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ABSTRACT 

In this paper, a three Degrees of Freedom (DOF) model of a quarter vehicle suspension system is proposed including 
the seat driver mass. The modal parameters of this system, which indicate the comfort and the safety of the suspension, 
are identified using Wavelet analysis. Two applications of wavelet analysis are presented: signal denoising based on the 
Discrete Wavelet Transform (DWT) and modal identification based on the Continuous Wavelet Transform (CWT). It is 
shown that the CWT analysis of the system response, initially denoised using DWT, allows the estimation of the natural 
pulsations and the damping ratios. The usefulness of the DWT in denoising and the accuracy of the CWT in modal iden-
tification are tested and confirmed by applying them to the proposed model. The complete modeling and identification 
of a 3-DOF vehicle suspension system is developed and the simulation results verify these statements and are satisfac-
tory. 
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1. Introduction 

The importance of the suspension system of a vehicle is 
that it is responsible of the comfort of the driver and the 
safety of the vehicle since it is the part of the vehicle which 
carries the body of the vehicle and which transmits all 
the forces between this body and the road. For that, the 
complete physical model of the suspension is often re- 
duced under investigation of the vertical dynamics estab- 
lished on a quarter-vehicle model. The study of this model, 
and like any mechanical system, presents challenge for 
engineers and researchers. Noise reduction and parame- 
ters identification from system response are common pro- 
blems in signal processing and vibrational applications 
[1-3]. That’s why numerous approaches have been deve- 
loped recently and applied to denoise signals and to ex- 
tract modal parameters of systems and structures in time 
and frequency domains [1]. 

The wavelet analysis is one of these new approaches 
that were revealed mainly because it represents an easy 
way of extracting time varying frequency components. 
Indeed, the Wavelet Transform technique is shown to be 
more effective than other denoising methods such the 
Fourier Transform (FT) or Compressed Sensing technique 
[1], and more useful than other identification methods such  

as Hilbert-Huang Transform [4-6].  
In noise reduction, wavelets has been successfully used 

by Giaouris et al. [2] in order to propose a new pseudo- 
adaptive denoising method based on the Wavelet Trans- 
form, this method adjust the level of signal decomposi- 
tion and was applied effectively to an electric drive. 

In systems identification, resonant pulsations and damp- 
ing ratios are the most difficult quantity to determine and 
requires dynamic tests [3,4]. Numerous approaches have 
been developed and applied to identify modal parameters 
of systems and structures in time-frequency domain such 
as the WT [5,6] and the Hilbert-Huang Transform (HHT) 
[7,8]. 

The objective of this study is focuses first to propose a 
model of a quarter vehicle suspense system and then to 
identify the parameters of the proposed model of the con- 
sidered system using WT.  

The different sections of this paper are organized as 
follows: in section II a complete modeling of a 3-DOF 
quarter suspension system is proposed with a dynamical 
study followed by a Simulink diagram of the considered 
vehicle model. Beginning with some mathematical fun- 
daments of the discrete and the continuous WT, denois- 
ing and the identification methods are presented in section 
III. The simulation results are illustrated and discussed in 
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section IV, and a conclusion is drawn in section V. 

2. Proposed 3-DOF Model for the Vehicle 
Suspension 

The suspension system has a big role in design and dyna- 
mic of the vehicle. Indeed its goal is to maintain the com- 
fort of the passengers and the stability of the vehicle by 
supporting the weight of the vehicle, by reducing the dis- 
turbances of road and by avoiding the road excitations 
experienced by the tires from being transmitted to the pas- 
sengers. 

The suspension system is generally reduced to a quar- 
ter vehicle model and the majority of the suspension studies 
use a model with two DOF. In our study, we propose a 
three DOF model including the seat and drive mass ( sm ), 
chassis mass ( c ) and the tire mass ( t ). The proposed 
suspension system is modeled by interconnecting three 
mass-spring-damper systems as shown in Figure 1.  

m m

Assuming that each sub-system is represented by a mass 
connected to parallel arrangement of a linear spring and a 
linear viscous damper, the three DOF are the vertical mo- 
tions of: the seat, the chassis and the tire. 

The model shown in Figure 1 includes for each mass a 
stiffness constant k, a damping constant c and a vertical 
displacement z. The vertical displacement rz  denotes 
the change of road surface elevation.  

Assuming that the tire does not break away from the 
road surface and that the displacements are measured form 
the static equilibrium positions, the linear equation of mo-
tion for the seat mass is: 

           0s s s s c s s cm z c z z k z z               (1) 

Similarly, the equation of motion of the chassis mass 
is given as: 
 

 

Figure 1. Proposed 3-DOF model of a quarter-vehicle sus-
pension system. 

       c c c c t c c t s s c s s cm z c z z k z z c z z k z z             

(2) 

and that of the tire mass is : 

       t t t t r t t r c c t c c tm z c z z k z z c z z k z z             

(3) 

These three differential equations can be written in the 
matrix form as follows: 

Z Z Z LU   M D S            (4) 
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M is the inertia matrix, D the damping matrix and S 
the stiffness matrix. 

From these dynamical driving equations, we can de- 
rive the state space representation of the system by as- 
suming the state space variables are as follows: 
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                (5) 

As a result, the state space representation of the pro-
posed model is: 

   
   

X X
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  
  

 A B
C D

U
U

            (6) 

where  A  is the state matrix,  B the input matrix,  C  
the output matrix,  D  the transmission matrix, U the in- 
put of the system and Y its output. 
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where s represents the scale or the dilation parameter and 
  represents the time or the translation parameter.  

Otherwise, the wavelet functions are able to adjust them- 
selves as the transform is computed for each component 
of the analyzed signal: the scale parameter indicates the 
level of analysis. Small values of s provide a local (or 
high frequency) analysis while large values correspond to 
large scale (or low frequency) analysis. Changing the   
parameter moves the time localization center of each 
wavelet. 

0 0
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From the equations of motion (1), (2) and (3) we can 
also deduce the following diagram block of the proposed 
model (Figure 2). These scale and translation parameters can vary in a 

discrete or continuous way: it is what makes the differ- 
ence between the Continues Wavelet Transform (CWT) 
and Discrete Wavelet Transform (DWT). 

3. Wavelet Transform Analysis 

Wavelet Transform (WT) is conducted in a manner similar 
to Short-Time Fourier Transform (STFT). However, Wave- 
let Transform is superior in the sense that its window func- 
tion, the analyzing wavelet, is scaled (or dilated) in addi- 
tion to being translated in time. This analyzing wavelet 
function is often called the mother wavelet because it gives 
rise to a family of wavelets through the dilations and trans- 
lations. A generalized wavelet family 

In this study, we stated only some keys equations and 
concepts of each approach, more rigorous mathematical 
treatment of this subject can be found in [9,10]. 

3.1. DWT for Denoising 

For WT in the discrete form, the widely used scale and 
translation parameter settings that create an orthonormal 
bases are: 2 js   and 2 j k   ( ). The wave- 
let family (7) then becomes:

,j k s   described in 
the normalized form is: 
 

 

Figure 2. Diagram Block of the proposed 3-DOF Suspension System. 
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  2
, 2 2

j
j

j k x 


 x k          (8) 

Analogous to the FT, the DWT calculates wavelet co-
efficients by taking the inner product of an input signal 
 f x  with a function, that is in this case the wavelet fa- 

mily ,j k . DWT is designed to give good time resolu- 
tion and poor frequency resolution at high frequencies 
and good frequency resolution and poor time resolution 
at low frequencies. A signal is decomposed using the 
DWT into two sets of coefficients called approximations 
coefficients represent low-frequency signal components 
defined by Vetterli et al. [11]: 

     2
, ,, 2 2j j

j k j k dA f x f x x k 


 



   x  (9) 

and details coefficients represent high-frequency signal 
components defined by: 

     2
, ,, 2 2j j

j k j k dD f x f x x k 


 



   x

1,

(10) 

This decomposition, recursively repeated through fil-
tering and down-sampling operations using low-pass and 
high-pass filters (Figure 3), breaks the signal into lower 
level coefficient sets. Without manipulating these coeffi- 
cients, the original signal can be reconstructed exactly 
through the inverse DWT defined by: 

, 2 1, 2j k k m j m k m j
m

A h A g D     m     (11) 

where  kg  and   are respectively the high-pass 
and the low-pass filters (Figure 3). 

kh

Manipulating wavelet coefficients prior to signal recon-
struction changes the original signal. The original signal 
can be modified, enhanced or denoised through various coe- 
fficient manipulation operations. In our work, the DWT will 
be used to denoise the response of the system on the road to 
identify his modal parameters using the CWT method. 
 

 
Figure 3. Signal decomposition using DWT and reconstruc-
tion using inverse DWT. 

3.2. CWT for Modal Identification  

The Continuous Wavelet Transform (CWT) is defined as 
the convolution of the signal and the scaled-shifted 
versions ,a b

 x t
  of an analyzing function   called the 

mother wavelet: 

         *
, , ,, ds s sCWT x x t t x t t t  




     (12) 

where *
,s   is the complex conjugate of the analyzing 

function ,s  . 
One of the most widely used mother wavelet for pa-

rameter identification is the well-known modified Morlet 
wavelet defined by [12-14] : 

 
2

0j t t Nt e e             (13) 

where 0  is the central pulsation of the Morlet mother 
wavelet and N is parameter introduced to control the shape 
of the basic wavelet intend to offer a better compromise 
in terms of localization, in both time and frequency for a 
signal. 

The optimal value of N is determined by minimization 
of the wavelet coefficients entropy [13] defined by: 

    Shannon
1

log
m

j j
j

WE N WC WC


      (14) 

where 
1

m

j j i
i

WC wc wc


  and  is 

the set of wavelet coefficient energies. 

 ; 1,2iwc i m 

For a linear damped multi-DOF system with real modes, 
the free-decay response and impulse response can be 
used for modal identification. Hence, a simulated free- 
decay response with p modes is employed as the analyti-
cal signal to investigate the CWT based time-frequency 
decompositions.  

Suppose the signal is given by: 
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1 1
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     k (15) 

where 0kA  is the amplitude of the kth mode, 0k  is the 
phase lag, k  is the damping ratio and k  is the natural 
pulsation. Since the wavelet transforms are linear repre- 
sentation of the signal, it follows that the CWT of this 
multi-components signal is: 
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(16) 

Thus, the CWT works as a time-frequency filter and 
for a fixed value ks  of the scale parameter s, which maxi- 
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mizes  *
, 1 2

s k k s   , only the mode associated with 

ks  gives a significant contribution in the CWT, while all 
others are negligible: 

 
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1* 2
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 (17) 

These regions where the amplitude of the CWT is 
maximum are called the ridges. By extracting the values 
of the wavelet coefficients along the ridge yields the 
skeleton of the CWT. So, the CWT of each separated 
mode is defined by a skeleton expressed as follows: 

     
,

k

k

i
s k kCWT x A e  

         (18) 

which implies that the CWT is able to decompose a multi- 
component signal into separated modes and to represent 
them of a complex-valued signals each one defined by 
amplitude  kA   and a phase angle  k  . 

Note that the phase angle of this skeleton is: 

  2
01k k k k a b                (19) 

where a  is the slope of this linear curve, and by ap-
plying logarithmic operator to the amplitude of the ske- 
leton, we obtain: 
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Consequently, the natural pulsation k  and the damp- 
ing ratio k  can be defined by combining the slopes of 

 k  and  ln kA  as follows: 

2 2
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

A
           (21) 

A specialized program has been developed on the 
MATLAB numeric computing environment for estimat-
ing these parameters from the system response. This pro-
gram includes the following procedures: 

Step 1: Calculate the wavelet entropy in order to deter- 
minate the optimal value of N corresponding to the opti- 
mal Morlet wavelet. 

Step 2: Transforming the time signal (response of the 
system) into time-scale domain using the CWT. 

Step 3: Detecting ridges and extracting corresponding 
skeletons. 

Step 4: Calculate modal parameters according to equa-
tion (21) by least-square interpolation 

4. Simulation 

s




 (20) 

In order to show the usefulness the WT in suspension stu- 
dy, the proposed 3-DOF suspension system was created 
using Simscape blockset library of Matlab software and 
the correspondent Simulink model shown on Figure 4 
was implemented with the simple configuration given in 
Table 1. 

In the simulation study, the proposed model is exited 
 

 

Figure 4. Simulink model of the proposed 3-DOF suspension system. 
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Table 1. Parameters configuration of the simulated model. 

Symbol Description Value 

ms mass of seat 200 Kg 

mc mass of chassis 200 Kg 

mt mass of tire 200 Kg 

ks spring constant of seat 200 × 103 N·m–1 

kc spring constant of chassis 400 × 103 N·m–1 

kt spring constant of tire 800 × 103 N·m–1 

cs damping constant of seat 30 N·s·m–1 

cc 
damping constant of cha- 
ssis 

20 N·s·m–1 

ct damping constant of tire 10 N·s·m–1 

 
by an impulse signal and three cases of identification pa- 
rameters are developed and illustrated. 

4.1. Case 1: Identification from Original Response 

The original response signal is shown in Figure 5. For 
this response he CWT of was firstly calculated for 1N   
as shown in Figure 6(a) and Figure 6(b) gives a cross- 
section of the CWT at different times. According to this 
time-scale representation, we cannot see clearly the three 
modes of the considered system. For this reason, we have 
to calculate the variation of the wavelet entropy. By in-
creasing N from 1 to 50, the minimum value is obtained 
for N = 22 (Figure 6(c)), and the optimized CWT of the 
response corresponding to this value is shown in Figure 
7(a) in which the three modes of the considered system 
can be easily observed. 

According to the last study, each mode can be isolated 
by ridge extraction and used to estimate natural pulsation 
and damping ratio. Figure 7(b) gives the three related 
ridges representation at different times, from this plot we 
can deduce the scale parameters corresponding to each 
mode: the first mode is localized in the neighborhood of 

1 , the second mode neighbor to  and the 
third mode neighbor to .  

26s  2 44s 
3

The restriction of wavelet coefficients to each obtained 
ridge gives the corresponding skeleton. Figure 8 shows 
the plots of the real part (Figure 8(a)) and the imaginary 
part (Figure 8(b)) of the skeleton related to the first mode. 
And as previously established by Equation (21), an inter-
polation of the phase (Figure 8(c)) and the modulus 
(Figure 8(d)) of this first skeleton allows the estimated 
natural pulsation and the damping ratio of the first mode 
using a linear least-square fit procedure. Similarly, Fig- 
ure 9 and Figure 10 present the identification of the other 
modal parameters. 

104s 

The identification results are listed in Table 2 and shows 
that CWT method correctly identifies the natural pulsa- 
tions and the damping ratios corresponding to the three  

 
(a) 

 
(b) 

Figure 5. Original response of the suspension system. 
 

 
(a) 

 
(b) 

 

 
(c) 

Figure 6. CWT of the original response signal. a) CWT for 
N = 1; b) Cross section at different instants for N = 1; c) 
Minimization of the wavelet entropy. 
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(a) 

 
(b) 

Figure 7. CWT of the original response signal. a) CWT for 
N = 22; b) Cross section at different instants. 
 

 

Figure 8. Identification of the skeleton corresponding to the 
1st mode. a) Real part; b) Imaginary part; c) Phase; d) Envelop. 
 

 

Figure 9. Identification of the skeleton corresponding to the 2nd 
mode. a) Real part; b) Imaginary part; c) Phase; d) Envelop. 

 

Figure 10. Identification of the skeleton corresponding to the 
3rd mode. a) Real part; b) Imaginary part; c) Phase; d) En-
velop. 
 
modes. We note that the damping ratio is slightly less ac- 
curate than the natural pulsation because its value is es- 
timated from that previously estimated for the pulsation 
which causes a propagation of error. 

4.2. Case 2: Identification from Noised Response 

In this case, two white Gaussian noises with Signal-to- 
Noise Ratio (SNR) equal to 20 dB and 2 dB were added 
to the original response in order to simulate CWT perfor- 
mances under noisy conditions. Signals with the two levels 
of noise are shown on Figure 11 and Figure 12. 

The same developed identification procedure is applied 
(Figure 13). By minimization of the wavelet entropy, the 
optimal value of N is the same as in the first case. 

The CWT has been applied successfully at the two 
noise levels. Figure 14 gives the identification of the first 
mode in the case of SNR equal to 2 dB. The results are 
not as good as in the case without noise, but they are ac- 
ceptable as shown in Table 2. 

4.3. Case 3: Identification from Denoised Response 

In this case, the DWT-based denoising process was ap- 
plied to the previous two noised signals using Symlet 
wavelet and the troubles components affecting the signal 
were deleted as shown in Figure 15. Also in this case the 
identification was made following the same procedure. 
The results are similar to the previous and that is why 
only the identification of the first mode is represented in 
Figure 16.  

Table 2 presents a comparison between actual and es- 
timated parameters. In order to highlight the results ob- 
tained in each case, it useful to introduce a simple meas- 
ure of the error estimation for a given modal parameter 

estimated  estimated via the CWT and compared to the 
exact value actual . Therefore, the Mean Absolute Error 
(MAE) which is an average of the absolute errors 

actual estimatedi  deduced in a case with the three 
modal parameters of the system. This MAE is given by 
(22) and is introduced at the last column Table 2. 



 



 
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(a) 

 

 
(b) 

Figure 11. Noised response of the suspension system (SNR = 
20 dB). 
 

 
(a) 

 
(b) 

Figure 12. Noised response of the suspension system (SNR = 
2 dB). 

 
(a) 

 
(b) 

Figure 13. CWT of the noised response (SNR = 2 dB). a) CWT; 
b) Cross section at different instants. 
 

 

Figure 14. Identification of the skeleton corresponding to 
the first mode (SNR = 2 dB). a) Real part; b) Imaginary 
part; c) Phase; d) Envelop. 
 
Table 2. Identification results of the 3-Dof Suspension System. 

 
Modal 

parameters
1st mode 2nd mode 3rd mode  

Natural 
pulsation

ω (rad·s–1) 83.67 50.09 21.26

Damping 
Ratio 

ζ (%) 1.55 2.52 0.79 
MAE

ω (rad·s–1) 83.6732 50.0925 21.2686 4.77E-03Original 
response ζ (%) 1.5568 2.5293 0.7905 5.53E-03

ω (rad·s–1) 83.6701 50.0912 21.2700 3.77E-03Noised 
response 

SNR = 20 dB ζ (%) 1.5602 2.5188 0.7797 1.03E-02

ω (rad·s–1) 83.6697 50.0752 21.2698 8.30E-03Noised 
response

SNR = 2 dB
ζ (%) 1.5749 2.5129 0.8013 1.40E-02

ω (rad·s–1) 83.6744 50.0976 21.2669 6.30E-03Denoised 
response 

SNR = 20 dB ζ (%) 1.5564 2.5198 0.7905 4.60E-03

ω (rad·s–1) 83.6762 50.0981 21.2688 7.70E-03Denoised 
response

SNR = 2 dB ζ (%) 1.5568 2.5287 0.7919 5.87E-03
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Figure 15. Denoising of the noisy response (SNR = 2) using 
DWT with Symlet wavelet. a) Noisy signal; b) Denoised sig- 
nal; c) Deleted noise. 
 

 

Figure 16. Identification of the skeleton corresponding to 
the first mode of the denoised response (SNR = 2 dB). a) 
Real part; b) Imaginary part; c) Phase; d) Envelop. 
 

3

actual estimated
1

1

3
MAE           (22) 

The simulation results obtained give a very accurate 
estimation of the actual parameters. This verifies the ef- 
fectiveness of the denoising and identification method 
based on DWT and CWT for the proposed model of sus- 
pension system. 

5. Conclusions 

We have proposed in this paper a 3-DOF model of a quar- 
ter-vehicle suspension. After a dynamic study and the mo- 
deling of the system, we have investigated the perform-

ances of the Wavelet analysis in the identification of pul- 
sation and damping parameters of the system. 

Due to its time-scale representation of signals, and the 
location of a mode by a ridge and the corresponding ske- 
leton, the CWT was able to identify the three modes of 
suspension system in all cases. 

In the case of poor resolution, the first two modes were 
not distinguishable, for this a compromise between fre- 
quency and temporal resolutions has been established by 
calculating the entropy of wavelet coefficients, and was 
able to optimize the CWT to better locate these particular 
modes. 

The important advantage of this approach is that it is 
not too sensitive to noise. Indeed, for all different noise 
levels, the modal identification was made with low error 
rates. The simulation results obtained underlined the ac- 
curacy and the efficiency of the developed method in the 
cases where the response signals are denoised by the DWT, 
and even in the presence of noise. 

Finally, we can conclude that wavelets are a powerful 
tool for the modal analysis in vibration applications es- 
pecially for suspension systems. 
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