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ABSTRACT 

Search-based software engineering has mainly dealt with automated test data generation by metaheuristic search tech-
niques. Similarly, we try to generate the test data (i.e., problem instances) which show the worst case of algorithms by 
such a technique. In this paper, in terms of non-functional testing, we re-define the worst case of some algorithms, re-
spectively. By using genetic algorithms (GAs), we illustrate the strategies corresponding to each type of instances. We 
here adopt three problems for examples; the sorting problem, the 0/1 knapsack problem (0/1KP), and the travelling 
salesperson problem (TSP). In some algorithms solving these problems, we could find the worst-case instances suc-
cessfully; the successfulness of the result is based on a statistical approach and comparison to the results by using the 
random testing. Our tried examples introduce informative guidelines to the use of genetic algorithms in generating the 
worst-case instance, which is defined in the aspect of algorithm performance. 
 
Keywords: Search-Based Software Engineering, Automated Test Data Generation, Worst-Case Instance, Algorithm  
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1. Introduction 

In search-based software engineering, researchers have 
been interested in the automated test data generation so 
that it would be helpful for testing the software. Since, in 
general, test data generation is an undecidable problem, 
metaheuristic search techniques have been used to find 
the test data. McMinn’s survey [1] summarizes previous 
studies. In the part of non-functional testing, these stud-
ies had a bias to generate the test data that show the 
best/worst-case execution time. But if we analyze an al-
gorithm, not the entire program, there can be many 
measures other than the execution time, in terms of 
non-functional testing. 

Finding test data (or problem instances) for an algo-
rithm is as important as finding those of the entire pro-
gram. The reason is that algorithms in a program can 
affect the entire performance of the program and we can 
exploit problem instances for the algorithms in analyzing 
them. In fact, Johnson and Kosoresow [2] tried to find 
the worst-case instance for online algorithms, for the 
lower bound proof. Also, Cotta and Moscato [3] tried to 
find the worst-case instance for shell sort to estimate the 
lower bound of the worst-case complexity. 

Nevertheless, to the best of our knowledge, such tri-
als are currently quite fewer than those in the field of 
software testing. Of course, fore-mentioned trials are 
good as initiative studies. But the trials did not intro-
duce various strategies for constructing metaheuristics 
to generate the worst-case instance. 

Differently from the fore-mentioned studies, in this 
paper, we introduce various strategies to construct ge-
netic algorithms (GAs) [4]1 in generating the worst- 
case (problem) instance which is defined in the aspect 
of algorithm performance. For this, we try to find the 
worst-case instance of three example problems for 
some algorithms; the (internal) sorting problem, the 0/1 
knapsack problem (0/1KP), and the travelling sales-
person problem (TSP). These are well-known problems 
and each can show different strategy to construct a GA. 
Since we tried not to use the problem-specific knowl-
edge in the construction, our suggested GAs can be 
extended to generate the instances of other similar 
problems. For the sorting problem, we take as test al-
gorithm not only shell sort but also many well-known 

1For the sorting problem and the 0/1 knapsack problem, strictly speak-
ing, we use memetic algorithms [5], which are GAs combined with 
local search. But we mainly focus on the GA rather than local search 
algorithm. Without classification, we just call our searching algorithm 
GA, in this paper. 

*The present Research has been conducted by the Research Grant of 
Kwangwoon University in 2010. 
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sorting algorithms; quick sort, heap sort, merge sort, 
insertion sort, and advanced quick sort. For the 0/1KP 
and the TSP, we test the algorithm based on a greedy 
approach, comparing to the known-optimal algorithms 
which are based on the dynamic programming. 

The remaining part of this paper is organized in the 
following. In Section 2, we introduce GAs and the 
three adopted problems with their popular algorithms. 
Also we define the worst-case instance for each prob-
lem, in terms of non-functional testing. In Section 3, 
we present our GAs for finding the worst-case instance. 
In Section 4, we explain our experiment plan and the 
results. We make conclusions in Section 5. 

2. Search Technique and Three Problems 
with Algorithms 

2.1 Search Technique: Genetic Algorithms 

The genetic algorithm (GA) [4] is a non-deterministic 
algorithm. A non-deterministic algorithm makes guesses, 
which may or may not be the answer of the problem the 
algorithm wants to solve. So, it consists of two phases; 
the guess phase and the evaluation phase. In the guess 
phase, guesses are made. In the evaluation phase, those 
guesses are evaluated by how close they are to the right 
answer. For evaluating guesses, the objective function is 
defined. This function takes a guess and returns the nu-
merical value which indicates how close the guess is to 
the right answer. In other words, a deterministic algo-
rithm searches for an object which maximizing the given 
objective function. 

How does GA make a guess? By the principle of evo-
lution. GA manages multiple guesses or individuals. We 
call the set of individual population. A new individual 
can be constructed by two operations; crossover and mu-
tation. The crossover takes two individuals and returns 
one new individual. This new one is made by assembling 
each pattern of the two individuals. The mutation takes 
one individual and returns the individual which has 
slightly changed pattern from the taken individual. A 
pattern is found in the representation of the individual. 
Thus, the way an individual is represented is closely re-
lated to the way of making individuals. GA substitutes 
new individuals for some part of the population; this op-
eration is called replacement.  

How do we select individuals (in the population) for 
the crossover and the mutation as the input? Which indi-
viduals should we replace? By the qualities and the fit-
nesses [4] of the individuals. These are evaluated in the 
evaluation phase. The quality of an individual is the re-
turn value of the objective function. The fitness of an 
individual is evaluated using some part of the population 
or the entire population, as well as the individual to be 
evaluated. The fitnesses (not qualities) of the individuals 
are directly used to selection; fitness evaluation strategies 

are designed to increase the chances that some individu-
als with low qualities are selected. Note that using only 
qualities for selecting individuals can lose the diversity 
of the population and narrow the search range of GAs. 
Using the above operations, GA evolves the population 
until given stop condition is satisfied.  

On the other hand, a local search algorithm can be 
combined with a GA. Given an individual, the local 
search tries to find out the individual with the best qual-
ity near the given individual. A GA combined with local 
search algorithms is called a memetic algorithm (MA) 
[5].  

Since we want to generate the worst-case instance, 
each individual is a problem instance. Also, we should 
define the objective function so that this function returns 
the value indicating how close given individual is to the 
worst case. Thus the definition of the function depends 
on our definition of the worst case. Also, the way an in-
stance is represented and strategies of crossover, muta-
tion, replacement, fitness evaluation, and stop condition 
should be defined.  

2.2 Sorting Problem 

In the sorting problem, we are given an array of elements 
and their comparison operator. The correct solution of 
this problem is a sorted array in ascending (or descending) 
order. For the sorting problem, we assume that the com-
parison between elements takes so long time that it con-
trols the total execution time. An instance of the problem 
is an array of elements to be sorted where the size of the 
array is fixed. Let the worst-case instance (array) be the 
instance that needs the most element-comparisons to sort. 
In this paper, we will test the following well-known 
sorting algorithms: quick sort, merge sort, heap sort, in-
sertion sort, shell sort, and advanced quick sort.  

Quick sort and merge sort [6] use the divide-and- 
conquer strategy. In the quick sort, a pivot element [6] is 
typically taken as the first element in the array to be di-
vided into two partitions; we use the same method in the 
tested our quick sort. Heap sort [6] mainly uses a data 
structure called heap [6]. Insertion sort [6] inserts each 
element of the array into the already-sorted part of the 
array one by one. Shell sort [7] uses insertion sort re-
peatedly using sequence of increments [8]. In tested shell 
sort, we use the sequence as the reverse order of {hn}, 
where n ≥ 0 and hn+1 = 3 × hn + 1 with h0 = 1, where the 
sequence is bounded above the size of sorted array. To 
improve the quick sort, the advanced quick sort [6] takes 
as a pivot element the median element of three elements 
which are randomly chosen from the array to be divided 
into partitions. 

2.3 Zero/One Knapsack Problem 

Let itemi be an ordered pair vi , wi where vi is its value 
and wi is its weight. For a given set S = {item1, item2, …, 
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itemn}, we want to put items in S into the knapsack where 
the maximum capacity W is given as cw × ∑wi where i=1, 
2, ..., n. Here cw  (0, 1) is called the weight coefficient. 
The optimal solution of the problem is the subset A of S 
such that ∑ vi (itemi  A) is maximized and ∑ wi  W 
(itemi  A), where ∑ vi (itemi  A) is called the objective 
value. 

An algorithm based on the greedy approach [9] for this 
problem orders items in non-increasing order according 
to the ‘value per unit weight’ or profit density. Then, it 
tries to put the items in sequence satisfying that the total 
weight of the knapsack does not exceed W. 

We will test the above algorithm in terms of the objec-
tive value. An instance of this problem is the set S where 
the size of S and cw is fixed. Let the worst-case instance 
be the instance maximizing (O−P)/O, where P is the ob-
jective value obtained by the above algorithm and O is 
the objective value obtained by an optimal algorithm 
based on dynamic programming [9]. 

2.4 Travelling Salesperson Problem 

A weighted, directed graph G(V, E) is given, where V = 
{1, 2, ..., n} is a set of cities. An edge e(i, j)  E 
weighted by cij represents that it costs cij to go from cityi 

to cityj. An example is given in Figure 1. The optimal 
solution for the TSP is the tour, which is a Hamiltonian 
circuit of G, that takes the lowest (optimal) total cost if 
the tour exists. For our test, we assume that there always 
exists at least one tour although the tour is too expensive. 
The graph G can be represented as an N × N adjacency 
matrix as in Figure 1.  

In a greedy approach we consider, we start from city1. 
To make a tour, we visit the adjacent city to which we 
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Figure 1. Two representations of an instance for TSP. 
NOTE. The cost to go from city1 to city2 is 2. This cost is the 
[1, 2]-th element of the matrix C. On the other hand, the 
cost to go from city2 to city1 is 1. This cost is the [2, 1]-th 
element of the matrix C 

can go from the current city at the lowest cost under the 
restraint that the city to go has not been visited before. 
Once the tour is constructed, 2-opt [10] improves this 
tour. Since the given graph is directed, two tours are de-
rived from a base tour at one move in 2-opt; one derived 
tour is the reverse order of the other derived tour.  

We will test an algorithm which uses the greedy ap-
proach with 2-opt in terms of the objective value (the 
tour cost). An instance of this problem is the graph G(V, 
E) where the size of V is fixed. So, let the worst-case 
instance be the instance maximizing (P−O)/O, where P is 
the objective value obtained by the above algorithm and 
O is the objective value obtained by an optimal algorithm 
based on dynamic programming [9]. 

3. Genetic Algorithms 

3.1 Framework and Things in Common 

There exist some trials to design somewhat different GAs 
[11-13] rather than just adopting traditional design. We 
also adopt a non-traditional framework of GAs. In our 
framework, the initialization of a population is done first. 
Then the following procedure is repeated until the stop 
condition we set is satisfied: 1) Fitness evaluation is done 
first. 2) Two parents are selected from the population. 3) 
One new individual is created by the crossover of the two 
parents. The other two new individuals are created by the 
local search from the mutation of each parent; one indi-
vidual from one parent and another from the other parent. 
Steps 2) and 3) are repeated until sufficiently many new 
individuals are created. 4) Some individuals are replaced 
from the population with the new individuals. 

The strategy of the population initialization, fitness 
evaluation, selection, replacement, and stop condition are 
fixed in our GAs. The strategies of other operations are 
different for each problem; these strategies will be intro-
duced in the next sections. The initialization of the popu-
lation is based on random generation. For the fitness 
evaluation, we used one based on population sharing [4]. 
The formula is as follows:  

Fi = fi / ∑ j{1,2, ..., n} s(dij),            (1) 

where  
 Fi is the fitness of the i-th individual, 
 fi is given as (Ci − Cmin) + (Cmax − Cmin) / (k − 1), 
 Ci is the quality of the i-th individual,  
 Cmin is the minimum quality among individuals, 
 Cmax is the maximum quality among individuals, 
 k (k >1) is a selective pressure, 
 n is the population size, 
 s(dij) is given as 1−(dij/) ,  
 dij is the distance between the i-th individual and the 

j-th one, and 
  is the longest distance among all dij's.  
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Note that our definition of the distance is slightly dif-
ferent for each problem but is based on the Manhattan 
distance. By examining the formula, we can see that the 
fitness evaluation strategy helps to select the individuals 
far from other individuals of the population and thus 
keep the diversity of the population. 

For the selection, we use fitness-proportionate selec-
tion using roulette wheel [4]. In the replacement, indi-
viduals with low qualities are replaced with new indi-
viduals regardless of the qualities of new ones. The stop 
condition is satisfied if the population reaches the given 
maximum number of generations, or all the individuals 
of the population become 'the same'. Strictly speaking, 
'the same' means that the distance between every pair of 
individuals is zero. We take the individual with the high-
est quality among individuals in the final population. 
Then we say that the GA found the individual. In this 
paper, individuals are (problem) instances for a test algo-
rithm. 

3.2 Sorting Problem 

We restrict that an instance of the sorting problem is a 
permutation of N integers from 1 to N, where N is fixed 
for every individual in a GA. A permutation is repre-
sented as an array. The sorting algorithms we deal with 
are to sort the given permutation in ascending order (i.e., 
1, 2, 3, ..., N). For given sorting algorithm, the quality of 
an individual is the number of comparisons between 
elements needed to sort using the algorithm. Note that 
tested advanced quick sort uses pseudorandom-number 
generation and thus we repeat sorting the same permuta-
tion to take as the quality the average among the numbers 
of comparisons obtained by 50 repetitions. The distance 
between permutations A and B is defined as the sum of 
absolute differences between the numbers located in the 
same index of A and B.  

As the crossover of the permutation encoding, we use 
PMX [14]2, which is popular. In our mutation of a per-
mutation, say A, we decide a number at each index in A 
to be swapped with another number at a randomly chosen 
index. Whether or not to swap is according to given 
probability, say pm. For the local search from a permuta-
tion, we consider each pair of numbers in the permuta-
tion. We try to swap them and test that the new permuta-
tion has better a quality than the original one. If it is true, 
then the new one is substituted for the original one. Oth-
erwise, we try to swap other pairs until the local search 
reaches the given maximum count of improvements. 

3.3 Zero/One Knapsack Problem 

An instance of the 0/1KP is a list of N items. Here N is 
fixed for every individual in the population. We represent 

the list as an array. Note that an item is an ordered pair 
with value as its first coordinate and weight as its second 
coordinate; we represent an item as a two-dimensional 
point. We restrict the value and the weight are integers in 
[1, 100]. The quality of an individual is (O−P)/O, where 
P is the objective value obtained by the test algorithm 
and O is the objective value obtained by an optimal algo-
rithm; the more details are described in Subsection 2.3. 
To get the distance between two individuals (or lists), we 
first arrange items of each list in order of their profit 
densities. This is for normalization [15]. Then we obtain 
the distance as the sum of the absolute differences be-
tween the profit densities of items at the same position in 
the two lists. 

In the crossover of two individuals (or lists), we also 
rearrange items of each list as in the calculation of dis-
tance. We derive each item in the offspring from the 
items at the same position in both parents. The illustra-
tion of deriving the item is shown in Figure 2(a). In the  
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Figure 2. Crossover and Mutation in GAs for 0/1KP. (a) 
Crossover; (b) Mutation. NOTE. An item here is regarded 
as a two-dimensional coordinates. Part (a) is an illustration 
of deriving itemi in offspring in crossover. Two itemi's in 

1
 and 

1
 make the area where itemi in offspring 

can be randomly chosen. Part (b) is an illustration of setting 
itemi in 

1
li  to be a new one in mutation. The square, 

whose center is itemi of , indicates the area where itemi 

can be randomly chosen 

plist plist

pst

1p
list2Strictly speaking, we use the PMX introduced in the following URL: 

http://www.rubicite.com/Genetic /tutorial/crossover5.php. 
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mutation from an individual, the probability of changing 
each item in the individual to be new one is pm. Once an 
item is determined to be changed, we determine the area 
of the square where the point indicating a new item can 
be located. The center of the square is the point indicat-
ing the original item. The edge length of the square is 
determined using the following probability weight func-
tion of wing size or (edge length)/2: y = a × (x − x1) + y1, 
where a < 0 , y is the probability weight of choosing x as 
a wing size, y1 is the probability weight of choosing x1, 
and x1 is the maximum wing size. We set y1 to be 1 and 
set x1 to be floor((UB−LB)/2), with UB = 100 and LB = 1. 
For a given wing size, the illustration of the changing an 
item to be a new one is shown in Figure 2(b). 

In the local search from an individual (or a list), we try 
to slightly move each item in the list and test that the new 
list has a better quality than old one. If it is true, then the 
new one is substituted for the original one. Otherwise, we 
try to move the next item in the list. The way of slightly 
moving the item (v, w) is as follows: moving to (v+1, w), 
(v−1, w), (v, w+1), (v, w−1), (v+1, w+1), (v−1, w−1), 
(v+1, w−1), or (v−1, w+1), excluding one out of the 
boundary of [1, 100]; we take the best way among all the 
possible ways. 

3.4 Travelling Salesperson Problem 

Every instance of the TSP is represented as an N × N 
adjacency matrix. The N, which is the number of cities, is 
fixed for every individual in the population. The (i, j) 
element of the matrix is the cost to go from cityi to cityj. 
We restrict that every element of the matrix is an integer 
in [1, 100]. The TSP does not limit the values to be inte-
gers. But the bounds reduce the time for finding the 
worst case, which is still helpful. We will try to find the 
worst-case instance for two different versions of the 
problem. In one version, the input instance G is always 
represented as a symmetric matrix. In the other version, 
G may be represented as an asymmetric matrix. The dis-
tance between two individuals is the sum of absolute 
differences between (i, j) elements of two matrices. The 
quality of an individual is (P−O)/O, where P and O are 
described in Subsection 2.4.  

For the crossover of two matrices, we use geographic 
crossover [16-18]. The geographic crossover can gener-
ate sufficiently diverse offspring with moderate difficulty 
in implementing. For the mutation from an individual (or 
a matrix), our approach is to move each (i, j) element of 
the matrix with given probability pm. We regard an ele-
ment as a point on the number line. If an element is 
decided to be moved, the element can be moved ran-
domly within the interval whose center is the original 
element. The interval size is decided by the probability 
weight function of the size. The function is quite similar 
to one in the 0/1KP. The small size is taken more often 
than the big one. If we take large interval and the ele-

ment moves out of [1, 100], we adjust the location to 
the closest boundary of the interval. We do not use the 
local search here. 

4. Experimental Results 

Using the framework and the strategies explained in Sec-
tion 3, we tried to find the worst-case instances of test 
algorithms. We used the computer of which CPU model 
is Intel Core2 Duo T8100 @ 2.10 GHz. In Table 1, we 
show the parameters in common for every GA. The us-
age of the mutation probability (pm) in Table 1 is de-
scribed in Subsections 3.2, 3.3, and 3.4 respectively for 
the three test problems. Table 2 shows parameters in 
common for every random testing [1]. We ran the same 
GA fifty times to check whether our GAs are stochasti-
cally reliable. We say that two GAs are the same if and 
only if they are for the same problem and they belong to 
the same classification; we propose the classification in 
Tables 3-5, respectively for each problem. The weight 
coefficient in Table 4 is described in Subsection 2.3. The 
probability weight function of wing size in the same table 
is described in Subsection 3.3. The probability weight 
function in Table 5 is similar to one in Table 4. This 
function is referred to in Subsection 3.4.  

 
Table 1. Parameters in common for every GA 

Maximum number of generations 1,000 

Selective pressure 3 

# of individuals to be replaced for the next generation 30 

Population size 100 

Mutation probability pm 0.15 

# of independent runs of GA 50 

 
Table 2. Parameters in common for every random testing 

# of instances randomly generated 30,000 

# of independent runs of the random testing 50 

 
Table 3. Classification and parameters of GAs for algo-
rithms solving sorting problem 
 

Size of permutations: 
10, 20, 30, or 40 
(For advanced quick sort, we tested 
only on size 10 and 20.) 

Classification basis 
Sorting algorithm: 
quick sort, merge sort, heap sort, in-
sertion sort, shell sort, or advanced 
quick sort 

Elements of permutation {1,2, ..., N} 

Limitation of improvement 
counts in local search 

The smallest integer bigger than or 
equal to N×0.25+  1k

nC 

( denotes the combination.) k
nC
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Table 4. Classification and parameters of GAs for algo-
rithms solving 0/1KP 

# of given items: 10, 20, or 
30 

Classification basis 
Weight coefficient cw: 
0.25, 0.5, or 0.75 

Range of value and weight of items Integers in [1, 100] 

Tangent slope of probability function 
of wing size. 

−1 (wing size is an integer 
from 1 to 50) 

 
Table 5. Classification and parameters of GAs for algo-
rithms solving TSP 
 

# of cities: 5 or 10 

Classification basis Kind of instances: symmetric 
matrix or general matrix 

Range of weighted cost Integers in [1, 100] 

Tangent slope of probability 
function of interval size in 
mutation. 

−1 (interval size is an integer 
from 1 to 50) 

# of cutting lines in a crossover 0.5× (# of cities) 
NOTE. The crossover here is geographic crossover, which uses 
cutting lines.  

 
After the run of a GA, we find one instance that shows 

the maximum quality in the final population; this in-
stance is the closest to the worst case which we defined. 
Among those maximum qualities which are found by 
repeating the same GA fifty times, we get the average 
and the standard deviation. These values are in Figure 3, 
Figure 4, and Figure 5 respectively for each problem. 
Those figures are represented by the histogram with error 
bars; the length of error bar is 2 times the corresponding 
standard deviation. Some error bars in the figures are not 
identified because the corresponding standard deviation 
is close to 0. Note that in the figures, ‘Avg’ means the 
average, ‘Std’ means the standard deviation, ‘Random’ 
means the random testing method. In Figure 3, ‘Ascend’ 
means the permutation in ascending order (i.e., 1, 2, 3, 
4, ..., N) and ‘Descend’ means the permutation in de-
scending order (i.e., N, N−1, ..., 4, 3, 2, 1). In Figure 5, 
‘symmetric TSP’ means the TSP which does not allow 
any problem instance with an asymmetric matrix repre-
sentation whereas ‘general TSP’ means the TSP which 
allows such problem instances. The CPU seconds taken 
by a run of the GA for each classification are given in 
Table 6, Table 7, and Table 8, respectively for each 
problem. 

For test sorting algorithms, the quality of an individual 
(a permutation) was defined as the number of compari-
sons between elements when the permutation is sorted 
using the algorithm. In Figure 3, the worst cases of our 
quick sort, insertion sort, and advance quick sort takes 
more element comparisons than those of other test sort-
ing algorithms. But seeing the result when the sorting  
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Figure 3. Quality of the worst-case instances (sorting 
problem). (a) Size of Permutation: 10; (b) Size of 
Permutation: 20; (c) Size of Permutation: 30; (d) Size of 
Permutation: 40. NOTE. The definition of the quality of an 
instance is given in Subsection 3.2 
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Figure 4. Quality of the worst-case instances (0/1KP). (a) The 
number of given items: 10; (b) The number of given items: 20; 
(c) The number of given items: 30. NOTE. The definition of 
the quality of an instance is given in Subsection 3.3 
 
Table 6. CPU seconds taken by a GA for each classification 
(sorting problem) 
 

Sorting algorithm / Size 
of permutations 10 20 30 40 

Quick 16 75 214 456 

Merge 20 122 415 1,059

Heap 19 123 414 1,093

Insertion 19 134 496 1,359

Shell 17 85 282 729 

Advanced Quick 1,352 12,502 N/A N/A 
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Figure 5. Quality of the worst-case instances (TSP). (a) The 
symmetric TSP; (b) The general TSP. NOTE. The defi- 
nition of the quality of an instance is given in Subsection 3.4 
 
Table 7. CPU seconds taken by a GA for each classification 
(0/1KP) 

Weight coefficient / # of 
given items 

10 20 30 

0.25 70 607 2,415 

0.5 75 904 5,520 

0.75 105 1,927 6,000 

 
Table 8. CPU seconds taken by a GA for each classification 
(TSP) 

# of cities / 
Kind of instances 

Symmetric  
matrix 

General  
matrix 

5 18 18 
10 472 470 

 
permutation’s size is 10 to 20, we can predict that as the 
permutation size grows, the worst-case of our advanced 
quick sort takes fewer comparisons than that of our quick 
sort and insertion sort. On the other hand, the worst cases 
of merge sort, heap sort, and shell sort takes fewer com-
parisons than those of other algorithms.  

For our test algorithm solving the 0/1KP (i.e., the al-
gorithm based on a greedy approach which we explained 
in Subsection 2.3), the quality of an individual is 
(O−P)/O, where P is the objective value obtained by the 
test algorithm and O is the objective value obtained by an 
optimal algorithm. Regardless of the number of items  

Copyright © 2010 SciRes.                                                                                 JSEA 



A Genetic Approach to Analyze Algorithm Performance Based on the Worst-Case Instances 774 

(i.e., the magnitude of the searching space), the upper 
bound of the qualities is 1. We can see the result in Fig-
ure 4. For the same number of items, the higher the 
weight coefficient is, the lower the average quality of the 
worst cases found by our GA was. For the same coeffi-
cient, the more the given number of items is, the lower 
the average quality of the worst cases found by our GA 
was. When 10 items are given, the average quality of the 
worst cases was generally more than 0.7; our test algo-
rithm is possibly not good enough in terms of optimality. 

For our test algorithm solving the TSP (i.e., the algo-
rithm based on a greedy approach with 2-opt which we 
explained in Subsection 2.4), the quality of an individual 
is (P−O)/O, the meaning of O and P is similar to those in 
the 0/1KP. By examining the formula of the quality, we 
can assume that the upper bound of the qualities does not 
exist. In Figure 5, on the same number of cities, the av-
erage quality of the worst case in the symmetric TSP was 
lower than that of the worst case in the asymmetric TSP. 
The average quality of the worst case found by our GA in 
the symmetric TSP was about 14 when 10 cities are 
given, whereas one found in the asymmetric TSP was 
about 35 on the same condition; our test algorithm is 
generally not good enough in terms of optimality.  

Overall, the results found by GAs were superior to 
those obtained by the random testing; we can conclude 
that our GAs have some effectiveness. 

5. Conclusions  

There are few trials to find the worst case for testing al-
gorithms by GAs and the existing trials do not introduce 
various strategies for constructing GAs. Therefore, by 
taking as test examples the internal sorting problem, the 
0/1KP, and the TSP with some algorithms for each, we 
gave guidelines to the use of the GA in generating the 
worst-case instance for an algorithm. First, we defined 
the objective function of our GAs for the purpose of the 
analysis. In this paper, the objective function returns the 
quality of a problem instance; this quality indicates how-
close the instance is to the worst case. Next, we intro-
duced the framework of GAs and the specific strategies 
for each test problem.  

For the sorting problem, we adopted as test algorithm 
quick sort, merge sort, heap sort, insertion sort, shell sort, 
and advanced quick sort. We defined the worst-case in-
stance for a sorting algorithm as the instance that takes 
the most number of the element comparisons in using the 
algorithm. A problem instance can be represented as a 
permutation. We here used the PMX for the crossover. 
The mutation here swaps arbitrary elements in the per-
mutation.  

For the 0/1KP and the TSP, we tested the algorithm 
based on a greedy approach, comparing to an optimal 
algorithm. We defined the worst-case instance as the 
instance at which the test algorithm shows the most dif-

ferent objective value from that obtained by the optimal 
algorithm. In the case of the 0/1KP, a problem instance 
can be represented as the list of two-dimensional point 
whose coordinates are integers. Our suggested crossover 
is based on the idea of uniform crossover, but extended 
to two-dimensional version. The mutation runs point by 
point; each point in the list is moved to another close 
point with a high probability or to another far point with 
a low probability. In the case of the TSP, we represent a 
problem instance as a square matrix. We used the geo-
graphic crossover for the representation. The mutation 
runs element by element in the given matrix. Although 
the element here is just a scalar (not the two-dimensional 
point), the idea of mutation is similar to that of mutation 
for the 0/1KP. 

For the test algorithms, our GAs has some effective-
ness as the experimental results are superior to those ob-
tained by the random testing. The results of finding the 
worst cases show the following: 1) At the worst case, 
merge sort, heap sort, and shell sort takes fewer com-
parisons than other sorting algorithm. 2) Our greedy ap-
proach is not good enough in terms of optimality.  

Our guidelines can help to analyze algorithms and can 
be used to test software. Since our guidelines are just for 
using GAs, we suggest giving guidelines for using other 
metaheuristics to generate the worst cases. Also note that 
many essential parts are still remained to analyze the 
algorithms. For future work, we suggest finding some 
weak points of a test algorithm and improve the algo-
rithm by analyzing the worst-case instance. 
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