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ABSTRACT 

A method for designing real-time distributed controllers of discrete manufacturing systems is presented. The approach 
held is agent based; the controller strategy is distributed into several interacting agents that operate each one on a part 
of the manufacturing process; these agents may be distributed into several interconnected processors. The proposed 
method consists of a modelling methodology and software development framework that provides a generic agent archi- 
tecture and communication facilities supporting the interaction among agents. 
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1. Introduction 

Nowadays discrete manufacturing systems are large and 
complex systems that integrate several kinds of devices of 
miscellaneous nature and behaviour, namely robots, con- 
veyors, machines, sensors, etc. Additionally, the produc- 
tion requirements are often changed; these facts impose to 
the system components to be versatile, and to the coor-
dination system or controller to be highly flexible.  

The core of a control system is complex software, 
which determines at last, the flexibility and the perform-
ance of the automated system. This control software pro-
vides several functions: tasks execution, monitoring, de-
cision making, and planning; it is generally distributed 
into a four layer hierarchy [1]; in this scheme the control 
function is decomposed into four levels in which the re-
sponse time is shortest in the lower levels.  

The lowest level includes the local controllers of the 
physical devices in the cell (robots, conveyors, machines, 
sensors, etc. The task coordination level or cell level 
manages and supervises the activities of the local control- 
lers involved in a cell by the generation of pertinent com- 
mands according to events issued from the local control 
level. The task planner generates the strategy of the con-
troller for the cells according to the specifications from the 
production planning level.  

Due to the complexity of the tasks, especially which 
performed at the cell level, the synthesis of the controller 
is a difficult job often addressed through planning tech-

niques. One of the problems found in the synthesis real- 
time controllers is that the representation of the qualitative 
controller often includes a large amount of knowledge 
whose processing is time consuming.  

This work deals with the task coordinator level. The 
functions of this control level can be decomposed mainly 
in a) the sequencing of operations to accomplish the as-
sembly task in a normal functioning regime, and b) the 
handling of exceptions representing operation failures [2]. 
In this paper the case of normal execution is addressed.  

The design and implementation of tasks controllers of 
complex manufacturing systems has been addressed by 
using several approaches. The object oriented approach 
has been held for modelling [3], simulation [4-6], and con- 
trol [7] of manufacturing systems. The agent based ap-
proach [8] has been adopted to address some problems in 
manufacturing systems [9]; DeLoach [10] proposes a mo- 
delling language for describing the diverse kinds of agents, 
and defines a methodology (MaSE) for the formal synthe- 
sis of agent systems; in [11] Bussmann focuses on deci-
sion making issues during the planning stage, and in [12] 
he addresses the task programming issue proposing a syn- 
thesis method that leads to concurrent centralised control 
software; in [13] Ouelhadj proposed a dynamic control ar- 
chitecture for manufacturing systems organised into cells, 
but the programming of the agents is not reported. 

In this work we also profit of the agent-based approach 
for conceiving a control software as a composition of in- 
teracting modules, defined as reactive agents, which may 



Agent-Based Synthesis of Distributed Controllers for Discrete Manufacturing Systems 

Copyright © 2011 SciRes.                                                                                 JSEA 

138 

be distributed into several processors; it is proposed a me- 
thod that supports the complete development life cycle of 
distributed controllers of discrete manufacturing systems; 
this lifecycle is shown in Figure 1, in which the stages of 
the method are pictorially overviewed. The proposed me- 
thod for sequencing the activities of the cell components 
allows building rapidly prototypes of software controllers. 

The remainder of this paper is organised as follows: 
Section 2 describes the proposed methodology for mod-
elling both the manufacturing system and the tasks to be 
executed; Section 3 presents the proposed method for the 
design of distributed control software: first the decompo-
sition of the task model is described, then agent based 
solution to the synthesis of distributed software is out-
lined. 

2. Controller Modelling 

This section presents the methodology that helps to ob-
tain systematically the contents of the knowledge bases 
from a model of the manufacturing/assembly system; this 
model, close to that presented in [7], includes the system 
description and the tasks specification. The aim of this 
stage is to obtain in a structured way the system function- 
ing and production requirements. 

The description consists in a component classification 
of the manufacturing process, and a structuring of the sys- 
tem workspace.  

The component classification leads to a taxonomy of 
the system components organised as a hierarchy including 
capabilities and features of each component, and the total 
quantity of devices. The hierarchy is useful to program the 
necessary classes in the control software. Figure 2 shows 
an example of components hierarchy. 

2.1. System Description 

The structuring of the system workspace consist of a defi- 
nition of relevant physical emplacements where operations 
are performed on the work pieces or parts; rather than spa- 
ce partition into regions, the structuring is a discrete assi- 
gnment of positions. The key element for structuring the 
workspace is the notion of site, which is defined as the 
place where parts can be temporary held or stored in a sta- 
ble position (a table, a magazine, a robot gripper, ...) [2]. 

The sites may be single or composed (macro-site); sin- 
gle sites held one part or subassembly; composed sites 
have two or more emplacements which manage the infor- 
mation attached to a set of sites closely located and func-
tionally equivalents. The sites that are associated to effec- 
tors are named active sites; otherwise they are called pas- 
sive sites. A site contains information about the work zone 
were it is emplaced that can be used as mutual exclusion 
resource (for robot collision avoidance, for example). 

2.2. Task Specification 

The flow of material is described by a flow of parts graph 
(FPG), and then a set of dispatching rules, which represent 
the controller strategy, is obtained.  

2.2.1. The Flow of Parts Graph 
A FPG is a directed graph whose nodes are all the sites of 
the system; the arcs joining the nodes represent either the 
operations needed to transfer the parts from one site to 
another one or to modify the properties of the part held 
into a site. For example, Figure 3 describes the operations 
pick and place performed by a robot (R1); three sites are 
involved: two passive sites (CONV2 and TAB1), and an 
active site (GRIP1) associated to the robot gripper. The 
definition of FPG is given below: 

Definition. A flow of parts graph is the tuple F = (G, 
SITES, OPER, , , ), where 
 G is a connected directed graph G = (V, A), where 

—V is a finite set of vertex, 
—A  V  V is a set of edges or arcs. 

 SITES = {site1, ···, siten} is a finite set of site names, 
which are not input or output sites. 

  = {sitein1, ···, siteinp, siteout1, ···, siteoutq} is a fini- 
te set of site names labelling sites where the parts 
entry or leave the FMS. 

 : V  SITES  {} is a labelling function that 
assigns name sites to the vertex of G. 

 : A  OPER is a labelling function that assigns 
operations names to the arcs of G. 

2.2.2. Sequencing the Operations 
The dispatching rules are antecedent-consequent rules that 
state the conditions in which an operation must be exe-
cuted; they are obtained directly from the FPG, and the 
number of rules is the same than the number of arcs in the 
FPG. The antecedent part is composed by conditions that 
involve mainly sensory conditions and tests (contents, part 
posture, …) on the sites related by the operation; other 
conditions may involve tests on sites located upstream the 
FPG. The consequent part includes the request of execu-
tion of the associated operation and the updating of the 
involved sites. 

2.3. A Modelling Example 

For illustrating purposes we include an example regarding 
a simple assembly system; it will be addressed through the 
rest of the paper. 

2.3.1. System and Task Description 
1) The system: Consider the assembly cell sketched in 
Figure 4; it consist of three conveyor belts B1, B2, and 
B3, two robots R1, R2, two assembly tables A1, A2, an 
storing table ST. Each assembly table has two positions;     
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Figure 1. Software development life cycle. 
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Figure 2. Taxonomy of the assembly cell. 
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Figure 3. Flow of parts graph. 
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Figure 4. Assembly cell layout. 
 
the storing table has four positions. The parts to be as-
sembled arrive through the conveyor B1; two kinds of as- 
sembled products the leave the cell through B2 and B3. 
In the front of R1, an optical sensor C1 detects the arrival 
of parts; over this zone a camera of a location-recogni- 
tion system is emplaced. 

2) The task: Eight types of parts (A, B, C, D, E, F, G, 
and H) constitute the input flow in B1; they arrive at ran- 
dom order. R1 gets the parts and builds assemblies (stacks) 
on A1 (with the parts A, B, C, and D) or A2 (with the parts 
E, F, G, and H) according to a predefined order for each 
product. The detection of parts in C1 stops B1; the identity 
of the parts is determined by the vision system when they 
arrive at the position C1. R1 gets part only if it can be as- 
sembled or temporary stored in STi. Otherwise the part is 
left in B1. R2 gets completed assemblies from A1 or A2 
and places them on B2 and B3 respectively. 

2.3.2. System and Task Modelling 
1) System taxonomy. The components of the assembly 

system are classed from a functional point of view: sen- 
sors, effectors, etc. This classification is useful to struc- 

ture the factual knowledge of the assembly system: task 
state, component capabilities and relationships, etc. Fig-
ure 2 shows the hierarchy concerning the assembly sys-
tem of the example; the items in the lowest level of the 
hierarchy can be object instances of the upper concept 
(class). 

2) Workspace modelling. In the example the following 
sites are defined: CONV1, CONV2 and CONV3 are the 
sites associated to the place where the parts stops in front 
of the robot; GRIP1 and GRIP2 are associated to the grip- 
pers of R1 and R2 respectively. The storing table has four 
sites: STi (i = 1, ···, 4); they can be managed by the macro 
site ST. The sites associated to assembly tables are ASSB1 
and ASSB2. 

3) Flow of parts. The FPG shown in Figure 5 describes 
the flow of parts required in the assembly task; the sites 
defined in the model are related by the operations whose 
outcome is, mainly, the transferring the parts between the 
sites. Operations may only modify the properties of the 
part into a site; as an example notice that the operation 
Ident-Loc does not transfer the part to another site but it 
changes the attributes of the unknown part.  

Operations may also put parts into the flow model or 
drawn out parts (or products) from the model. The FPG 
for this example is defined as follows:  

F = (G, SITES, OPER, , ) where G = (V, A) with 
V = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} 
A = {(v0, v1), (v1, v2), (v1, v1), (v1, v3), (v3, v4), (v4, v3), 

(v3, v5), (v3, v6), (v5, v7), (v6, v7), (v7, v8), (v7, v9), (v8, v10), 
(v8, v11)} 

SITES = {conv1, conv2, conv3, grip1, grip2, assb1, 
assb2, st1} 
 = {input1, output1, output2, output3} 
OPER = {B1.feed(), B1.advance(), R1.pick(conv1), R1. 

store(st), R1.recover(st), R1.assembly(assb1), R1. assem- 
bly(assb2), R2.pick(assb1), R2.pick(assb2), R2.place- 
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Figure 5. Flow of parts graphs for the assembly cell. 
 
(conv2), R2.place2(conv3), B2.advance(), B3.advance(), 
C1.ident&Loc()} 
 = {(v0, input1), (v1, conv1), (v2, output1), (v3, grip1), 

(v4, st1), (v5, assb1), (v6, assb2), (v7, grip2), (v8, conv2), 
(v9, conv3), (v10, output2), (v11, output3)} 
 = { ((v0, v1), B1.feed()), ((v1, v2), B1.advance()), ((v1, 

v3), R1.pick(conv1)), ((v3, v4), R1.store(st)), ((v4, v3), 
R1.retreive(st)), ((v3, v5), R1.assembly(assb1)), ((v3, v6), 
R1.assembly(assb2)), ((v5, v7), R2.pick(assb1),), ((v6, v7), 
R2.pick(assb2)), ((v7, v8), R2.place(conv2)), ((v7, v9), 
R2.place(conv3)), ((v8, v10), B2.advance()), ((v8, v11), 
B3.advance()), ((v1,v1), C1.ident&Loc())} 

3. Distributed Software Design 

This section deals with the design of the distributed soft- 
ware that implements the task controller of a manufactur- 
ing system. First the modularisation of the task model is 
presented, and then the resulting partition is taken for im- 
plementing the agents [14]. 

3.1. Task Model Partition 

The task model must be decomposed into subtasks in such 
manner that every subtask may be assigned to an agent; 
this decomposition is achieved by a partition of the FPG. 
Several strategies for obtaining sub-graphs from the FPG 
may be adopted according to the number of processors, the 
geographical distribution on the components, or the simi- 
larity of the sub-graphs.  

In this work the strategy held for decomposing the gra- 
ph is creating the maximal number of sub-graphs; each 
sub-graph must involve one active site. This approach al- 
lows defining agents capable to control one effector. A 
three-step algorithm is described below. 

Algorithm. Partitioning the task model. 
1) Identify active and passive sites. Let Act  SITES, 

the set of active sites and Pass  SITES the set of passive 
sites. 

2) Sub-model creation. For every sAct, create a sub- 
graph gk including s and its predecessors and successors. 
In gk it is included an active site and several passive sites. 

SG = {g1, g2, ···, gr} is the set of sub-models. 
3) Simplification of sub-models. The operations asso-

ciated to the arcs of a graph gk must be executed by the 
effectors or sensors associated to the active site of gk. Thus 
the arcs labelled with other operations must be withdrawn 
from gk; consequently isolated vertex must be eliminated 
too. 

The sites belonging to two or more gk are called inter-
face sites; they are in the boundary of the graph and they 
must be carefully managed because they are considered as 
shared resources. 

Example. Consider the FPG of Figure 5; defining Act = 
{conv1, conv2, conv3, grip1, grip2}, and Pas = {asb1, 
assb2, st}, the decomposition procedure yields the sub- 
graphs depicted in Figure 6; so SG = {g1, g2, g3, g4, g5}. 

3.2. Task Programming Framework 

Once the task model is decomposed, each sub-model is 
used for defining an agent. Since every sub-model invol- 
ves an actuator, it must be controlled by the corresponding 
agent avoiding situations in which two or more agents 
handle the same effector. The knowledge base of every 
agent corresponds to the set of rules associated to the arcs 
of the pertaining subtask. 

The developed platform supports the programming of 
the agents that implement the subtasks of the system; this 
platform is based on JADE V1.2 (Java Agent Develop-
ment framework) [15], which meets the standards of FIPA 
[16].  

3.2.1. Requirements 
Agent requirements. Each agent 
 has a unique name 
 manages the corresponding subtask; it initialises and 

updates the contents of its sites and macro-sites. 
 exchanges messages with other agents; it interprets 

the message and perform the requests such as pro-
vide information about the contents of a site or about  
the execution of an operation. 

 coordinates with other agents for allocating shared 
resources.  
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Figure 6. Graph decomposition. 
 
 manages the associated devices (effectors and sen-

sors involved in the subtask). 
Sites requirements. Each site or macro-site 
 has a unique name. 
 provides facilities for managing its state, i.e. the ini-

tialising and updating of the associated attributes 
such as contents, position, sensor values, trace of the 
operations performed on it, etc. 

 provides facilities for managing special features, 
such as flags for mutual exclusion, the agent names 
that share it, or the assembly patterns if it is a site for 
assembly. 

Devices requirements. For every device (effector or 
sensor) in the system, one must create an interface mod-
ule that allows consulting the device state and handling 
the messages representing actions requests or responses. 
Every module has a unique name. 

3.2.2. Definition of Classes 
Component architecture. The implemented components 
are integrated into a package organised in four sub-pack- 
ages; it is shown in Figure 7. The sub-package MApack- 
age.sites contains the classes Site and Part, MApack-
age.macrosites contains the class Macrosite and the class- 
es related with the access of sites contained in the macro- 
site. Three kinds of sites are considered: interface sites 
(shared by two or more sub-tasks), internal sites, and re- 

mote sites (non shared but belonging to other sub-tasks). 
Figure 8 shows a detail of the above packages. 
The sub-package MApackage.devices contains the class 
Device and other sub-packages. MApackage.devices. 
effectors and MApackage.devices.sensors contain sub-
classes illustrated in Figure 9. This organisation is strongly 
suggested by the taxonomy of the manufacturing system 
obtained during the modelling stage. 

Agent class. The class AgentBase is an abstract class 
that specialises the class Agent from JADE. This class em- 
 

 

Figure 7. Component organisation. 
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Figure 8. Relationships among sub-packages. 
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Figure 9. Devices sub-package. 
 
beds the behaviour of a generic agent that manages all the 
activities related to a subtask. Every agent must be pro-
grammed by extending AgentBase, declaring the knowl-
edge of the corresponding subtask, and instancing the ex- 
tended subclass. The generic agent provides the facilities 
for the management of sites and the handling of messages 
related with the manufacturing task and messages for in- 
teracting with other agents; interaction among agents is 
performed through four kinds of messages regarding in-
formation requests and sending about sites, and request/ 
confirmation on the use of sites shared by two or more 
agents. 

Agent programming. The programming of each agent 
is done based in the information obtained from the cor-
responding subtask graph.  

3.2.3. Component Identification 
The first step for programming an agent is to identify the 
rules, the sites, the actions, and devices regarding the sub- 
task. For every site in the graph one must declare which 
agent shares this site, and define if it is a remote site. If a 
site is used for assembly declare the assembly pattern to 
follow during the execution of the task. When an in terface 
site is associated to sensor, only one agent must manage 

Operation Ident-Loc 

Description 
If during the feeding a part is detected, the con-
veyor 1 stops and the part is identified. The sen- 
sor value is reset.  

Related sites Conv1 

Related devices Conveyor1, Vision system, Detector. 

Pre-conditions 
Conv1 is empty, the state of conveyor is FEED-
ING, the presence sensor is ON, and the subtask 
state is INITIAL. 

Actions 
Stop Conveyor1. Identify and locate the part with 
the vision system. Reset sensor. 

Post-conditions
Conv1 holds a part, the state of Conveyor1 is 
STOP, the vision system is IDLE, and the sensor 
is OFF. The state of the task is HOLDINGPART.

Figure 10. Frame for a rule description. 
 
such sensor. 

3.2.4. Building the Rule Base 
The rules define the strategy of the controller. Every agent 
has a small set of rules corresponding to the arcs of the 
sub-graph. Before the writing of the rules it is convenient 
to enumerate all the information regarding each rule. This 
may be systematised by the filling of frames, such as 
shown in Figure 10 for the operation Ident-Loc of the 
sub-task 1. 

The Java coded rules for the agent coordinating the sub- 
task 3 is given below. 
// implementing rules for the agent named  

// ManufacturingAgent3 

void rules() 

{ 

// declaring reference to site for place //the 

part  

  Site destinationPart = null; 

// GRIP2.TAKE1: Grip2 takes the assembled //part 

from ASSB3 

if(assb3.getSite(0).isAssembled() && 

grip2.isEmpty() &&  

conv2.isEmpty() && destinationPart==null) 

{ 

      grip2.setContent(assb3.getContent(0)); 

      assb3.removeContent(0);  

      sendUpdateMessages(grip2); 

      sendUpdateMessages(assb3); 

      //  

      destinationPart = conv2;  

   } 

// GRIP2.TAKE2: Grip2 takes the assembled part  

// from ASSB4 

if(assb4.getSite(0).isAssembled()&& 

grip2.isEmpty() &&  

conv3.isEmpty() && destinationPart==null) 
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{ 

      grip2.setContent(assb4.getContent(0)); 

      assb4.removeContent(0); 

      sendUpdateMessages(grip2); 

      sendUpdateMessages(assb4); 

      destinationPart = conv3; 

} 

// GRIP2.TAKE: Grip2 places the took part in  

// CONVin takes the assembled part from ASSB4 

if(!grip2.isEmpty() && destination-

Part.isEmpty() && destinationPart!=null) 

{ 

destination- 

Part.setContent(grip2.getContent(); 

      grip2.removeContent(); 

      sendUpdateMessages(destinationPart); 

      sendUpdateMessages(grip2); 

      destinationPart = null; 

} 

} 

3.3. Implementation Issues 

This method has been demonstrated through the software 
implementation of several case studies. The software has 
been written in Java using the JADE framework for sup-
porting the agent definition and task interaction. 

The distributed software has been tested on several per- 
sonal computers interconnected through a local area net- 
work; every agent was assigned to single PC. 

For executing the controller, first the JADE framework 
is initiated in a computer where an agent may be executed, 
and then the rest of the agents are started in their compu- 
ters.  

For every agent the interaction with a device has been 
simulated through a visual interface on screen; during a 
test, users simulate the devices response to commands sent 
by the controller through the keyboard.  

4. Conclusions 

In this work a method to develop distributed software for 
manufacturing control systems has been presented. One 
important issue of the proposed method is the modelling 
stage; the specifications are transformed into graphical 
models that contribute to reduce the problems due to am-
biguities and incompleteness. The partitioned task model 
leads to obtain systematically the knowledge of every 
agent in the control software, allowing modifying easily 
the strategies of the subtasks; this feature is useful when 
task reprogramming is needed. 

The programming methodology takes advantage of the 
JADE framework facilities, which permit to the defined 
agents to be executed into different kinds of platforms.  

The case studies have been tested by simulating the 
manufacturing system devices through the console com-
puters; however a real application could be developed by 
the implementation of the interface modules that com-
municate the controller with the actual devices. 
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