
J. Software Engineering & Applications, 2010, 3: 347-363
doi:10.4236/jsea.2010.34040 Published Online April 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

347

Mixed-Model U-Shaped Assembly Line Balancing
Problems with Coincidence Memetic Algorithm
Parames Chutima, Panuwat Olanviwatchai

Department of Industrial Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Email: parames.c@chula.ac.th

Received December 15th, 2009; revised January 8th, 2010; accepted January 25th, 2010.

ABSTRACT
Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being
nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-
sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied
to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;
minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of
COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-
rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II).
Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU
time than CNSGA II, its other performances are dominated.

Keywords: Assembly Line Balancing, Mixed-Model U-Line, JIT, COIN

1. Introduction
An assembly line comprises a sequence of workstations
through which a predefined set of tasks are performed
repeatedly on product units while they are moving along
the line. It was originally developed to support mass
production of single homogeneous standardised com-
modity to gain a competitive unit cost. Fierce competi-
tion in the current market as well as ever-changing cus-
tomer requirements forces the mass production concept
to become no longer attractive. Manufacturers need to
redesign their production lines to accommodate mixed-
model production known as mixed model assembly lines
(MMALs). In MMALs, all models with the same stan-
dardised platform but different customisable product
attributes are classified in the same family [1]. Gen-
eral-propose machines with automated tool changing
equipment and highly flexible operators are necessary to
realise an arbitrarily intermixed sequence of various
models of a standardised product with similar process
requirements to be assembled on the same line at negli-
gible setup costs.

Typically, workstations on the assembly line are
aligned straight along a conveyer belt. Monotone and
boring types of work in the straight line layout may not
challenge the working enthusiasm of operators, as well as
being inflexible to manage changes in external environ-

ments. As a consequence of just-in-time (JIT) imple-
mentation, manufacturers aim to achieve continuously
improved productivity, cost, and product quality by
eliminating all wastes in their production systems [2].
However, the straight line cannot fully support the adop-
tion of JIT principles to manufacturing especially in the
utilisation of multi-skilled operators. Hence, such com-
panies as Allen-Bradley and GE have replaced their tra-
ditional straight lines with U-shaped production lines,
called U-lines hereafter [3]. Figure 1 shows the configu-
ration of the U-line.

In the U-line, the entrance and the exit are placed on
the same position. A rather narrow U-shape is normally
formed since both ends of the line are located closely

S1
S2
S4

S3

1 2 3
4

5

6
789

A C

A

B

C

Start
of line

End
of line

Front of the line

Back of the line

Side of the line

Figure 1. Configuration of a U-shaped assembly line

A C

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

348

together. Tasks are arranged around the U-line and are
organised into workstations. A part of the U-line com-
prising a set of tasks with the same directional alignment
as the entrance is called front zone. The opposite side of
the front zone where the exit-side is located is called
back zone. The set of tasks joining front and back zones
and being the base of the U-line is located in side zone.
Two kinds of workstations can be formed in the U-line.
A regular workstation comprises tasks located sequen-
tially along the front (S2), back (S4), or side (S3) of the
U-line; whereas, a crossover workstation (S1) includes
tasks located on both the front and back of the line.

Multi-skilled operators are located inside of the line.
Since some certain models have to visit a crossover
workstation twice, the operator in charge of that cross-
over workstation may have to process two different
models in the same cycle. For example, operator S1 per-
forms task 1 of model A on the front side of the line,
travels to the back side of the line to perform task 9 of
model C, and then returns to the front side of the line to
begin the next cycle. The salient characteristic of cross-
over workstations of the U-line poses additional chal-
lenges for improved performances.

Compared to the straight-line, the U-line gains popular-
ity from its benefit offerings including improving visibil-
ity and communication, operator flexibility, rotatable
multi-skilled operators, know-how sharing, enhancing
teamwork, better quality control, prompt problem solving,
faster corrective action on rework, higher product quality,
easily adjustable output rate, volume flexibility, eliminat-
ing the need for special material handling equipment,
fewer workstations, higher machine utilisation, and higher
line effectiveness for breakdown prone systems [4-7].

The U-line is an inevitable element and becomes a
cornerstone to obtain the main benefits of JIT production
principles, i.e. one-piece flow manufacturing, smooth-
ened workload, and multi-skilled workforce. The U-line
is expected to gain much more popularity in industries in
the future. The survey found that nearly 75% of available
U-lines are configured to produce a product with differ-
ent models or more than one type of product on the same
line [8]. This type of production is called a mixed-model
U-line (MUL). MUL has gradually superseded traditional
mixed-model straight line due to its greater efficiency
offerings, e.g. productivity, flexibility, cost, adaptability
to demand changes, machine utilisation, and quality [9].

Successful utilisation of MUL needs effective solu-
tions to mixed-model U-line balancing (MULB) and
mixed-model U-line sequencing (MUS). MULB, a long
to medium-term decision with a typical planning horizon
of several months, is a problem of determining the num-
ber and sequence of workstations on the line or the cycle
time of the line to accommodate the different models of
products; whereas MUS, a short-term decision normally
revising on a daily basis, is a problem of determining a

production sequence of mixed models introduced to the
line to achieve given objectives. Although these two
problems are heavily interrelated, they are normally ad-
dressed independently and hierarchically due to their
own computational complexities involved. This paper
will focus on the MULB problem.

A great deal of research has been conducted on the
line balancing problem since it was first published in
mathematical form by Salveson [10]. Comprehensive
literature reviews presented by [3,11-14]. Boysen et al.
[15] indicated that very little has been done concerning
the U-line balancing problem. Since Monden [4] brought
U-lines to the attention of research community, the first
pioneer study of the U-line balancing problems was pub-
lished by Miltenburg and Wijngaard [5]. They developed
a dynamic programming (DP) procedure for a sin-
gle-model U-line to determine the optimal balance for
Type I of U-line balancing problems (minimum number
of workstations) with up to 11 tasks. However, DP was
reported impractical for obtaining optimal balances for
large-sized problems. They then developed a single-pass
heuristic namely U-line maximum ranked positional
weight to use for larger problems (111 tasks) where the
priority of each task is given to either the time required to
complete both that task and all the tasks that must suc-
ceed or must precede it, whichever is larger. The heuris-
tics showed satisfactory performance for large-sized
problems. Sparling and Miltenburg [16] proposed an
approximate solution algorithm to solve the MMUALB
problem up to 25 tasks. The algorithm transformed the
multi-model problem into an equivalent single-model
problem. The optimal balance was solved by branch and
bound algorithm with exponential computational re-
quirement to find minimum number of workstations.
Smoothing algorithm was used to adjust the initial bal-
ance to reduce the level of model imbalance. Miltenburg
[17] presented a reaching dynamic algorithm to balance
and rebalance a U-line facility that consists of numerous
U-lines connected by multiline stations. The objective
when balancing such a facility is to assign tasks to a
minimum number of stations while satisfying cycle time,
precedence, location, and station-type constraints. A
secondary objective is to concentrated idle time in a sin-
gle station. The proposed algorithm can solve U-line
balancing problem with no more than 22 tasks without
wide, sparse precedence graphs.

Urban [18] presented an integer programming formu-
lation for determining the optimal balance for the U-line
balancing (ULB) problem. By eliminating some variables
through the use of bounds, the size of the model was re-
duced. It was shown that the proposed formulation can
optimally balance larger problems (21 to 45 tasks) than
the DP procedure of Miltenburg and Wijngaard [5].
Ajenblit and Wainwritght [19] were the first who applied
a genetic algorithm (GA) for Type I ULB problems with

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

349

the objectives of minimising total idle time, balancing
workload among stations, or a combination of both. Sev-
eral algorithms for assigning tasks to workstations were
proposed. The fitness value of a chromosome is deter-
mined by applying all these algorithms to it and the one
with lowest fitness value is selected. They found that
these assignment algorithms proved to have merit and
GA proved to be computationally efficient. Scholl and
Klein [20] considered different types of the ULB prob-
lem, i.e. Type I, Type II, and Type E. A new branch and
bound procedure called ULINO (U-line optimiser)
adapted from their previous algorithm developed for the
straight-shaped problem called SALOME was proposed.
Computational results of up to 297-task problems
showed that the procedures yielded promising results in
limited computation time.

Erel et al. [21] proposed an algorithm with a coupling
of a solution generator module and a simulated annealing
(SA) module. The generator assigned tasks sequentially
to separate stations and combines two adjacent stations
with minimum total station time until infeasibility is
found. Then, SA reconstructed feasibility for such solu-
tions by reassigning the tasks in the combined station to
other stations by minimizing the maximum station time.
The algorithm was tested on a variety of data sets with up
to 297 tasks and found quite effective. Aase et al. [22]
proposed a branch-and-bound (B&B) solution procedure
called U-OPT (U-line OPTimisation) for a ULB problem.
Four design elements of the B&B procedure are investi-
gated including branching strategies, fathoming criteria,
heuristics to obtain upper bounds at each node, and iden-
tification of initial setting solutions. Paired-task lower
bound was largely responsible for the dominance in the
efficacy of U-OPT over existing methods. Aase et al. [23]
conducted empirical experiments to confirm that the
U-shaped layout can significantly improve labour pro-
ductivity over the traditional straight-line one. Interest-
ingly, the improvement tends to be higher during high
demand periods when operators are assigned three or
fewer tasks on average, when the problem size is small,
and when assembly sequence is fairly well structured.

Martinez and Duff [24] applied heuristic rules adapted
from the simple line balancing problem to the Type I
UALB problems up to 21 tasks. Some heuristics were
found to produce optimal results. To achieve improved
solutions, each gene in a chromosome of GA represent-
ing the heuristic rule was used to break ties during the
task assignment process. Balakrishnan et al. [25] modi-
fied 13 single-pass heuristics to balance U-lines with the
existent of travelling time and investigated their effec-
tiveness under various problem conditions. Gokcen and
Agpak [26] developed a goal programming model for the
ULB problems up to 30 tasks. This approach offers in-
creased flexibility to the decision maker since conflicting
goals can be dealt with at the same time. Urban and

Chiang [27] considered the ULB problem with stochastic
task times and developed a linear, integer program using
a piecewise approximation for the chance constraints to
find the optimal solution. The proposed method effec-
tively solved practical-sized problems optimally up to 28
tasks. Chiang and Urban [28] developed a hybrid heuris-
tics comprising an initial feasible solution module and a
solution improvement module for the stochastic ULB
problem. The heuristic can identify optimal or near-op-
timal solutions for up to 111-task problems. Kara et al.
[29] developed a binary fuzzy goal programming for
8-task ULB with fuzzy goals that allow decision makers
to consider the number of workstations and cycle time as
imprecise values.

Baykasoglu [30] proposed multi-objective SA for
ULB problems with the aim of maximising smoothness
index and minimising the number of workstations. Task
assignment rules were used in constructing feasible solu-
tions. The optimal solutions for each problem were found
in short computation times. Hwang et al. [31] developed
a priority-based genetic algorithm (PGA) for ULB prob-
lems for up to 111 tasks. A weighted-sum objective func-
tion comprising the number of workstations and the
workload variation was considered. The proposed model
obtained improved workload variation, especially for
large size problems. Hwang and Katayama [32] proposed
an extension version of PGA namely an amelioration
structure with genetic algorithm (ASGA) to deal with
workload balancing problems in mixed-model U-shaped
lines for up to 111 tasks. ASGA was able to find better
solutions than PGA in terms of workload variation. Boy-
sen and Fliedner [33] proposed a general solution proce-
dure for U-shaped assembly line balancing using an ant
colony optimisation (ACO) approach. Their procedure
was versatile in the sense that various line balancing fea-
tures found in practice can be incorporated into the
model. Baykasoglu and Dereli [33] proposed ACO that
integrates COMSOAL and ranked positional weight heu-
ristics for solving ULB problems. The proposed algo-
rithm found optimum solutions in short computational
times.

The existent of crossover workstations in MUL opens
a chance for MUS, apart from MULB, to smoothen
workload distribution among workstations since the
crossover workstation allows a model mix to be proc-
essed in a cycle. As a result, MULB and MUS can play
significant roles in workload smoothening of MUL.
Since these problems are highly correlated, especially
when the workload smoothening objective needs to be
achieved, several researchers have attempted to solve
these two problems simultaneously in an aggregated
manner. Miltenburg [34] modelled the joint problems of
line balancing and model-sequencing for mixed-model
U-lines operated under a JIT environment and proposed a
solution algorithm for solving both problems simultane-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

350

ously. Kim et al. [35] developed a symbiotic evolution-
ary algorithm called co-evolutionary algorithm (PCoA),
which imitates the biological co-evolution process
through symbiotic interaction, to handle the integration
of balancing and sequencing problem in MUL for up to
111 tasks. Later, Kim et al. [36] proposed an endosymbi-
otic evolutionary algorithm (EEA), an extended version
of the symbiotic evolutionary algorithm, to simultane-
ously solve line balancing and sequencing in MUL. The
proposed algorithm obtained much better quality solu-
tions than PCoA and a traditional hierarchical approach.
Agrawal and Tiwari [37] demonstrated the superiority of
the collaborative ant colony optimisation in simultane-
ously tackling disassembly line balancing and sequenc-
ing problem in MUL for up to 80 tasks. Sabuncuoglu et
al. [38] developed a family of ant colony algorithms that
make both sequencing and task assignment decisions
simultaneously for ULB problems up to 111 tasks.

Kara et al. [9] proposed SA to deal with a multi-ob-
jective approach for balancing and sequencing MULs in
JIT production systems for up to 30 tasks to simultane-
ously minimise the weighted sum of the absolute devia-
tions of workloads across workstations, part usage rate,
and cost of setups. Kara et al. [39] proposed SA based
heuristic approach for solving balancing and sequencing
problems of mixed-model U-lines simultaneously for up
to 30 tasks. SA was capable of minimising the number of
workstations and minimising the absolute deviation of
the workloads among workstations. Kara [40] presented
a mixed, zero-one integer, nonlinear programming for
mixed-model U-line balancing and sequencing problems
for up to 111 tasks with the objective of minimising ab-
solute deviation of workloads. An efficient SA was also
proposed and its performance outperformed PCoA and
EEA.

Literature has demonstrated that the MULB is an im-
portant problem for modern assembly systems operated
under JIT environment. Although several exact methods
for their solutions were proposed, only small sized prob-
lems can be optimally solved due to the complexity of
the problem. Hence, a computational more effective al-
gorithm is needed for larger sized problem. Also, the
algorithm has to be able to easily handle multiple objec-
tives simultaneously. In this paper, such an algorithm
that utilises the concept of evolutionary algorithm
namely combinatorial optimization with coincidence
algorithm (COIN) is proposed for multi-objective MULB
problems. Three objectives including minimum number
workstations, minimum work relatedness, and minimum
workload smoothness are considered simultaneously.
The performances of COIN are compared with a
well-known algorithm namely non-dominated sorting
genetic algorithm II (NSGA II) and their memetic ver-
sions The purpose of this study is to see the feasibility
and effectiveness of the COIN approach which is one of

the most recent meta-heuristics to solve this well-known
problem and compare it against others in terms of quality
of solutions and solution time.

The organisation of this paper is as follows. In the next
section, the detailed description of the multi-objective
optimisation problem is presented, followed by an ex-
planation of the multi-objective MULB problems. The
proposed algorithm to solve MULB problems is elabo-
rated next, and the experimental design and results are
explained respectively. Finally, the concluding remark of
the research is given.

2. Multi-Objective Evolutionary Algorithms
A multi-objective optimisation problem (MOP) is related
to the problem where two or more objectives have to be
optimised simultaneously. Generally, such objectives are
conflicting and represented in different measurement
units, preventing simultaneous optimisations of each one.
MOP can be formulated, without loss of generality, as
follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑥𝑥Ω {𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑘𝑘(𝑥𝑥)} (1)
where solution 𝑥𝑥 is a vector of decision variables for the
considered problem; Ω is the feasible solution space;
and 𝑓𝑓𝑖𝑖(𝑥𝑥) is the ith objective function (𝑖𝑖 = 1, 2, … , 𝑘𝑘).
Two approaches often employ to solve MOP. The first
approach is to combine each objective function into a
single composite function, e.g. weighted sum method,
utility theory, etc. The advantage of this method is
straightforward computation. However, two practical
problems are often experienced with this approach: 1)
selection of the suitable weights can be very difficult
even for those who are unfamiliar with the problem and 2)
small perturbations in the weights can sometimes lead to
totally different solutions [41]. As a result, the second
approach, e.g. multi-objective evolutionary algorithms
(MOEAs), has come into play. This approach determines
a set of alternative solutions for (1) rather than a single
optimal solution. These solutions are optimal in the wider
sense such that no other solutions in the search space are
superior to them when all objectives are considered. A
decision vector 𝑥𝑥 is said to dominate a decision vector 𝑦𝑦
(also written as 𝑥𝑥 ≻ 𝑦𝑦) if:

𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑦𝑦), for all 𝑖𝑖 ∈ {1, 2, … , 𝑘𝑘} (2)
and 𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑓𝑓𝑖𝑖(𝑦𝑦), for at least one 𝑖𝑖 ∈ {1, 2, … , 𝑘𝑘} (3)

All solutions that dominate the others but do not
dominate themselves are called non-dominated (supe-
rior) solutions. A Pareto-optimal solution is a global
optimal solution which is not dominated by any other
solutions in the feasible solution space. A set that con-
tains all feasible Pareto-optimal solutions is called a
Pareto-optimal set or efficient set. The collection of the
points of the Pareto-optimal set (or the corresponding
images of the Pareto-optimal set) along a curve in the

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

351

objective space that has a set of attributes collectively
dominating all other points not on the frontier are termed
the Pareto-optimal frontier (front) or efficient frontier
(front). An example of the Pareto-optimal solutions for a
two-objective minimisation problem is illustrated in
Figure 2. It is obvious that an amount of sacrifice in one
objective is always incurred to achieve a certain amount
of gain in the other (inverse relationship) while moving
from one Pareto-optimal solution to another. Providing
Pareto-optimal solutions to the decision maker is more
preferable to a single solution since practically, when
considering real-life problems, a final decision is always
based on a trade-off between conflicting objective func-
tions.

MOEAs have recently become popular and have been
applied to a wide range of problems from social to engi-
neering problems [42]. In general, MOEAs are ideally
suited to MOP because they are capable of searching a
whole set of multiple Pareto-optimal solutions in a single
run. In addition, the shape or continuity of the
Pareto-optimal frontier has less effect to MOEAs than
traditional mathematical programming. The approxima-
tion of a true Pareto-optimal set involves two conflicting
objectives: 1.) the distance to the true Pareto frontier is to
be minimised, and 2.) the diversity of the evolved solu-
tions is to be maximised [43]. To achieve the first objec-
tive, a Pareto-based fitness assignment is normally de-
signed to guide the search toward the true Pareto-optimal
frontier [44, 45].
 In the view of the second objective, some MOEAs
successfully provide density estimation methods to pre-
serve the population diversity. Although several versions
of MOEAs have been developed [42], non-dominated
sorting genetic algorithms-II (NSGA II) [46] is among
the most promising one in terms of convergence speed to
Pareto-optimal solutions and even distribution of the

Figure 2. Pareto-optimal solutions

Pareto frontier. NSGA II is an elitist multi-objective ge-
netic algorithm being introduced by Deb et al. (2002). It
uses a fixed population size of N for both parent and off-
spring populations. Once a new offspring population is
created, it is combined with its parent population. The
size of the combined population becomes 2N. A
non-dominated sorting method is used to identify Pareto
frontiers (F1, F2, ..., Fk) in the combined population. The
first frontier (F1) is the best in the combined population.
The next population (archive) is created by selecting
frontiers based on their rankings; the best Pareto frontier
being selected first. If the number of members in the ar-
chive is smaller than the population size (N), the next
frontier will be selected and so on. If adding a frontier
would increase the number of members in the archive to
exceed the population size, a truncation operator is ap-
plied to that frontier based on the crowded tournament
selection by which the winner of two same rank solutions
is the one that possesses the greater crowding distance
(farther apart from its neighbours). This is to maintain a
good spread of solutions in the obtained set of solutions.

Memetic algorithms (MAs), a type of evolutionary al-
gorithms (EAs), have been recognised as a powerful al-
gorithmic paradigm on complex search spaces for evolu-
tionary computing]47[. MAs are inspired by models of
adaptation in nature systems that combine evolutionary
adaptation of populations of individuals with individual
learning with a lifetime. A meme is a unit of information
that reproduces itself while people exchange ideas.
Memes are adapted by the people who transmit them
before being passed on to the next generation. MAs use
EAs to perform exploration and use local search to exer-
cise exploitation. A separate local search algorithm can
be applied to improve the fitness of individuals by spe-
cial hill-climbing. Local search in MAs is similar to sim-
ple hill-climbing with differences in that 1) the neigh-
bourhood of the current solutions is searched systemati-
cally instead of random searching in the space of all can-
didate solutions, and 2) the neighborhood search is re-
peated until a locally optimal solution is found. An ad-
vantage of local search in MAs over other heuristics is
that local exploitation around individual can be per-
formed much more effectively; hence, good solutions in
a small region of the search space can be found quickly.

3. Multi-Objective MULB Problem
3.1 MULB Problem
To plan an assembly process for any product on an as-
sembly line, its total amount of work is partitioned into a
set of elementary operations namely tasks. Assembly line
balancing is the allocation of a set of tasks to worksta-
tions without violating any constraints to optimize some
measure of performance. Typical constraints include

Pareto-optimal solutions

Dominated solutions

Minimize f1(x)

Minimize f2(x)

Pareto-optimal frontier

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

352

each task is allocated to one and only one workstation,
precedence relationship that reflects technological and
organisational constraints among the tasks is not violated,
and total task time of any workstation does not exceed
the given cycle time [13].

To perform a task on a workstation, not only tools,
equipment, machinery, and labour skills have to be se-
lected properly, but also its precedence relationship has
to be followed strictly. A precedence diagram is often
used to visually demonstrate such relationship. Nodes,
node weights, and arrows on the precedence diagram
represent tasks, task times, and precedence constraints
between tasks, respectively. For MMAL, a merged
precedence diagram is needed which can be created as
follows [16].

1) Compute the weighted average task time for each
task. Let M = the number of models to be produced during
a planning horizon, 𝐷𝐷𝑚𝑚 = the demand of product model
m (m=1,2,...,M) task i (i=1,2,...,N) of model 𝑀𝑀 has task
time = 𝑡𝑡𝑖𝑖𝑖𝑖 , The weighted average task time 𝑡𝑡𝑖𝑖 is

 𝑡𝑡𝑖𝑖 = ∑ {𝐷𝐷𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 }𝑀𝑀
𝑚𝑚=1 ∑ 𝐷𝐷𝑚𝑚𝑀𝑀

𝑚𝑚=1⁄ (4)

2) Merge the precedence diagram of each model to
form the merged precedence diagram. It is assumed that
the precedence relationship is consistent from model to
model. The merged precedence diagram (MPD) is cre-
ated by adding arrow 𝑥𝑥𝑦𝑦 to MPD if, for any model, task
𝑥𝑥 is an immediate predecessor of task 𝑦𝑦.

MULB is more complex than the traditional straight
line since not only can the set of assignable tasks be con-
sidered from the set of tasks whose predecessors have
already been assigned (moving forward through MPD
and allocating tasks on the front side of the U-line) as the
straight line, but also from the set of tasks whose suc-
cessors have already been assigned (moving backwards
through allocating tasks on the back side of the U-line).
This permission increases possibility on how to allocate
tasks to workstations and often leads to a fewer number
of workstations than the straight line. Based on MPD,
literature always assumes that each task type is assigned
to one and only one workstation regardless of the model
[32].

3.2 Objective Functions
Although several measures can be used to evaluate the
performance of line balancing in MUL, in this paper
three main objectives that support JIT implementation to
be simultaneously optimised are evaluated including
number of workstations, variation of workload, and
variation of work relatedness. Since the type I problem of
MULB is considered, a fixed cycle time, assembly task
time, and precedence relationship are given and our first
objective is to minimize the number of workstations.
Achieving this objective can result in low labour cost and
less space requirement. If 𝑚𝑚 is the number of work-

station, the objective function is formulated as follows.
𝑓𝑓1(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 (5)

The second objective is to smooth (minimize variation
of) the workloads distributed across workstations. Sev-
eral benefits can be gained when MUL is operated in this
manner including increased production rate, reduced line
congestion, but more importantly, mitigates the concerns
of inequity in task assignments among workers [35]. The
workload smoothness objective can be formulated as
follows.

𝑓𝑓2(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∑ (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑘𝑘)2𝑚𝑚
𝑘𝑘=1 𝑚𝑚⁄ (6)

where 𝑆𝑆𝑘𝑘 = total time of workstation 𝑘𝑘, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = maxi-
mum total time of all workstations = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑘𝑘 (𝑘𝑘 =
1, 2, … ,𝑚𝑚).

The third objective is to minimize variation of work
relatedness in a workstation. The purpose of this objective
is to allocate interrelated tasks to the same workstation as
many as possible. Not only can such an assignment im-
prove work efficiency, but it is also useful to assembly
line designers since they may have greater flexibility in
locating facilities and workstations. The formulation of
this objective is as follows.

𝑓𝑓3(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚 −𝑚𝑚 ∑ 𝑆𝑆𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1⁄ } (7)

where 𝑆𝑆𝑆𝑆𝑘𝑘= number of relatedness of tasks in work-
station 𝑘𝑘.

Although three objectives are considered simultane-
ously in this paper, for type I problem, the first objective
dominates the others. As a result, if there are two candi-
date solutions, the one with lower number of worksta-
tions will always selected regardless of how good the
other two objectives are.

4. Proposed Algorithm
4.1 COIN
Wattanapornprom et al. [48] developed a new effective
evolutionary algorithm called combinatorial optimisation
with coincidence (COIN) originally aiming for solving
travelling salesman problems. The idea is that most
well-known algorithms such as GA search for good solu-
tions by sampling through crossover and mutation opera-
tions without much exploitation of the internal structure
of good solution strings. This may not only generate
large number of inefficient solutions dissipated over the
solution space but also consuming long CPU time. In
contrast, COIN considers the internal structure of good
solution strings and memorises paths that could lead to
good solutions. COIN replaces crossover and mutation
operations of GA and employs joint probability matrix as
a means to generate solutions. It prioritises the selection
of the paths with higher chances of moving towards good
solutions.

Apart from traditional learning from good solutions,

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

353

COIN allows learning from below average solutions as
well. Any coincidence found in a situation can be statis-
tically described whether the situation is good or bad.
Most traditional algorithms always discard the bad solu-
tions without utilising any information associated with
them. In contrast, COIN learns from the coincidence
found in the bad solutions and uses this information to
avoid such situations to recurrent; meanwhile, experi-
ences from good coincidences are also used to construct
better solutions (Figure 3). Consequently, the chances
that the paths always being parts of the bad solutions are
used in the new generations are lessened. This lowers the
number of solutions to be considered and hence increases
the convergence speed.

COIN uses a join probability matrix (generator) to
create the population. The generator is initialised so that
it can generate a random tree with equal probability for
any configuration. The population is evaluated in the
same way as traditional EAs. However, COIN uses both
good and bad solutions to update the generator. Initially,
COIN searches from a fully connected tree and then in-
crementally strengthening or weakening the connections.
As generations pass by, the probabilities of selection
certain paths are increased or decreased depending on the
incidences found in the good or bad solutions. The algo-
rithm of COIN can be stated as follows.

1) Initialise the joint probability matrix (generator).
2) Generate the population using the generator.
3) Evaluate the population.
4) Diversity preservation.
5) Select the candidates according to two options: (a)

good solution selection (select the solutions in the first
rank of the current Pareto frontier), and (b) bad solution
selection (select the solutions in the last rank of the current
Pareto frontier).

6) For each joint probability matrix 𝐻𝐻(𝑥𝑥𝑖𝑖/𝑥𝑥𝑗𝑗), adjust
the generator according to the reward and punishment
scheme as (4).

Bad Solution

)(1 xf

)(2 xf

Good Solution

General Solution

Figure 3. Good and bad solutions

𝑥𝑥𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖,𝑗𝑗 (𝑡𝑡) +
𝑘𝑘

(𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛𝑖𝑖)
{𝑟𝑟𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) − 𝑝𝑝𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1)}

 + 𝑘𝑘
(𝑛𝑛−1−𝑛𝑛𝑛𝑛 𝑖𝑖)2 �∑ 𝑝𝑝𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) − ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1)𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑗𝑗=1 �

(8)
where 𝑥𝑥𝑖𝑖,𝑗𝑗 = the element (𝑖𝑖, 𝑗𝑗) of joint probability
matrix 𝐻𝐻(𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗)⁄ , 𝑘𝑘 = the learning coefficient, 𝑟𝑟𝑖𝑖,𝑗𝑗 = the
number of coincidences (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) found in the good solu-
tions, 𝑝𝑝𝑖𝑖,𝑗𝑗 = the number of coincidences (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) found in
the bad solutions, 𝑡𝑡 = generation number, 𝑛𝑛 = the size of
the problem, and 𝑛𝑛𝑛𝑛𝑖𝑖 = number of the direct predecessors
of task 𝑖𝑖.

7) Apply a strategy to maintain elitist solutions in the
population, and then repeat Step 2 until the terminating
condition is met.

4.2 Numerical Example

The 11-task problem originated by Jackson [49] and later
extended to accommodate a product mix by Hwang and
Katayama [31] is used to elaborate the algorithm of
COIN. Three models (A, B, and C) of the product mix
with an equal minimum part set (MPS = [1,1,1]) are
produced on MUL with 10-minute cycle time. Their
precedence diagrams are shown in Figure 4.

Joint Probability Matrix Initialization
The number of tasks to be considered is 11. Therefore,

the dimension of from-to joint probability matrix
𝐻𝐻(𝑥𝑥𝑖𝑖/𝑥𝑥𝑗𝑗) is (11 × 11). The value of each element (𝑥𝑥𝑖𝑖,𝑗𝑗) in
the matrix is the probability of selecting product 𝑗𝑗 after
product 𝑖𝑖. In order to incorporate some precedence rela-
tionship into the matrix, in each row, the element which
belongs to the direct predecessor of the task is set to 0 to
prohibit producing such task before its direct predecessor.
For example, the direct predecessor of task 2 is task 1;
hence, 𝑥𝑥2,1 = 0. Also, 𝑥𝑥2,2 = 0, since it cannot move
within itself. Initially, the value of the remaining elements
in the 2nd row of the matrix is equal to 1 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛2)⁄
= 1 (11 − 1 − 1)⁄ = 0.111. Continue this computation
for all the remaining tasks (rows), the initial joint prob-
ability matrix is shown in Table 1.

Population Generation
The order representation scheme is used to create

chromosomes. The task order list in a chromosome is
created by moving forward through MPD. If there is
more than one task can be selected, the probability of
selecting any task will depend on its value on the join
probability matrix. For example, task 1 is selected for the
first position since it is the only task to be considered.
After selecting task 1, the set of eligible tasks comprises
tasks 2, 3, 4 and 5. From row 1 of the joint probability
matrix, a job is randomly selected according to its prob-
ability of selection (𝑝𝑝1,𝑖𝑖 = 0.1000, for 𝑖𝑖 = 2, …, 11). If
the selected job is not in the set of eligible tasks, redo the

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

354

1

2

3

5

7

8

9

10

11

1

2

3

4

5

7

8

9

10

11

6

 (a) (b)

1

2

5

7 9

11

6

1

2

3

4

5

7

8

9

10

11

6

6

2

7

5

1

2 6

3 5

5

4

(c) (d)

Figure 4. Precedence diagrams. (a) Precedence diagram of model A; (b) Precedence diagram of model B; (c) Precedence dia-
gram of model C; (d) Merged precedence diagram of models A, B and C

Table 1. Initial joint probability matrix

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
3 0 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
4 0 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
5 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111
9 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111
10 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

selection. Suppose we select task 5, the new set of eligi-
ble tasks becomes tasks 2, 3 and 4. Continue this mecha-
nism until all positions in the task order list are filled and
we obtain the task order list of 𝐿𝐿1 ={1,5,3,4,7,2,6,9,
8,10,11}. Assume that the population size is 5 and the
four remaining initial population consists of chromo-
somes 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10,11}; 𝐿𝐿3={1,3,2,6,8,5,10,
4,7,9,11}; 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}, and 𝐿𝐿5={1,5,4,
3,2,6,8,7,9,10,11}.

Population Evaluation
To find tentative tasks to be allocated on the U-line,

we have to search through the task order list in both for-
ward and backward directions. The tentative task on for-
ward or backward searching is the first found task that has
its task time less than or equal to the remaining work-
station cycle time and does not violated MPR. If both
forward and backward tentative tasks are found, either
one is selected randomly. But if none is found and the
task order list still has some task not yet being allocated, a
new workstation is opened. For example, for the task or-

der list of 𝐿𝐿1={1,5,3,4,7,2,6,9,8,10,11} and cycle time 𝑐𝑐
= 10, the forward and backward tentative tasks are tasks 1
and 11. If task 1 is randomly selected, the remaining cycle
time is 10 – 6 = 4, the new forward and backward tenta-
tive tasks are tasks 5 and 11 so on and so forth. Finally, a
feasible line balance with 𝑚𝑚 = 7 workstations and work-
station load distribution given by 𝑆𝑆1= {1,5}, 𝑆𝑆2= {10,11},
𝑆𝑆3= {8}, 𝑆𝑆4= {9}, 𝑆𝑆5= {3}, 𝑆𝑆6= {4,6,7}, 𝑆𝑆7= {2}. Re-
peat this procedure for the remaining task order lists to
obtain the number of workstations and workstation load
distribution for each of them. Having obtained feasible
line balances, three objectives have to be evaluated for
each chromosome. Table 2 indicates that all chromo-
somes give the same number of workstations; therefore,
they are all eligible for Pareto ranking based on workload
smoothness and work relatedness objectives. The Pareto
ranking technique proposed by Goldberg [50] is used to
classify the population into non-dominated frontiers and a
dummy fitness value (lower value is better) is assigned to
each chromosome (Figure 5).

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

355

Diversity Preservation
COIN employs a crowding distance approach [46] to

generate a diversified population with uniformly spread
over the Pareto frontier and avoid a genetic drift phe-
nomenon (a few clusters of populations being formed in
the solution space). The salient characteristic of this ap-
proach is that there is no need to define any parameter in
calculating a measure of population density around a
solution. The crowding distances computed for all solu-
tions are infinite since only one solution is found for each
frontier.

Solution Selection
Having defined the Pareto frontier, the good solutions

are the chromosomes located on the first Pareto frontier
(dummy fitness = 1), i.e. 𝐿𝐿2={1,4,5,3,7,9, 2,6,8,10,11}.
The bad solutions are those located on the last Pareto fron-
tier (dummy fitness = 5), i.e. 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}.

Joint Probability Matrix Adjustment
The adjustment of joint probability matrix is crucial to

the performance of COIN. Reward will be given to 𝑥𝑥𝑖𝑖,𝑗𝑗 if
the order pair (𝑖𝑖, 𝑗𝑗) is in the good solution to increase the
chance of selection in the next round. For example, an
order pair (1,4) is in the good solution 𝐿𝐿2={1,4,5,3,7,9,2,6,
8,10,11}. Assume that 𝑘𝑘 = 0.3, hence the value of 𝑥𝑥𝑖𝑖,𝑗𝑗
where 𝑖𝑖 = 1 and 𝑗𝑗 = 4 is increased by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)⁄
= 0.3/(11 – 1 – 0) = 0.03. The updated value of 𝑥𝑥𝑖𝑖,𝑗𝑗 of the
order pair (1,4) becomes 0.1 + 0.03 = 0.13. The values of
the other order pairs located in the same row of the order
pair (1,4) is reduced by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)2⁄ = 0.3/100 =
0.003. For example, the value 𝑥𝑥𝑖𝑖,𝑗𝑗 where 𝑖𝑖 = 1 and 𝑗𝑗 = 4
is 0.1 – 0.003 = 0.0970. Continue this procedure to all
order pairs located in the good solution; the revised joint
probability matrix is obtained (Table 3).

In contrast, if the order pair (𝑖𝑖, 𝑗𝑗) is in the bad solution,
𝑥𝑥𝑖𝑖,𝑗𝑗 will be penalised to reduce the chance of selection in
the next round. For example, an order pair (1,4) is in the
bad solution 𝐿𝐿4={1,4,3,2,6,8, 10,5,7,9,11}. Therefore, the
value of 𝑥𝑥𝑖𝑖,𝑗𝑗 where 𝑖𝑖 = 1 and 𝑗𝑗 = 4 is decreased by
𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)⁄ = 0.3/10 = 0.03. The updated value of
𝑥𝑥𝑖𝑖,𝑗𝑗 of the order pair (1,4) becomes 0.130 – 0.030 = 0.100.
The values of the other order pairs located in the same row
of the order pair (1,4) is increased by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)2⁄
= 0.3/100 = 0.003. For example, the value 𝑥𝑥𝑖𝑖,𝑗𝑗 where 𝑖𝑖 =
1 and 𝑗𝑗 = 2 is 0.097 + 0.003 = 0.100. Continue this pro-

cedure to all order pairs located in the bad solution; the
revised joint probability matrix is obtained (Table 4).

Elitism
To keep the best solutions found so far to be survived in

the next generation, COIN uses an external list with the
same size as the population size to store elitist solutions.
All non-dominated solutions created in the current popu-
lation are combined with the current elitist solutions.
Goldberg’s Pareto ranking technique is used to classify
the combined population into several non-dominated
frontiers. Only the solutions in the first non-dominated
frontier are filled in the new elitist list. If the number of
solutions in the first non-dominated frontier is less than or
equal to the size of the elitist list, the new elitist list will
contain all solutions of the first non-dominated frontier.
Otherwise, Pareto domination tournament selection [51]
is exercised. Two solutions from the first non-dominated
solutions are randomly selected and then the solution with
larger crowding distance measure and not being selected
before is added to the new elitist list. This approach not
only ensures that all solutions in the elitist list are
non-dominated solutions but also promoting diversity of
the solutions. According to our example, the current elitist
list is empty and the solutions in the current first
non-dominated frontier is 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10,
11}. When both sets are combined the non-dominated
frontier is still the same. Also, the number of the com-
bined solutions is less than the size of the elitist list; hence,
both solutions are added to the new elitist.

Figure 5. Pareto frontier of each chromosome

Table 2. Objective functions of each chromosome

Chromosome
Number

Number of
Workstations

Workload
Smoothness

Work
Relatedness

Pareto Frontier Crowding
Distance

2 4 1.4142 4.4444 1 Infinite
3 4 2.0817 5.2500 2 Infinite
5 4 2.9439 5.3333 3 Infinite
1 4 4.2088 6.1250 4 Infinite
4 4 4.3425 6.2222 5 Infinite

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

356

Table 3. Revised joint probability matrix (good solution)

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.0970 0.0970 0.1300 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970
2 0 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074
3 0 0.1074 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074
4 0 0.1074 0.1074 0 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074
5 0 0.1074 0.1444 0.1074 0 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074
6 0.1074 0 0.1074 0.1074 0.1074 0 0.1074 0.1444 0.1074 0.1074 0.1074
7 0.1367 0.1367 0 0 0 0.1367 0 0.1367 0.1858 0.1367 0.1367
8 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1444 0.1074
9 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1074
10 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1444
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

Table 4. Revised joint probability matrix (bad solution)

 j
i

1 2 3 4 5 6 7 8 9 10 11

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
3 0 0.0741 0 0.1111 0.1111 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111
4 0 0.1111 0.0741 0 0.1481 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
5 0 0.1111 0.1444 0.1111 0 0.1111 0.0778 0.1111 0.1111 0.1111 0.1111
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111
9 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.0741
10 0.1111 0.1111 0.1111 0.1111 0.0741 0.1111 0.1111 0 0.1111 0 0.1481
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0

5. Experimental Design
5.1 Problem Sets
In order to compare the performances of COIN against
several comparator search heuristics, three well-known
test problems were employed as shown in Table 5. The
problem set 1, 2, and 3 represent small, medium, and
large-sized problems respectively

5.2 Comparison Heuristics

The performances of the proposed COIN applied to
MULB problems are compared against such a well-known
multi-objective evolutionary as NSGA II. In addition, the

Table 5. Test problems

Problem Set Number of
Products

Number
of Tasks

Cycle
Time (sec)

1. Thomopoulos[56] 3 19 120
2. Kim[36] 4 61 600
3. Arcus[57] 5 111 10,000

extended versions of COIN and NSGA II, i.e. MNSGA II
and COIN-MA, are also evaluated.

NSGA II
The algorithm of NSGA II [46] can be stated as follows.
1) Create an initial parent population of size 𝑁𝑁 ran-

domly.
2) Sort the population into several frontiers based on

the fast non-dominated sorting algorithm.
3) Calculate a crowding distance measure for each so-

lution.
4) Select the parent population into a mating pool based

on the binary crowded tournament selection.
5) Apply crossover and mutation operators to create an

offspring population of size 𝑁𝑁.
6) Combine the parent population with the offspring

population and apply an elitist mechanism to the com-
bined population of size 2𝑁𝑁 obtain a new population of
size 𝑁𝑁.

7) Repeat Step 2 until the terminating condition is met.
MNSGA II
MNSGA II is a memetic version of NSGA II. Appro-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

357

priate local searches can additionally embed into several
positions of the NSGA II’s algorithm, i.e. after initial
population, after crossover, and after mutation [52]. The
number of places to apply local search has a direct effect
on the quality of solution and computation time. Hence, if
computation time needs to be saved, local search should
be taken only at some specific steps in the algorithm of
MA rather than at all possible steps. In this research, we
choose to take local search after obtaining initial solution
and after mutation since pilot experiments and our pre-
vious research [53] indicated that these two points were
enough to find significantly improved solutions, pull the
solutions out of the local optimal, and reduce computa-
tional time. The algorithm of MNSGA II can be stated as
follows.

1) Create an initial parent population of size 𝑁𝑁 ran-
domly.

2) Apply a local search to the initial parent population.
3) Sort the population into several frontiers based on

the fast non-dominated sorting algorithm.
4) Calculate a crowding distance measure for each so-

lution.
5) Select the parent population into a mating pool based

on the binary crowded tournament selection.
6) Apply crossover and mutation operators to create an

offspring population of size 𝑁𝑁.
7) Apply a local search to the offspring population.
8) Combine the parent population with the offspring

population and apply an elitist mechanism to the com-
bined population of size 2𝑁𝑁 obtain a new population of
size 𝑁𝑁.

9) Repeat Step 3 until the terminating condition is met.
Four local searches modified from Kumar and Singh

[54] originally developed to solve travelling salesman
problems by repeatedly exchanging edges of the tour until
no improvement is attained are examined including
Pairwise Interchange (PI), Insertion Procedures (IP),
2-Opt, and 3-Opt. Three criteria are used to test whether to
accept a move that a local search heuristic creates a
neighbour solution from the current solution as follows: (1)
accept the new solution if 𝑓𝑓1(𝑥𝑥) is descendent, (2) accept
the new solution if 𝑓𝑓1(𝑥𝑥) is the same and 𝑓𝑓2(𝑥𝑥) is de-
scendent; (2) accept the new solution if 𝑓𝑓1(𝑥𝑥) is the same
and 𝑓𝑓3(𝑥𝑥) is descendent; or (3) accept the new solution if
it dominates the current solution (𝑓𝑓1(𝑥𝑥) is the same, and
both 𝑓𝑓2(𝑥𝑥) and 𝑓𝑓3(𝑥𝑥) are descendent).

CNSGA II
In this heuristic, COIN is run for a certain number of

generations. NSGA II then accepts the final solutions of
COIN as its initial population and proceeds with its algo-
rithm.

COIN-MA
In this heuristic, COIN is activated first for a certain

number of generations. The final solutions obtained from

COIN are then fed into MNSGA II as an initial population.

5.3 Comparison Metrics
Three metrics are measured to evaluate the achievement
of two common goals for comparison of multi-objective
optimisation methods as recommended by Kumar and
Singh [54]: 1) convergence to the Pareto-optimal set, and
2) maintenance of diversity in the solutions of Pareto-
optimal set. In addition, CPU time of each heuristic for
achieving the final solutions is measured.

The convergence of the obtained Pareto-optimal solu-
tion towards a true Pareto-set (𝐴𝐴∗) is the difference be-
tween the obtained solution set and the true-Pareto set.
Mathematically, it is defined as (9) and (10)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐴𝐴) =
∑ 𝑑𝑑𝑑𝑑𝑖𝑖

|𝐴𝐴∗|
𝑖𝑖=1
|𝐴𝐴∗|

 (9)

𝑑𝑑𝑑𝑑𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1
|𝐴𝐴∗|�∑ �𝑓𝑓𝑘𝑘(𝑥𝑥)−𝑓𝑓𝑘𝑘(𝑦𝑦)

𝑓𝑓𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚 �
2

2
𝑘𝑘=1 (10)

where |𝐴𝐴∗| is the number of elements in set A , 𝑑𝑑𝑑𝑑𝑖𝑖 is
the Euclidean distance between non-dominated solution
𝑖𝑖𝑡𝑡ℎ in the true-Pareto frontier (𝑦𝑦) and the obtained so-
lution (𝑥𝑥), 𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 are maximum and mini-
mum values of 𝑘𝑘𝑡𝑡ℎ objective functions in the true-
Pareto set respectively. For metric 𝐴𝐴, lower value indi-
cates superiority of the solution set. When all solutions
converge to Pareto-optimal frontier, this metric is zero
indicating that the obtained solution set has all solutions
in the true Pareto set. Since the true Pareto frontier is
unknown, its approximation is needed. The approximated
true Pareto-optimal frontier is the result of combining all
final non-dominated solutions obtained from of all algo-
rithms, applying Goldberg’s Pareto ranking technique to
the combined solutions, and the first frontier of the com-
bined solutions is the approximated true Pareto-optimal
frontier.

The second measure is a spread metric. This measure
computes the distribution of the obtained Pareto-solu-
tions by calculating a relative distance between consecu-
tive solutions as shown in (11) and (12).

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐴𝐴) =
𝑠𝑠𝑠𝑠𝑓𝑓+𝑠𝑠𝑠𝑠𝑙𝑙+∑ ‖𝑠𝑠𝑠𝑠𝑖𝑖−𝑠𝑠𝑑𝑑�‖

|𝐴𝐴|−1
𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑓𝑓+𝑠𝑠𝑠𝑠𝑖𝑖+(|𝐴𝐴|−1)𝑠𝑠𝑑𝑑�
 (11)

𝑠𝑠𝑠𝑠𝑖𝑖 = �∑ �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)−𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖+1)
𝑓𝑓𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚 �
2

2
𝑘𝑘=1 (12)

where 𝑠𝑠𝑠𝑠𝑓𝑓 and 𝑠𝑠𝑠𝑠𝑙𝑙 are the Euclidean distances be-
tween the extreme solutions and boundary solutions of
the obtained Pareto-optimal, |𝐴𝐴| is the number of ele-
ments in the obtained-Pareto solutions, 𝑠𝑠𝑠𝑠𝑖𝑖 is the
Euclidian distance of between consecutive solutions in
the obtained-Pareto solutions for 𝑖𝑖 = 1, 2, … , |𝐴𝐴| − 1 ,

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

358

𝑠𝑠𝑑̅𝑑 is the average Euclidean distance of 𝑠𝑠𝑠𝑠𝑖𝑖 , and the
operator “|| ||” means an absolute value. The value of this
measure is zero for a uniform distribution, but it can be
more than 1 when bad distribution is found.

The third measure is the ratio of non-dominated solu-
tions 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝐴𝐴𝑗𝑗 � which indicates the coverage of one set
over another. Let 𝐴𝐴𝑗𝑗 be a solution sets (𝑗𝑗 = 1, 2, … , 𝐽𝐽).
For comparing each 𝐽𝐽 solution set (𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 …∪
𝐴𝐴𝐽𝐽) the ratio of non-dominated measure of the solution
set 𝐴𝐴𝑗𝑗 to the 𝐽𝐽 solution sets is the ratio of solutions in
𝐴𝐴𝑗𝑗 that are not dominated by any other solution in 𝐴𝐴,
which is defined as (13), where 𝑦𝑦 ≺ 𝑥𝑥 means the ob-
tained solution 𝑥𝑥 is dominated by the true-Pareto solu-
tion 𝑦𝑦. The higher ratio indicates superiority of one solu-
tion set over another.

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝐴𝐴𝑗𝑗 � =
�𝐴𝐴𝑗𝑗−�𝑥𝑥∈𝐴𝐴𝑗𝑗 | ∃𝑦𝑦∈𝐴𝐴:𝑦𝑦≺𝑥𝑥��

�𝐴𝐴𝑗𝑗 �
 (13)

All algorithms are coded in Mathlab 7.0. The test
platform is on Intel Core2 Duo 2.00 GHz under Win-
dows XP with 1.99 GB RAM. The CPU time of each
heuristic is kept after the program is terminated.

5.4 Parameter Settings
To tune MOEA for the MULB problems, an experimental
design [55] was employed to systematically conduct and
investigate the effect of each parameter to the responses

of each heuristic. Recommendations from the past re-
searches, e.g. Kim et al. [36], Chutima and Pinkoompee
[53], etc. were used as a starting point for parameter set-
tings. Extensive pilot runs were conducted around the
vicinities of the starting point. The selection for each pa-
rameter setting was based on quality and diversity of so-
lutions. If neither quality nor diversity of solutions was
significantly different for several settings of the parameter,
the one with lowest CPU time was selected. Having done
that, Table 6 shows the parameter settings found to be
effective for each problem.

The process of finding appropriate local searches (LSs)
for MNSGA II and COIN-MA for each problem set is
worth mentioning. Four local searches that gave good
performances from previous research [53] were investi-
gated, i.e. Pairwise Interchange (PI), Insertion Proce-
dures (IP), 2-Opt, and 3-Opt. Although LS can be located
on 3 different places in MA, pilot runs indicated that put-
ting LS after crossover did not help MA improve its per-
formances. Therefore, LSs were placed only after initial
population and after mutation for MNSGA II and after
mutation for COIN-MA. Full factorial experiments were
conducted to test the performances of LSs on each
problem with 2 replicates. The number of experiment
runs for each problem of MNSGA II and COIN-MA is
4*4*2 = 32 and 4*2 = 8 respectively. In total the number
of runs is 120. ANOVA and Tukey’s multiple range test
were conducted to test significant different at 0.05 level.

Table 6. Parameter settings for each heuristic

Parameter settings COIN NSGA II MNSGA II CNSGA II COIN-MA
Population size 100 100 100 100 100

Number of genera-

tions

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Small = 100
Medium = 150

Large = 300

Crossover - Weight mapping
crossover

Weight mapping
crossover

Weight mapping
crossover

Weight mapping
crossover

Mutation - Reciprocal exchange Reciprocal exchange Reciprocal exchange Reciprocal exchange
Probability of cross-

over - 0.7 0.7 0.7 0.7

Probability of muta-
tion - 0.1 0.1 0.1 0.1

Learning coefficient

(k)

Small = 0.1
Medium = 0.2

Large = 0.2

-

-

Small = 0.1
Medium = 0.2

Large = 0.2

Small = 0.1
Medium = 0.2

Large = 0.2
Percentage of gen-

erations
of COIN to NSGA II

-

-

-

Small = 80:20
Medium = 60:40

Large = 60:40

Small = 80:20
Medium = 60:40

Large = 60:40

Table 7. Appropriate local searches
Problem set MNSGA II COIN-MA

LS after
initial population

LS after
mutation

LS after mutation

1 IP PI IP
2 PI 3-Opt IP
3 IP PI PI

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

359

The LSs appearing in Table 7 were those that per-

formed best with respect to solution quality, diversity,
and CPU time. It is apparent that best LS combination for
MNSGA II and COIN-MA depends on the problem set.
However, for MNSGA II the combination of IP (LS used
after initial population) and PI (LS used after mutation)
appear more often than the other. For COIN-MA, IP
seems to give better performances for small- and me-
dium-sized problems; whereas, PI performed better than
the others for large-sized problems. As a result, these
settings were used for MNSGA II and COIN-MA in rela-
tive performance comparison.
6. Experimental Results
The behaviour of COIN was demonstrated with the 61
tasks’ problem as shown in Figure 6. At the beginning
(generation 1), a number of rather poor feasible solutions
were created. As the number of generations increased,
better solutions were found as observed from the moving
downward trend to the left of the Pareto fronts. It was
noticeable that not much improvement was gained in the
first 20 generations. A leaped gain was noticeable from
generations 20 to 30. However, the improvement was
less and less after that and the Pareto front remained the
same after generation 100.

The behaviour of CNSGA II (COIN plus NSGA II)
and COIN-MA (COIN plus MNSGA II) were demon-
strated in Figure 7 and Figure 8. Both algorithms al-
lowed COIN to run for 150 generations and the final so-
lutions of COIN were considered as initial solutions of
NSGA II and MNSGA II. Significant improvement was
found after COIN was terminated and marginal gains
from its previous solutions were obtained at the end of
both algorithms. In other words, NSGA II (in CNSGA II)
and MNSGA II (in COIN-MA) cannot provide much
improvement to the final solutions of COIN.

For the small-sized problem (19 tasks), Table 8
showed that all algorithms gave the same number of
workstations. NSGA II performed worst comparing with
the others. By adding appropriate local search to NSGA
II, its memetic version (MNSGA II) gained significant
performance improvement. Although MNSGA II ob-
tained the best spread metric, it was dominated by COIN,
CNSGA II, and COIN-MA (Figure 9). These three algo-
rithms obtained the same best Pareto front which can be
seen from their ratio of non-dominated solution (𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 =
1) in Table 8.

For the medium-sized problem (61 tasks), COIN-MA
obtained highest 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 , followed by CNSGA II, whereas
the other algorithms have 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 0 (Table 8). This was
confirmed by Figure 10 meaning that some solutions of
COIN-MA and CNSGA II were located in the Pareto front.
MNSGA II outperformed NSGA II, but it was dominated
by COIN. A big gap between the front of NSGA II and the

Figure 6. Characteristic of COIN

Figure 7. Characteristic of CNSGA II.

Figure 8. Characteristic of COIN-MA

Workload Smoothing

R
el

at
ed

ne
ss

0.40.30.20.10.0

3.6

3.5

3.4

3.3

3.2

3.1

3.0

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (19 task's)

Figure 9. Pareto front of each algorithm (19 tasks)

fronts of three good performers (COIN, CNSGA II, and
COIN-MA) was noticed indicating significant gains from
using these three algorithms.

8.5

9.0

9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN

Gen 1

Gen 10

Gen 20

Gen 30

Gen 40

Gen 50

8.0
8.5
9.0
9.5

10.0

0 1 2 3R
el

at
en

es
s

Workload Smoothing

Characteristic of CNSGA II

Gen 1

Gen 150

Gen 300

8.0
8.5
9.0
9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN-MA

Gen 1

Gen 150

Gen 300

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

360

Table 8. Performance comparison

Problem set Performance Meas-
ure

NSGA II COIN MNSGA II CNSGA II COIN-MA

1

Number of work-
stations 4 4 4 4 4

Convergence 0.4381 0.1317 0.0603 0.1317 0.1317

Spread 0.6557 0.5390 0.4948 0.5390 0.5390

RNDS 0.0000 1.0000 0.4000 1.0000 1.0000

CPU Time (min) 6 3 13 4 7

2

Number of work-
stations 10 9 10 9 9

Convergence 0.9951 0.8966 0.4419 0.3058 0.0710

Spread 0.4504 0.4945 0.8038 0.5514 0.4271

RNDS 0.0000 0.0000 0.0000 0.5000 0.6250

CPU Time (min) 55 11 86 19 25

3

Number of work-
stations 16 16 16 15 15

Convergence 1.0000 0.9907 0.8645 0.4100 0.0000

Spread 0.7479 0.6951 0.4882 0.7211 0.6643

RNDS 0.0000 0.0000 0.0000 0.0000 1.0000

CPU Time (min) 478 20 1089 32 44

For the large-sized problem (111 tasks), once again,

COIN-MA performed best and NSGA II was ranked last
(Figure 11). COIN outperformed NSGA and NSGA II.
The performance of COIN was improved significantly
with the cooperation of NSGA II (CNSGA II) and
MNSGA II (COIN-MA). COIN-MA dominated all algo-
rithms and, from Table 8, its solutions were all in the
Pareto front (𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 1).

In terms of CPU time (Table 8), COIN used the lowest
time to achieve the final solutions followed by CNSGA II,

Workload Smoothing

R
e

la
te

d
n

e
ss

1.61.41.21.00.80.60.40.20.0

9.75

9.50

9.25

9.00

8.75

8.50

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (61 task's)

Figure 10. Pareto front of each algorithm (61 tasks)

COIN-MA, NSGA II, and MNSGA II. As a result, COIN
can be considered as a fast and smart algorithm since it
can obtain good solutions very fast. It can be used as a
good benchmark for other algorithms. In addition, if the
good Pareto front needs to be discovered within a limited
CPU time, COIN-MA is recommended as an outstanding
alternative.

7. Conclusions
This paper presents a novel evolutionary algorithm

Workload Smoothing

R
el

at
ed

ne
ss

120010008006004002000

15.75

15.50

15.25

15.00

14.75

14.50

Variable

3 * COIN
4 * COIN plus NSGA-II
5 * COIN plus M-NSGA-II

1 * NSGA-II
2 * M-NSGA-II

Compare Algorithm (111 task's)

Figure 11. Pareto front of each algorithm (111 tasks)

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

361

namely combinatorial optimisation with coincidence al-
gorithm (COIN) and its variances. The algorithms are
applied to solve Type I problems of MMUALBP in a
just-in-time production environment. COIN recognises
the positive knowledge appearing in the order pairs of the
good solution by giving a marginal reward (increased
probability) to its related element of the joint probability
matrix. In contrast, the negative knowledge found in the
order pairs of the bad solution, which is often remiss in
most algorithms, is also utilised in COIN (reduced prob-
ability) to prevent undesired solutions coincidentally
found in this generation to be recurring in the next gen-
eration. The performances of COIN and its variances are
evaluated on three objectives, i.e. minimum number
workstations, minimum work relatedness, and minimum
workload smoothness. Among these three, minimum
number of workstations is dominated resulting in only
the solutions with the same minimum number of work-
stations being considered and can be located on the first
Pareto front. Experimental results indicate clearly that
COIN outperforms the well-known NSGA II in all as-
pects. As a result, COIN can be considered as a new al-
ternative benchmarking algorithm for MMUALBP. The
COIN’s variances (CNSGA II and COIN-MA) show
significantly better performances than COIN, NSGA II,
and MNSGA II. Although COIN-MA marginally uses
more CPU time than CNSGA II, the other performances
of COIN-MA are better than CNSGA. As a result, if we
need to find an algorithm to search for an optimal Pareto
front for MMUALBP, COIN-MA is recommended.

REFERENCES
[1] N. Boysen, M. Fliedner and A. Scholl, “Assembly Line

Balancing: Which Model to Use When?” International
Journal of Production Economics, Vol. 111, No. 2, 2008,
pp. 509-528.

[2] R. J. Schonberger, “Japanese Manufacturing Techniques:
Nine Hidden Lessons in Simplicity,” Free Press, New
York, 1982, pp. 140-141.

[3] J. Miltenburg, “U-Shaped Production Lines: A Review of
Theory and Practice,” International Journal of Production
Economics, Vol. 70, No. 3, 2001, pp. 201-214.

[4] Y. Monden, “Toyota Production System,” 2nd Edition,
Industrial Engineering Press, Institute of Industrial Engi-
neering, Norcross, 1993.

[5] G. J. Miltenburg and J. Wijngaard, “The U-Line Balancing
Problem,” Management Science, Vol. 40, No. 10, 1994,
pp. 1378-1388.

[6] C. H. Cheng, G. J. Miltenburg and J. Motwani, “The Ef-
fect of Straight- and U-Shaped Lines on Quality,” IEEE
Transactions on Engineering Management, Vol. 47, No. 3,
2000, pp. 321-334.

[7] G. J. Miltenburg, “The Effect of Breakdowns on U-Shaped

Production Lines,” International Journal of Production
Research, Vol. 38, No. 2, 2000, pp. 353-364.

[8] J. Miltenburg, “One-Piece Flow Manufacturing on U-
Shaped Production Lines: A Tutorial,” IIE Transactions,
Vol. 33, No. 4, 2001, pp. 303-321.

[9] Y. Kara, U. Ozcan and A. Peker, “Balancing and Se-
quencing Mixed-Model just-in-Time U-Lines with Multi-
ple Objectives,” Applied Mathematics and Computation,
Vol. 184, No. 2, 2007, pp. 566-588.

[10] M. E. Salveson, “The Assembly Line Balancing Problem,”
The Journal of Industrial Engineering, Vol. 6, No. 3,
1955, pp. 18-25.

[11] I. Baybars, “A Survey of Exact Algorithms for the Simple
Assembly Line Balancing Problem,” Management Sci-
ence, Vol. 32, No. 8, 1986, pp. 909-932.

[12] S. Ghosh and R. J. Gagnon, “A Comprehensive Literature
Review and Analysis of the Design, Balancing and Sched-
uling of Assembly Systems,” International Journal of
Production Research, Vol. 27, No. 4, 1989, pp. 637-670.

[13] E. Erel and S. C. Sarin, “A Survey of the Assembly Line
Balancing Procedures,” Production Planning and Control,
Vol. 9, No. 5, 1998, pp. 414-434.

[14] C. Becker and A. Scholl, “A Survey on Problems and
Methods in Generalized Assembly Line Balancing,”
European Journal of Operational Research, Vol. 168, No.
3, 2006, pp. 694-715.

[15] N. Boysen and M. Fliedner, “A Versatile Algorithm for
Assembly Line Balancing,” European Journal of Opera-
tional Research, Vol. 184, No. 1, 2008, pp. 39-56.

[16] D. Sparling and J. Miltenburg, “The Mixed-Model U-Line
Balancing Problem,” International Journal of Production
Research, Vol. 36, No. 2, 1998, pp. 485-501.

[17] G. J. Miltenburg, “Balancing U-Lines in a Multiple U-
Line Facility,” European Journal of Operational Re-
search, Vol. 109, No. 1, 1998, pp. 1-23.

[18] T. L. Urban, “Optimal Balancing of U-Shaped Assembly
Lines,” Management Science, Vol. 44, No. 5, 1998, pp.
738-741.

[19] D. A. Ajenblit and R. L. Wainwright, “Applying Genetic
Algorithms to the U-Shaped Assembly Line Balancing
Problem,” Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, Alaska, 1998,
pp. 96-101.

[20] A. School and R. Klein, “ULINO: Optimally Balancing
U-Shaped JIT Assembly Lines,” International Journal of
Production Research, Vol. 37, No. 4, 1999, pp. 721-736.

[21] E. Erel, I. Sabuncuoglu and B. A. Aksu, “Balancing of
U-Type Assembly Systems Using Simulated Annealing,”
International Journal of Production Research, Vol. 39,
No. 13, 2001, pp. 3003-3015.

[22] G. R. Aase, M. J. Schniederjans and J. R. Olson, “U-OPT:
An Analysis of Exact U-Shaped Line Balancing Proce-
dures,” International Journal of Production Research,
Vol. 41, No. 17, 2003, pp. 4185-4210.

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

362

[23] G. R. Aase, J. R. Olson and M. J. Schniederjans, “U-
Shaped Assembly Line Layouts and their Impact on Labor
Productivity: An Experimental Study,” European Journal
of Operational Research, Vol. 156, No. 3, 2004, pp. 698-
711.

[24] U. Martinez and W. S. Duff, “Heuristic Approaches to
Solve the U-Shaped Line Balancing Problem Augmented
by Genetic Algorithms,” Proceedings of the 2004 Systems
and Information Engineering Design Symposium, Char-
lottesville, 16 April 2004, pp. 287-293.

[25] J. Balakrishnan, C.-H. Cheng, K.-C. Ho and K. K. Yang,
“The Application of Single-Pass Heuristics for U-Lines,”
Journal of Manufacturing Systems, Vol. 28, No. 1, 2009,
pp. 28-40.

[26] H. Gokcen and K. Agpak, “A Goal Programming Ap-
proach to Simple U-Line Balancing Problem,” European
Journal of Operational Research, Vol. 171, No. 2, 2006,
pp. 577-585.

[27] T. L. Urban and W.-C. Chiang, “An Optimal Piece-
wise-Linear Program for the U-Line Balancing Problem
with Stochastic Task Times,” European Journal of Opera-
tional Research, Vol. 168, No. 3, 2006, pp. 771-782.

[28] W.-C. Chiang and T. L. Urban, “The Stochastic U-Line
Balancing Problem: A Heuristic Procedure,” European
Journal of Operational Research, Vol. 175, No. 3, 2006,
pp. 1767-1781.

[29] Y. Kara, T. Paksoy and C. T. Chang, “Binary Fuzzy Goal
Programming Approach to Single Model Straight and
U-Shaped Assembly Line Balancing,” European Journal
of Operational Research, Vol. 195, No. 2, 2009, pp. 335-
347. A. L. Arcus, “COMSOAL: A Computer Method of
Sequencing Operations for Assembly Lines,” Interna-
tional Journal of Production Research, Vol. 4, No. 4,
1965, pp. 259-277.

[30] A. Baykasoglu, “Multi-Rule Multi-Objective Simulated
Annealing Algorithm for Straight and U Type Assembly
Line Balancing Problems,” Journal of Intelligent Manu-
facturing, Vol. 17, No. 2, 2006, pp. 217-232.

[31] R. K. Hwang, H. Katayama and M. Gen, “U-Shaped As-
sembly Line Balancing Problem with Genetic Algorithm,”
International Journal of Production Research, Vol. 46,
No. 16, 2008, pp. 4637-4649.

[32] R. K. Hwang and H. Katayama, “A Multi-Decision Ge-
netic Approach for Workload Balancing of Mixed-Model
U-Shaped Assembly Line Systems,” International Journal
of Production Research, Vol. 47, No. 14, 2009, pp. 3797-
3822.

[33] A. Baykasoglu and T. Dereli, “Simple and U-Type As-
sembly Line Balancing by Using an Ant Colony Based
Algorithm,” Mathematical and Computational Applica-
tions, Vol. 14, No. 1, 2009, pp. 1-12.

[34] G. J. Miltenburg, “Balancing and Scheduling Mixed-Model
U-Shaped Production Lines,” International Journal of
Flexible Manufacturing Systems, Vol. 14, No. 2, 2002, pp.
119-151.

[35] Y. K. Kim, S. J. Kim and J. Y. Kim, “Balancing and Se-
quencing Mixed-Model U-Lines with a Co-Evolutionary
Algorithm,” Production Planning and Control, Vol. 11,
No. 8, 2000, pp. 754-764.

[36] Y. K. Kim, J. Y. Kim and Y. Kim, “An Endosymbiotic
Evolutionary Algorithm for the Integration of Balancing
and Sequencing in Mixed-Model U-Lines,” European
Journal of Operational Research, Vol. 168, No. 3, 2006,
pp. 838-852.

[37] S. Agrawal and M. K. Tiwari, “A Collaborative Ant Col-
ony Algorithm to Stochastic Mixed-Model U-Shaped Dis-
assembly Line Balancing and Sequencing Problem,” In-
ternational Journal of Production Research, Vol. 46, No.
6, 2008, pp. 1405-1429.

[38] I. Sabuncuoglu, E. Erel and A. Alp, “Ant Colony Optimi-
zation for the Single Model U-Type Assembly Line Bal-
ancing Problem,” International Journal of Production
Economics, Vol. 120, No. 2, 2009, pp. 287-300.

[39] Y. Kara, U. Ozcan and A. Peker, “An Approach for Bal-
ancing and Sequencing Mixed-Model JIT U-Lines,” In-
ternational Journal of Advanced Manufacturing Technol-
ogy, Vol. 32, No. 11-12, 2007, pp. 1218-1231.

[40] Y. Kara, “Line Balancing and Model Sequencing to Re-
duce Work Overload in Mixed-Model U-Line Production
Environments,” Engineering Optimization, Vol. 40, No. 7,
2008, pp. 669-684.

[41] A. Konak, D. W. Coit and A. E. Smith, “Multi-Objective
Optimization Using Genetic Algorithms: A Tutorial,” Re-
liability Engineering & System Safety, Vol. 91, No. 9,
2006, pp. 992-1007.

[42] C. A. C. Coello, D. A. Veldhuizen and G. B. Lamont,
“Evolutionary Algorithms for Solving Multi-Objective
Problems,” Kluwer Academic Publishers, Dordrecht, 2002.

[43] E. Zitzler and L. Thiele, “Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach,” IEEE Transactions on Evolutionary
Computation, Vol. 3, No. 4, 1999, pp. 257-271.

[44] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion and
Generalization,” Proceedings of 5th International Confer-
ence on Genetic Algorithm, Urbana, June 1993, pp. 416-
423.

[45] C. M. Fonseca and P. J. Fleming, “An overview of Evolu-
tionary Algorithms in Multiobjective Optimization,” Evo-
lutionary Computation, Vol. 3, No. 1, 1995, pp. 1-16.

[46] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA II,”
IEEE Transactions on Evolutionary Computation, Vol. 6,
No. 2, 2002, pp. 182-197.

[47] D. Corne, M. Dorigo and F. Glover, “New Ideas in Opti-
mization,” McGraw-Hill, London, 1999.

[48] W. Wattanapornprom, P. Olanviwitchai, P. Chutima and
P. Chongsatitvatana, “Multi-Objective Combinatorial Op-

Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm

Copyright © 2010 SciRes JSEA

363

timisation with Coincidence Algorithm,” Proceedings of
IEEE Congress on Evolutionary Computation, Norway, 11
February 2009, pp. 1675-1682.

[49] J. R. Jackson, “A Computing Procedure for a Line Bal-
ancing Problem,” Management Science, Vol. 2, No. 3,
1956, pp. 261-271.

[50] D. E. Goldberg, “Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning,” Addison-Wesley, Boston,
1989.

[51] J. Horn, N. Nafpliotis and D. E. Goldberg, “A Niched
Pareto Genetic Algorithm for Multiobjective Optimiza-
tion,” Proceedings of the First IEEE Conference on Evo-
lutionary Computation, IEEE World Congress on Compu-
tational Intelligence, Orlando, 27-29 June 1994.

[52] P. Lacomme, C. Prins and M. Sevaux, “A Genetic Algo-
rithm for a Bi-Objective Capacitated ARC Routing Prob-
lem,” Computer & Operations Research, Vol. 33, No. 12,
2006, pp. 3473-3493.

[53] P. Chutima and P. Pinkoompee, “An Investigation of Lo-

cal Searches in Memetic Algorithms for Multi-Objective
Sequencing Problems on Mixed-Model Assembly Lines,”
Proceedings of Computers and Industrial Engineering,
Beijing, 31 October-2 November 2008.

[54] R. Kumar and P. K. Singh, “Pareto Evolutionary Algo-
rithm Hybridized with Local Search for Bi-Objective
TSP,” Studies in Computational Intelligence (Hybrid Evo-
lutionary Algorithms), Springer, Berlin/Heidelberg, Vol.
75, 2007, pp. 361-398.

[55] D. C. Montomery, “Design and Analysis of Experiments,”
John Wiley & Sons, Inc., Hoboken, 2009.

[56] N. T. Thomopoulos, “Mixed Model Line Balancing with
Smoothed Station Assignment,” Management Science,
Vol. 14, No. 2, 1970, pp. B59-B75.

[57] A. L. Arcus, “COMSOAL: A Computer Method of Se-
quencing Operations for Assembly Lines,” International
Journal of Production Research, Vol. 4, No. 4, 1965, pp.
259-277.

