (M,,,) ., we plot the
autocorrelation functions of residuals (Figure 10) and
cross-correlation between input and residuals (Figure
11). We note that these two functions are amost within
the confidence intervals, thus validating the use of the re-
sulting network as amodel system studied.

me(s)

Ti

paads 10301

determined of the

Figure 8. Step response of DC motor:

sampling period 7.

The curves representing the evolution of the model

parameters are plotted in Figure 12.

The Figures 13 and 14 represent the evolutions of ze-
ros and poles of the model. The modules of the poles and
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zeros of the models are less than 1, thus validating the

stability of this control system.
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To build the neural model of the engine, we used the

used to calculate the model parameters. These sequences
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Table 2. Nash criterion values of the different candidate

models.
Different candidate models Q(%)
Mi220 75.53
Mi221 83.91
Mz220 91.87
Mz221 89.12
Mz330 88.86
M2331 80.32

Amplitude

Amplitude

0.3

0.2

0.1

-0.1

-0.2

-0.3

Figure 10. Auto-correlation function of residuals.

Figure 11. Intercorrelation function between input and re-
siduals.

data segquences that are represented in Figure 9. The
evolution of the Nash criterion of different candidate
models of the DC motor (Table 3) leads to the conclu-
sion that 5 neurons in the hidden layer are necessary and

sufficient for a neuronal model with satisfactory accuracy.

It thereforesets n, =5.

The autocorrelation functions of residuas and cross-

Copyright © 2012 SciRes.

177

Amplitude

0.8

0.6

0.4

imaginary part

0.2

0.4

0.2

imaginary part

-0.2

correl

|
1
100 200 300 400 500 600 700 800 900
Time(s)

Figure 12. Evolution of model parameters.
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Figure 13. Evolution of the zeros of the model.
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Time(s)

Figure 14. Evolution of the poles of the model.

ation between input and residuals (Figure 15) are

within the confidence intervals, thus validating the use of
the network chosen as the model system studied.
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Table 3. Evolution of the Nash criterion of different neural
models.

Number of neuronsin the hidden layer Q(%)
1 75.15
2 78.27
3 88.34
4 85.26
5 99.62
6 89.21
7 79.57
8 77.23
9 75.45
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The performance of the adaptive conventional internal
model control law applied to the DC motor is illustrated
in Figures 16, 17 and 18. On the other side, the Figures
19, 20 and 21 show the results of adaptive neural internal
model control of the DC motor. By comparing the results
of two control systems of the DC motor mentioned pre-
viously, we see clearly:

-n, >n, therefore the adjustment of adaptive neural
internal model control system parameters requires more
time than the conventional adaptive internal model con-
trol system.

-A sudden change of system parameters implies a sud-
den change in the amplitude of the model output and the
controlled system.

-The system output and the neural model output are
almost identical, which confirms that the neural network
is synthesized with more high precision than the output
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Figure 15. Tests of model validation: (a) Autocorrelation function of residuals; (b) Intercorrelation function between input

and output residuals.
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model obtained by the conventiona identification me-
thod.

-The control signal shows fluctuations in the case of
adaptive conventional internal model control. By consin
the case of adaptive neural internal model control, fluc-
tuations are greatly diminished.

-The output of the adaptive neural internal model con-
trol system adequately follows the reference signal com-
pared to the output of conventional adaptive internal
model control system.

-The evolutions of the criterion &, clearly show that
the adaptive conventional internal model control system
cannot fully offset the effect of disturbance compared to
the adaptive neural internal model control system.

7. Conclusion
In this paper, two adaptive internal model control struc-

Copyright © 2012 SciRes.

tures are used so that the speed of DC motor follows the
given trgjectories.

The comparative study showed the effectiveness of the
adaptive neural internal model control system compared
to conventional adaptive internal model control system.
Indeed, it was found that the adaptive control system by
neural internal model meets the desired objectives. the
powerful regulation and robustness of the speed, the dis-
turbance rejection and system stability.
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Appendixs

The model obtained from the estimation of its parameters
is valid strictly used for the experiment. So check it is
compatible with other forms of input in order to properly
represent the system operation to identify. Most static

tests of model validation are based on the criterion of Nash,

on the auto-correlation of residuals, based on cross-corre-
lation between residues and other inputs to the system.
According to [54], the Nash criterion is given by the fol-
lowing equation:

> (y(K)- 9(K))

Q=100%| 1-— k2 (87)

oo 5]

k=1

In our work, the number of samples N is equal to 2251.
In [55,56], the correlation functions are:
-autocorrelation function of residuals:

(89)

-crosscorrelation function between the residuals and
the previous entries:

R, (7)=
T )

(8 00-( B0 )] et0-( 3000

(89)
Ideally, if the model is validated, the results of correla
tion tests and the Nash criterion following results:

Re (7) :{]6:&% R, (r)=0vr and Q=100%

Typicaly, we verify that Q=100% and the func-
tions R are null for the interval 7[-20,20] with a
confidence interval 95% , that is to say that:

196 _o 19

INT T UNS

The calculation of partial derivatives is carried by the
following equations:
-for the neuron in the output layer:

Copyright © 2012 SciRes.
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-for aneuron in the hidden layer:
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S e K (D)
it n=j The calculation of the coefficient matrix of the net-
h n G i work D is conducted viathe two following relations [39]:
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ou(k-1)
39(k+n,—m)
can be determined through the controller considered and

the use of numerical approximation of the partial deriva
tive:

are caled the system Jacobian. They

y(k)
ou(k)

_¥(k)-9(k-1)
= () —u(k-1) (112)

We have then the following approximate relations:

oy(k) _ 9(k)-9(k-1)
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(113)

~
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The Jacobiens m an m are

calculated directly by the back-propagation of the partial
derivative of output network u(k-1) respectively
compared to  u(k—m) and §(k—n,—m) through the
neuronal controller.
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