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ABSTRACT 

Adaptive noise data filtering in real-time requires dedicated hardware to meet demanding time requirements. Both DSP 
processors and FPGAs were studied with respect to their performance in power consumption, hardware architecture, 
and speed for real time applications. For testing purposes, real time adaptive noise filters have been implemented and 
simulated on two different platforms, Motorola DSP56303 EVM and Xilinx Spartan III boards. This study has shown 
that in high speed applications, FPGAs are advantageous over DSPs with respect of their speed and noise reduction 
because of their parallel architecture. FPGAs can handle more processes at the same time when compared to DSPs, 
while the later can only handle a limited number of parallel instructions at a time. The speed in both processors impacts 
the noise reduction in real time. As the DSP core gets slower, the noise removal in real time gets harder to achieve. 
With respect to power, DSPs are advantageous over FPGAs. FPGAs have reconfigurable gate structure which con-
sumes more power. In case of DSPs, the hardware has been already configured, which requires less power consump-
tion? FPGAs are built for general purposes, and their silicon area in the core is bigger than that of DSPs. This is an-
other factor that affects power consumption. As a result, in high frequency applications, FPGAs are advantageous as 
compared to DSPs. In low frequency applications, DSPs and FPGAs both satisfy the requirements for noise cancelling.  
For low frequency applications, DSPs are advantageous in their power consumption and applications for the battery 
power devices. Software utilizing Matlab, VHDL code run on Xilinix system, and assembly running on Motorola devel-
opment systems, have been used for the demonstration of this study. 
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1. Introduction 

The performance of real-time data processing is often 
limited to the processing capability of the system. 
Therefore, evaluation of different digital signal process-
ing platforms to determine the most efficient platform is 
an important task. There have been many discussions 
regarding the preference of Digital Signal processors 
(DSPs) or Field Programmable Gate Arrays (FPGA) in 
real time noise cancellation. The purpose of this work is 
to study features of DSPs and FPGAs with respect to 
their power consumption, speed, architecture and cost. 
DSP is found in a wide variety of applications, such as 
filtering, speech recognition, image enhancement and 
data compression, neural networks, as well as analog 
linear-phase filters. Signals from the real world received 
in analog form, then discretely sampled for a digital com- 

puter to understand and manipulate. There are many ad-
vantages of hardware that can be reconfigured with dif-
ferent programming. Reconfigurable hardware devices 
offer both the flexibility of computer software, and the 
ability to construct custom high performance computing 
circuits. In space applications, it may be necessary to 
install new functionality into a system, which may have 
been unforeseen. For example, satellite applications need 
to adjust to changing operation requirements. With a re-
configurable chip, functionality that is not normally pre-
dicted at the outset can be uploaded to the satellite when 
needed. To test the adaptive noise cancelling, the least 
mean square (LMS) approach has been used. Besides the 
standard LMS algorithm, the modified algorithms that 
are proposed by Stefano [1] and by Das [2] have been 
implemented for the noise cancellation approach, giving 
the opportunity of comparing both platforms with respect 
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to their speed, noise, architecture, cost, and power. 

2. Adaptive Filter Design on Motorola 
DSP56300 

Adaptive filters have the ability to adjust their own pa-
rameters and coefficients automatically. Hence, their 
design requires little or no prior knowledge of the input 
signal or noise characteristics of the system. Adaptive 
filters have two inputs, x(n) and d(n), which are usually 
correlated in some manner. Figure 1 gives the basic con-
cept of the adaptive filter. 

The filter’s output y(n), which is computed with the 
parameter estimates, is compared with the input signal 
d(n). The resulting prediction error e(n) is fed back 
through a parameter adaption algorithm that produces a 
new estimate for the parameters and as the next input 
sample is received, a new prediction error can be gener-
ated. The adaptive filter features minimum prediction 
error. Two aspects of the adaptive filter are its internal 
structure and adaptation algorithm. Its internal structure 
can be either that of a nonrecursive (FIR) filter or that of 
a recursive (IIR) filter. An adaptation algorithm can be 
divided into two major classes; gradient algorithms and 
nongradient algorithms. A gradient algorithm is used to 
adjust the parameters of the FIR filter. The least mean 
square (LMS) algorithm is the most widely applied gra-
dient algorithm. This adjusts the filter’s parameters to 
minimize the mean-square error between the filter’s out-
put y(n) and the desired response input d(n) [3]. When an 
adaptive filter is implemented on the DSP56300 proc-
esser, address pointer to mimic FIFO (First-In-First- 
Out)-like shifting of the RAM data, modulo addressing 
capability to provide wrap around data buffers, multi-
ply/accumulate (MAC) instruction top both multiply two 
operands and add the product to a third operand in a sin-
gle instruction cycle, data move in parallel with the MAC 
instructions to keep the multiplier running at 100% ca-
pacity and Repeat Next Instruction (REP) to provide 
compact filter code are being used by the processor. The 
processor’s capability to perform modulo addressing 
allows an address register (Rn) value to be incremented 
(or decremented) and yet remain within an address range 
of size L, where L is defined by a lower and an upper  
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Figure 1. Basic concep  the adaptive filter 

address is the 

t of

 boundary. For the adaptive FIR filter, L 
number of coefficients (taps). The value L-1 is stored in 
the processor’s Modifier Register (Mn). The upper ad-
dress boundary is calculated by the processor and is not 
stored in a register. When modulo addressing is used, the 
Address Register (Rn) points to a modulo data buffer 
located in X-Memory and/or Y-Memory. The address 
pointer (Rn) is not required to point at the lower address 
boundary; it can point anywhere within the defined 
modulo address range L. If the address pointer incre-
ments past the upper address boundary (base address plus 
L-1 plus 1), it will wrap around to the base address. 
Modulo Register M1 is programmed to the value 
NTAPS-1 (modulo NTAPS). Address Register R1 is 
programmed to point to the state variable modulo buffer 
located in X-Memory. Modulo Register M4 is pro-
grammed to the value NTAPS-1. Address Register R4 is 
programmed to point to the coefficient buffer located in 
Y-Memory. Given that the FIR filter algorithm has been 
executing for some time and is ready to process the input 
sample x(n) in the Data ALU input Register X0, the ad-
dress in R4 is the base address (lower boundary) of the 
coefficient buffer. The address in R1 is M, where M is 
greater than or equal to the lower boundary of X-Memory 
address and less than or equal to the upper boundary of 
X-Memory address. The X-Memory map for the filter 
states, the Y-Memory map for the coefficients, and the 
contents of the processor’s A and B Accumulators and 
Data ALU Input Registers X0, X1, Y0 and Y1 are shown 
in the Figure 2. The CLR instruction clears the A-Accu- 

 
Figure 2. Memory map and data registers after last MAC 
instruction 
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tim

Y1 and the error sample e(n) to the Data 
In

mulator and simultaneously moves the input sample x(n) 
from the Data ALU’s Input Register X0 to the 
X-Memory location pointed to by address register R1, 
and moves the first coefficient from the Y-Memory loca-
tion pointed to by address register R4 to the Data ALU’s 
Input Register Y0. Both Address Registers R1 and R4 
are automatically incremented by one at the end of the 
CLR instruction (post-incremented). The REP instruction 
regulates execution of NTAPS-1 iteration of the MAC 
instruction. The MAC instruction multiplies the filter 
state variable X0 by the coefficient in Y0, adds the 
product to the A-Accumulator and simultaneously moves 
the next state variable from the X-Memory location 
pointed to by the Address Register R1 to the Input Reg-
ister X0, and moves the next coefficient from the 
Y-Memory location pointed to by Address Register R4 to 
Input Register Y0. Both Address Registers R1 and R4 
are automatically incremented by one at the end of the 
MAC instruction (post-incremented). 

During the execution of the filter algorithm, Address 
Register R4 is post incremented to a total of NTAPS 

es; once in conjunction with the CLR instruction and 
NTAPS-1 times (due to the REP instruction) in conjunc-
tion with the MAC instruction. Since the modulus for R4 
is NTAPS and R4 is incremented NTAPS times, the ad-
dress value in R4 wraps around and points to the coeffi-
cient buffer’s lower boundary location [3]. Also Address 
Register R1 is post incremented to a total NTAPS times; 
once in conjunction with the CLR instruction and 
NTAPS-1 times (due to the REP instruction) in conjunc-
tion with the MAC instruction. Also at the beginning of 
the algorithm, the input sample x(n) is moved from the 
Data ALU Input Register X0 to the X-Memory location 
pointed to by R1. Since the modulus for R1 is NTAPS 
and R1is incremented NTAPS times, the address value in 
R1 wraps around and points to the state variable buffer’s 
X-Memory location M. The MACR instruction calculates 
the final tap of the filter algorithm and performs conver-
gent rounding of the result. The data move portion of this 
instruction loads the input sample x(n) into the B-Ac-
cumulator. At the end of the MACR instruction, the ac-
cumulator contains the filter output sample y(n) as shown 
in Figure 3. 

The two Move instructions transfers the loop gain K to 
the data register 

put Register X1. The first MOVE instruction in the “do 
loop” transfers the parameter bi(n) to the A-Accumulator 
and the filter state x(n-i) to the Data Input Register X0. 
Address Register R1 is incremented by one to point to 
the next filter state. The MAC instruction multiplies the 
filter state, in X0, by the product of the loop gain and the 
error sample, in Y1, and adds the product to the A-Ac-
cumulator. The result in the A-Accumulator is the up-
dated parameter bi(n+1). The second Move instruction in 
the “do loop” transfers the parameter bi(n+1) to the 

Y-Memory location pointed to by the Address Register 
R4. R4 is incremented by one to point to the next filter 
parameter as shown in Figure 4. The LUA instruction 
decrements R1 by one, and R1 then points to the state 
variable buffer’s X-Memory location M-1. When the 
algorithm is executed, a new (next) input sample x(n+1) 
will overwrite the value in X-Memory location M-1. 
Thus FIFO-like shifting of the filter state variables is 
accomplished by adjusting the R1 address pointer as 
shown in Figure 5. 
 

 
Figure 3. Memory map and data registers after MACR 
instruction 
 

 
Figure 4. Memory map and data registers after last pass of 
do loop 
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Figure 5. Memory map and data registers after LUA in-
struction 
 

Consider the problem of finding the linear minimum 
mean square estimate (LMMSE) of a zero-mean signal 
vector, S, from a noisy zero-mean data vector, X = S + N, 
where N denotes the additive noise vector. A LMMSE of 
S is given in Equation (1), where A denotes a matrix of 
filter coefficients as given in Equation (2). 

                        

Here, CSS and Cnn denote the covariance matrices of sig-
nal and noise, respectively. Notice that if X has a 
non-zero mean vector, μ, Equation e becomes: 

For point-wise processing of a non-stationary signal of a 
local mean, µS, and local variance, σS

2, and the noise to 
be zero-mean, white with a local variance, σn

2, the 
point-wise LMMSE will be given by:  

XAS   (1) 

  XCCCS nnSSSS
1                 (2) 
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σn

2 is constant, while σS
2 and μS vary with the time index, 

k. Thus the filtered estimate at time, k can be written as: 
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where μ (k) and σ 2(k) d
 

S S

of local mean and local variance
ad

 filtering. 
Lee’s adaptive wiener filter suffers from 

oising perform-
ance of the filter is improved by introducing a non-rec-
tangular window to process weighted dat
second, a scheme for online estimation of noise power is

 
observed data consists of predominantly low-frequency 
signal components and additive white noise, the
can be modeled as a sum of the spectral density of the

enote the time varying estimates 

 of S(k). An improved 
 version of Lee’s aptive wiener filter has been proposed

by Das [4]. The main contributions of this algorithm in-
clude a better technique for estimation of noise variance, 
and incorporation of a data window for adaptive

two major 
 drawbacks. First, it requires prior knowledge of noise

power and second, its performance deteriorates when the 
signal-to-noise ratio (SNR) is low and noise power is 
imprecisely known. The improved wiener filter incorpo-
rates two modifications. First, the de-n

a samples and 
 

incorporated which is based on analyzing the power 
spectral density, S(ω), of the data. Assuming that the

n S(ω) 
 

signal and a constant, σn
2, which represents the variance 

of noise. The estimated σn
2 is the average value of the 

high-frequency section of S(ω) [2]. The improved wiener 
filter can be done in a fashion similar to that of Lee’s 
wiener filter, but Equation (2) now takes the form S = 
AWX, where A denotes a matrix of filter coefficients, and 
W is a (diagonal) data weighting matrix. The LMMSE of 
S is now given by Equation (6), where XW = WX, and 
similarly, the point-wise LMMSE is given by  

  WnnSSSS XCCCS 1             (6) 

 SW
nS

S
S XS 


 











22

2

      (7)
 

3. FPGAs Adaptive Filter Design  

The efficient realization of complex algorithms on 
FPGAs requires a familiarity with their specific archi-
tectures. The modifications needed to implement an al-
gorithm on an FPGA and also the specific architectures 
for adaptive filtering and their advantages are given be-
low. 

3.1 FPGA Realization Issues 

FPGAs are ideally suited for the implementation of adap-
tive filters. However, there are several issues that need to 
be addressed. When performing software simulations of 
adaptive filters, calculations are normally carried out with 
floating point precision. Unfortunately, the resources re-
quired of an FPGA to perform floating point arithmetic 
are normally too large to be justified. A
the filter tap itself. Numerous techniques have been de-
vised to efficiently calculate the convolution
when the filter’s coefficients are fixed in advan

nother concern is 

 operation 
ce. For an 
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r time, these 

ugh computing floating point arithmetic in FPGA is 
d with the inclusion of 

 costly in terms of 

 deci-
 decimal places is ade-

for a given algorithm to 

s only four bits. For simple convolution, 
 then dividing the output 

adaptive filter whose coefficients change ove
methods will not work or need to be modified signifi-
cantly [5]. The reconfigurable filter tap is the most im-
portant issue for high performance adaptive filter archi-
tecture, and as such it will be discussed at length.  

3.2 Finite Precision Effects 

Altho
possible, it is usually accomplishe
custom floating point units, which are
logic resources. Therefore, a small number of floating 
point units can be used in the entire design, and must be 
shared between processes. This does not take full advan-
tage of the parallelization that is possible with FPGAs 
and is therefore not the most efficient method. All calcu-
lation should therefore be mapped into fixed point only, 
but this can introduce some errors. The main errors in 
DSP include ADC quantization error, coefficient quanti-
zation error, overflow error caused impermissible word 
length, and round off error. The other three issues will be 
addressed later. 

3.2.1 Scale Factor Adjustment 
A suitable compromise for dealing with the loss of preci-
sion when transitioning from a floating point to a fixed- 
point representation is to keep a limited number of
mal digits. Normally, two to three
quate, but the number required 
converge must be found through experimentation. When 
performing software simulations of a digital filter for 
example, it is determined that two decimal places is suf-
ficient for accurate data processing. This can easily be 
obtained by multiplying the filter’s coefficients by 100 
and truncating to an integer value. Dividing the output by 
100 recovers the anticipated value. Since multiplying and 
dividing be powers of two can be done easily in hard-
ware by shifting bits, a power of two can be used to sim-
plify the process. In this case, one would multiply by 128, 
which would require seven extra bits in hardware. If it is 
determined that three decimal digits are needed, then ten 
extra bits would be needed in hardware, while one deci-
mal digit require
multiplying by a preset scale and
by the same scale has no effect on the calculation. For a 
more complex algorithm, there are several modifications 
that are required for this scheme to work [6]. The first 
change needed to maintain the original algorithm’s con-
sistency requires dividing by a scale constant any time 
and previously scaled values are multiplied together. 
Consider, for example, the values a and b and the scale 
constant s, the scaled integer values are represented by 

as   and bs  . To multiply theses values requires divid-
ing by s to correct for the s2 term that would be intro-
duced and recover the scaled product ba  . 

  abss
bsas                (8)

 

Likewise, division must be corrected with a subse-
quent multiplication. It should now be evident why a 
power of two is chosen for the scale constant, since mul-
tiplication and division by power of two results in simple 
bit shifting. Addition and subtraction require no addi-
tional adjustment. The aforementioned procedure must 
be applied with caution, however, and does not work in 
all circumstances. While it is perfectly legal to apply to 
the convolution operation of a filter, it may need to be 
tailored for certain aspects of a given algorithm. Consider 
the tap-weight adaptation equation for the LMS algo-
rithm in Equation (9).  

)()()(ˆ)1(ˆ nenunwnw        (9) 
where μ is the learning rate parameter; its purpose is to 
control the speed of the adaptation process. The LMS 

rithm i onvergent in the mean square provided in 
Equation (10). 
algo s c




MAX
 2

0                  (10)
 

where MAX  is the largest eigenvalue of the correla-
tion matrix Rx of the filter’s input. Typically this is a 
fraction value and its product with the error term has the 
effect of keeping the algorithm from diverging. If µ is 
blindly multiplied by some scale factor and truncated to a 
fixed-point integer, it will take on a value greater than 
one. The affect will be to make the LMS algorithm di-
verge, as its inclusion will now amplify the added error 
term. The heuristic adopted in this case is to divide by 
the inverse value, which will be greater than one. Simi-
larly, division by values smaller than one should be re-
placed by multiplication with its inverse. The outputs of
the algorithm will then 

 

 
need to be divided by th

obtain the true output. The following algorithm

Scale = accuracy rounded up to a power of two. 
Multiply all constants by scal

vide by

e scale to 
 describes 

the fixed point conversion: 
Determine Scale 
Through simulations, find the needed accuracy (# 

decimal places). 

e 
- Di  scale when two scaled values are multi-

plied. 
- Multiply by scale when two scaled values are di-

vided. 
Replace 
For multiplication by values less than 1 
- Replace with division by the reciprocal value. 
Likewise, for division by values less than 1 
Replace with multiplication by the reciprocal value. 

3.2.2 Training Algorithm Modification 
The training algorithms for the adaptive filter need some 
minor modifications in order to converge for a fixed- 
point implementation. Changes to the LMS weight up-
date equation were discussed in the previous section. 
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Specifically, the learning rate µ and all other constants 
should be multiplied by the scale factor. When µ is ad-
ju rm in Equation (11). With µ modifi-
ca

sted it takes the fo
tion weight update Equation (11) can be modified as in 

Equation (12). 

scale


̂     
1

               (11) 

̂
)()1( nwnw       (12)

 

)()( nenu 
ˆˆ 

t form FIR structure has a delay that is de-
te tree, which is 
de IR, on 
th nd one 
ad d-
va e-

idth. Figure 6 

R structure is shown in Figure 6 and the 
output y at any time n is given by Equation (13), where 
nodes B and C are described
respectively. 

Figure 7. Transposed form FIR structure 

The direc
rmined by the depth of the output adder 
pendent on the filter’s order. The transposed F

ier ae other hand, has a delay of only one multipl
der, regardless of the filter length. It is therefore a
ntageous to use the transposed form for FPGA impl

mentation to achieve maximum bandw
shows the direct and Figure 7 shows the transposed FIR 
structures for a three tap filter. The relevant nodes have 
been labeled A, B and C for a data flow analysis. Each 
filter has three coefficients, and are labeled h0[n], h1[n] 
and h2[n]. The coefficients’ subscript denotes the relevant 
filter tap, and the n subscript represents the time index, 
which is required since adaptive filters adjust their coef-
ficients at every time instance. 

The direct FI

 in Equations (14) and (15) 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Direct form FIR structure 
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Compared 

the [n-k] index of the coefficient indicates th
produce equivalent output only when the
don’t change with time. This means 
architecture is used, the LMS algorithm will not con
verge differently from the direct implementation i
[7]. The change needed was to account for the weights as 
shown in Equation (23). A suitable app
up

slower. Though simulations show that it nev
converges with as good results as the tr
algorithm. It may be acceptable still thou
increased bandwidth of the tran
high convergence rates are not re

fference in 
 at the filters

 coefficients 
if the transposed FIR 

-
s used 

roximation is to 
date the weights at every N input, where N is the 

length of the filter. This obviously will converge N times 
h0[n] 
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aditional LMS 
gh, due to the 

 sposed form FIR, when
quired. 
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3.3 Implementing Adaptive Noise Filter with 
FPGAs 

Adaptive noise filtering techniques are applied to low 
frequency like voice signals, and high frequency signals 
such as video streams, modulated data, and multiplexed 
data coming from an array of sensors. Unfortunately in 
all high frequency and high speed applications, a soft-
ware implementation of the adaptive noise filtering usu-
ally doesn’t meet the required processing speed, unless a 
high end DSP processor is used. A convenient solution 
can be represented by a dedicated hardware implementa-
tion using a Field Programmable Gate Array (FPGA). In 
this case the limiting factor is represented by a number of 

z-1 
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ultipliers. More-
over experimental data showed that the modified algo-
rithm achieves the same or even better performan
the standard LMS version. There are many possi

ost 
IR) 

digital filter, whose coefficients are iteratively updated 

multiplications required by the adaptive noise cancella-
tion algorithm. By using a novel modified version of the 
LMS algorithm, the proposed implementation allows the 
use of a reduced number of hardware m

ces than 
ble im-

plementations for an adaptive noise filter, but the m
widely used employs a Finite Impulse Response (F

using the LMS algorithm. The algorithm is described in 
Equations (24) to (26), leading to the evaluation of the 
FIR output, the error, and the weights update. 

i
T
ii WXY                    (24) 

iii YDe                   (25) 
iiii XeWW 21              (26) 

In the above equations, Xi is a vector containing the 
reference noise samples, Di is the primary input signal, 
Wi is the filter weights vector at the ith iteration, and ei is 
the error signal. The µ coefficient is often empirically 
chosen to optimize the learning rate of the LMS algo-
rithm. The hardware implementation of the algorithm in 
an FPGA device is not trivial, since the FIR filter has not 
constant coefficients, so multipliers cannot be synthe-
sized by using a look-up table (LUT) based approach. 
This however, should be straightforward in FPGA archi-
tecture. Multipliers with changing inputs instead need to 
be built by using a significantly greater number of inter-
nal logic resources (either elementary logic blocks or 
embedded multipliers). In an Nth order filter the algo-
rithm requires at least 2N multiplications and 2N addi-
tions. Note the factor 2µ that is usually chosen to be a 
power of two in order to be executed by shifting. This 
makes it impractical for fully parallel hardware imple-

he value of N grows. This mentation of the algorithm as t
is due to the huge number of m
der to reduce the complexity of 
weights update expression (Equation 
as

 

pability of the filter. To overcome 
this weakness, and significantly improve the
characteristics, a dynamic learning rate coefficient 

t an adaptive filter whose order can 
i-

ultipliers required. In or-
the algorithm, the 
(26)) is simplified 

 in Equation (27). 

  iiiiii WXeWW  sgn1      (27) 

As a consequence the weights are updated using a 
factor proportional to the error and the sign of the current 

reference noise sample, instead of its value. This implies 
that weights can be updated by using an addition (or sub-
traction) instead of a multiplication. This simplified al-
gorithm requires only N multiplications and 2N additions.
However the simplification of the weights update rule 
usually results in worse learning performances, i.e. in a 
slower adaptation ca

 learning 
α has 

been used. Generally this can be done by updating it with 
an adaptive rule, or, by using a heuristic function. Simu-
lations of the above mentioned method shows that a dy-
namic learning rate gives an advantage not only in the 
learning characteristics, but also in the accuracy of the 
final solution (in term of improvement of the signal to 
noise ratio of the steady state solution). The product αei 
is used to update all weights; only one additional multi-
plication is required. 

3.4 Architecture for Implementation on FPGA 

The architecture of the adaptive noise filtering based on 
the modified LMS algorithm is shown in Figure 8. It was 
designed to implement 32 tap adaptive noise filter in a 
medium density FPGA device. It has a modular and 
scalable structure composed by 8 parallel stages, each 
one capable of executing 1 to 4 multiply and accumulate 
(MAC) operations and weights update. By controlling 
the number of operation performed by each block it is 
possible to implemen
range from 8 to 32. In the first case, by exploiting max
mum parallelism, the filter is capable of processing a 
data sample per clock cycle. In the other cases 2 to 4 
clock cycles are requested. Some FPGA’s internal RAM 
blocks were used to implement the tap delays and to 
store weights coefficients. Each weights update block is 
mainly composed by an adder/subtractor accumulator. 
The weights update coefficients Δi are computed by a 
separated block, which also handles the learning rate 
update function, following the above mentioned heuristic 
algorithm, and implements its multiplication with the 
error signal. By slightly modifying this unit, a more so-
phisticated adaptive function, can be easily obtained, thus 
enhancing the performances of the adaptive noise filter-
ing for non stationary signals. 

 

he modified LMS filterFigure 8. Architecture of t



DSPs/FPGAs Comparative Study for Power Consumption, Noise Cancellation, and Real Time High Speed Applications 398 

4. Simulations and Results 

Adaptive noise filters have been implemented on DSPs 
and FPGAs. Motorola DSP56303 has been used for DSP 
platform, while Xilinx Spartan III boards are used to im-
plement FPGA adaptive noise filtering. Matlab Simulink 
has been used to test the effectiveness and correctness of 
the adaptive filters before hardware implementation. 

4.1 Matlab Simulink Simulations and Results 

To test the theory and see the impro
er that is proposed by 
ugh Matlab Simulink. 

tool 
ise 

 

vements visually that 
is proposed by Das, the adaptive filt
Lee and Das has been compares thro
(see Figure 9) 

The target simulink model is responsible for code gen-
eration where as the host simulink model is responsible 
for testing. The host drives the target model with heavy 
wavelet noisy test data consisting of 4096 samples gen-
erated from wnoise function in Matlab. Matlab’s fda
is used for designing the bandpass filter to color the no
source. A colored Gaussian noise is then added to the 
input test signal. This noisy signal and the reference 
noise are inputs to the terminal of the LMS filter Simu-
link block. Figure 10 Desired Signal (top), received 

 

Figure 9. Block diagram of Matlab Simulink 

 
Figure 10. Desired signal 

signal (middle), output (bottom) This code has been im-
plemented in C programming language. The LMS filter 
is placed in the virtual internal ram of the simulink model. 
In the code, breakpoints are placed in the corresponding 
section of the code where FIR filtering takes place. It 
takes 46, 213 and 266 clock cycles to run the filtering 
section. The time computation would be the clock cycles 
measured, divided by 225 MHz, which is the virtual 
clock speed. The execution time is 20 s. The imple-
mentation of LMS filter takes worst case time of 38.95 

iltering of heavy sine noisy signal 
consisting of 4096 samples per frame. Figure 11 shows 
the comparison between the Das proposal of the wiener 
filter and the Lee’s wiener filter proposal in the signal to 
noise ratio aspect. As it can be seen from the Figure 11 
the performance for the Das proposal is higher than the 
Lee’s wiener filter. The improved adaptive wiener filter 
provides SNR improvement from 2.5 to 4 dB as com-
pared to Lee’s adaptive wiener filter. 
 
4.2 Motorola DSP56300 Results 
 
The DSP system consists of two analog-to-digital (A/D) 
converters, and two digital-to-analog converters (D/A) 
converters. The DSP56303EVM evolution module is 
used to provide and control the DSP56300 processor, the 
two A/D converters, and the two D/A converters. The left 
analog input sig sired in t sig-

5 m

ms to compute the f

nal x(t) consists of the de pu
nal s(n) plus a white noise signal w(n). The left analog 
input signal x(t) is first digitized using the A/D converter 
on the evaluation board. DSP Processor executes the 
adaptive filter algorithm to process the left digitized in-
put signal x(n), the left and right output signals y1(n) and 
y2(n) will be generated. The left output signal y1(n) is the 
error signal. The right output signal y2(n) is the filtered 
version of the left digitized input signal x(n), which is an 
estimate of the desired input signal s(n). The two D/A 
converters on the evaluation board are then used to con-
vert the left and right digital output signals y1(n) and y2(n) 
to the left and right analog output signals y1(t) and y2(t). 
 

 

Figure 11. SNR performance comparison between Lee and 
Das proposals 
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The continuous analog signal was sampled at a rate of 
twice the highest frequency present in the spectrum of the 
sampled analog signal in order to accurately recreate the 
analog audio signal from the discrete samples. The analog 
audio signal was mixed with noise using a sum block 
which is bound to occur when the audio signal passes 
through the channel. The noise however, first low pass 
passed filter using a finite impulse response filter to make 
it finite in bandwidth. FIR noise filter was observed to 
have little or no significant effect on the signal with noise. 
The information bearing signal is a sine wave of 

sample

cycles
055.0  is shown in Figure 12. The noise picked 

p by the secondary microphone is the input for the adap-u
tive filter as shown in Figure 13. The noise that corrupts 
the sine wave is a low pass filtered version of the noise. 
The sum of the filtered noise and the information bearing 
signal is the desired signal for the adaptive filter. The 
noise corrupting the information bearing signal is a fil-
tered version of noise as shown in the Figure 14. Figure 
15 shows that the adaptive filter converges and follows 
the desired filter response. The filtered noise should be 
completely subtracted from the signal noise combination 
and the error signal should only have the original signal. 
The results can be seen in Figures 12 to 16. 

 

Figure 12. Plot showing the input signal 

 

Figure 13. Plot of the noise signal 

 

Figure 14. Noise corrupting the original

 
Figure 15 ponse to 
the respon

. Convergence of the adaptive filter res
se of the FIR filter 

 

V
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V
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 signal 

Figure 1 l signal 

4.3 Xilinx Spartan III Results 

The algorithm for adaptive filtering were coded in Mat-
lab  experimented to determine optimal parameters 
such the learning rate for the LMS algorithm. After the 
para ters have been determined, algorithms were coded 
for Xilinx in VHDL language. 

4.3.1 Standard LMS Al  Results 
The d t was 
corrupted by a higher frequency sinusoid and random 
Gaussian noise with a signal to noise ratio of 5.86 dB. 
The input signal can be seen in Figure 17. A direct form 
FIR filter of length 32 is used to filter the input signal. 
The adaptive is trained with the LMS algorithm with a 
learning rate 

6. Plot of the error and the origina

and
 as 
me

gorithm
esired signal output was a sine wave, and i

05.0 . It appears that the filter with the 
standard LMS  has learned the signal statistics 
and is filtering within 200-250 iterations. Since t e re-

 that the clock for standard 
LMS algorithm is 25 MHz.  The input and output sig-
nals f he standard LMS algorithms are given in Fig-
ures  and 18. 

4.3.2 odified LMS Algorithm Results  
The se reduction obtained by both the standard LMS 
algorithm and the modified algorithm as applied to a sta- 

algorithm
h

sults have shown that the standard LMS algorithm re-
moves the noise from the signal, the next section. The 
timing analyzer has showed

or t
 17

 M
noi

 

Figure 17. Input signal for standard LMS algorithm 
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Figure 18. Output signal for standard LMS algorithm 

tionary signal composed by 3 frequencies, corrupted by a 
random Gaussian noise, with signal to noise ratio of 5.86 
dB were studied. Both algorithms used 16 bit fixed point 
representation for data and filter coefficients [14]. The 
frequency spectrum of the original signal, standard LMS, 
and modified LMS filter are given in Figure 19. The 
modified LMS used a dynamic learning rate coefficient α 
based on a heuristic function formerly proposed by 
Widrow [8], and consisted of 1/n decaying function, co-
efficients were approximated by a piecewise linear curve, 
starting from the value 0.1 down to 0.001 (in about 1000 

aster conver-

the standard LMS used a static learning rate with the best 
performances obtained by setting the µ parameter equal 

. The two algorithms reported noise attenuation 
ater than 40 dB and 36 dB respectively. As can be 
n from the two learning characteristics in Figure 20  

 

steps). This heuristic function achieved a f
gence, and les gradient noise. It has proved to be effec-
tive when applied to stationary signals. On the other hand 

to 0.05
gre
see

 
Figure 19. Frequency Spectrum of a signal processed with 
the standard and modified LMS 
 

 

Figure 20. Learning Characteristics of both LMS algo-

the modified LMS offered a faster convergence. A large 
class of signals (either stationary or short term stationary) 

rithms 

nd noises showed similar simulation results. The adap-
tive noise filtering was implemented using a 16 bit 2’s 
complement fixed point representation for samples and 
weights. As it can be seen in Figure 5, the floor planned 
design required 1776 slices (logic blocks) of 3072 avail-
able (about 57%), and allowed a running clock frequency 
of 50 MHz (with a non optimized, fully automatic place 
& route process). It would require 2750 slices (89%) and 
would run at less than 25 MHz (due mainly to routing 
congestion). The Assembly file used for the simulation is 
given in Appendix A. The assembly code is provided 
elsewhere [26]. 

s discussed in the previous chapters, the concept of the 
adaptive noise filtering applications can be implemented 
in both DSP processors like Motorola DSP56300 series 
and also in the Field Programmable Gate Array such as 
Xilinx Spartan III boards. In high performance signal 
processing applications, FPGAs have several advantages 
over high end DSP processors. Literature survey has 
showed that high-end FPGAs have a huge throughput 
advantage over high performance DSP processors for 
certain types of signal processing applications. FPGAs 
use highly flexible architectures that can be greatest ad-
vantage over regular DSP processors. However, FP As 

ith more gates FPGAs can process more 
e time. Thus power consumption per 

a

5. Conclusions 

A

G
come with a hardware cost. The flexibility comes with a 
great number of gates, which means more silicon area, 
more routing and higher power consumption. DSP proc-
essors are highly efficient for common DSP tasks, but the 
DSP typically takes only a tiny fraction of the silicon 
area, which is dedicated for computation purposes. Most 
of the area is designated for instruction codes and data 
moving. In high performance signal processing applica-
tions like video processing, FPGAs can take highly par-
allel architectures and offer much higher throughput as 
compared to DSP processors. As a result FPGA’s overall 
energy consumption may be significantly lower than 
DSP processors, in spite of the fact that their chip level 
power consumption is often higher. DSP processors can 
consume 2-3 watts, while the FPGAs can consume in the 
order of 10 watts. The pipeline technique, more compu-
tation area and w
channels at the sam
channel is significantly less in the FPGA’s [15]. DSPs 
are specialized forms of microprocessor, while the 
FPGA’s are form of highly configurable hardware. In the 
past, the usage of DSPs has been nearly ubiquitous, but 
with the needs of many applications outstripping the 
processing capabilities (MIPS) of DSPs, the use of 
FPGAs has become very prevalent. It has generally come 
to be expected that all software, (DSP code is considered 
a type of software) will contain some bugs and that the 

V
o

Time (s)

lt
ag

e 
(V

) 
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best can be done is to minimize them. Common DSP 
software bugs are caused because of, failure of interrupts 
to completely restore processor state upon completion, 
non-uniform assumptions regarding processor resources 
by multiple engineers simultaneously developing and 
integrating disparate functions, blocking of critical inter-
rupt by another interrupt or by an uninterruptible process, 
undetected corruption or non-initialization of pointers, 
failing to properly initialize or disable circular buffering 
addressing modes,  memory leaks, the gradual consump-
tion of available volatile memory due to failure of a 
thread to release all memory when finished, dependency 
of DSP routines on specific memory arrangements of 
variables, use of special DSP “core mode” instruction 
options in core, conflict or excessive latency between 
peripheral accesses, such as DMA, serial ports, L1, L2, 
and external SDRAM memories, corrupted stack or 
semaphores, subroutine execution times dependent on 
input data or configuration, mixture of “C” or high-level 
language subroutines with assembly language subroutines,
and  pipeline restrictions of some assembly instructions 
[15]. Both FPGA and DSP implementation routes offer 
the option of using third party implementation for com-
mon signal processing algorithms, interfaces and proto-
cols. Each offers the ability to reuse existing IP in the 
future designs. FPGA’s are more native implementation 
for more DSP algorithms. Figures 21 and 22 give the 
block diagrams of the DSP and FPGA respectively. 

Motorola DSP56300 series can only do one arithmetic 
 

 

Figure 21. Digital signal processor block diagram 

 

Figure 22. FPGA’s block diagram 

computation and two move instructions at a time. How-
ever, in the case of FPGAs, each task can be computed 
by its own configurable core and designated input and 
output interface. 

5.

Speed is one of the most important concepts that deter-
mine the computation time and also it is one of the most 
important concepts in the market. In the adaptive filters 
the parameters are updated with the each iteration and 
after the each iteration the error between the input and 
the desired signal get smaller. After some number of it-
erations the error becomes zero and the desired signal is 
achieved. According to the specifications from the 
manufacturer manuals, Motorola DSP56300 series has a 
CPU clock of 100 MHz, but this speed depend on the 
instruction fetch, computation speed and also the speed 
of th  au-
dio codec runs on 24.57 MHz, this clock speed is deter-
mined by an external crystal. In the other hand Xilinx 
Spartan 3 has the maximum clock frequency of 125 MHz, 
but this speed can be reduced because of the number of 
instruction ns, gates and the congestion on the routing of 
the signals. Both of the modified adaptive noise filtering 
applications take about 200-250 iterations to cancel the 
noise and achieve the desired signal. In the Motorola 
DSP processor case because of the actual clock speed 
being lower, causality conditions and the speed limitation 
that is coming from the audio codec part of e board, the 
running time is 20 MHz. 

e clock to be faster.  

s 

1 Speed Comparison 

e peripherals. On the DSP56303EVM board the

 th
 of the modified LMS algorithm 

in the case of the FPGA’s the running speed is around 
50 MHz. This due to discussions from the previous sec-
tion, which is FPGA’s flexibility and reconfigurable 
gates allows for th

5.2 General Conclusion

As discussed in the previous sections, we have shown the 
differences between the DSP processors and FPGAs. As 
far as power and cost are considered, DSP processors in 
general have lower power consumption, which makes 
them suitable for battery powered applications. These 
applications can be done on audio applications. These 
voice applications are very straight forward and do not 
require sophisticated pipeline and parallel moves. Audio 
applications can be different filter applications. These are 
used especially in the voice transmission lines and cell 
phones. When it comes to the high frequency applica-
tions, DSP processors have some restrictions on their part 
when they are compared to the FPGAs. In high speed 
applications, FPGA’s are much faster than the DSP 
processors. When it comes to high speed applications, 
the DSP boards have some limitations when compared to 
the FPGAs. FPGAs can offer more channels, and thus 
when cost per channel is considered because FPGAs can 
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offer more channels, the cost per channel is lower than 
the DSP’s.  Also the partitioning of the FPGA’s can 
offer more throughputs as compared to DSP processors. 
Thus FPGAs can handle multiple tasks when their con-
trols and finite state machines are configured correctly.  

According to our study, the final conclusion is that for 
simple audio applications like adaptive noise cancelling, 
Motorola DSP56300 is more beneficial, because the re-
quirements for audio applications are met with DSP 
processors. Also they are more power efficient and can 

devices. But when adaptive 
in high speed applications 
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cal Signal Process-

be used for battery powered 
noise filtering is considered 
like video streaming and multiplexed array signals, 
FPGA’s are offering a faster approach and thus they are 
more suitable for high frequency applications. 

5.3 Future Work 

In the future, the adaptive noise filtering can be imple-
mented on high frequency applications, such as noise 
removal from video streaming and noise removal from 
multiplexed data arrays. These applications may be ap-
plied first to FPGAs with Verilog HDL or VHDL. After 
application has been verified, hardware code can be 
converted to a net list and thru Synopsys a custom ASIC 
design can created. The ASIC design and FPGA design 
may be compared in the aspect of cost, power, architec-
ture, noise removal and speed. These comparisons would 
be helping us to provide us a more educated choice for 
future applications. 
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