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ABSTRACT 
Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being 
nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-
sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied 
to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered; 
minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of 
COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-
rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). 
Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU 
time than CNSGA II, its other performances are dominated. 
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1. Introduction 
An assembly line comprises a sequence of workstations 
through which a predefined set of tasks are performed 
repeatedly on product units while they are moving along 
the line. It was originally developed to support mass 
production of single homogeneous standardised com-
modity to gain a competitive unit cost. Fierce competi-
tion in the current market as well as ever-changing cus-
tomer requirements forces the mass production concept 
to become no longer attractive. Manufacturers need to 
redesign their production lines to accommodate mixed- 
model production known as mixed model assembly lines 
(MMALs). In MMALs, all models with the same stan-
dardised platform but different customisable product 
attributes are classified in the same family [1]. Gen-
eral-propose machines with automated tool changing 
equipment and highly flexible operators are necessary to 
realise an arbitrarily intermixed sequence of various 
models of a standardised product with similar process 
requirements to be assembled on the same line at negli-
gible setup costs. 

Typically, workstations on the assembly line are 
aligned straight along a conveyer belt. Monotone and 
boring types of work in the straight line layout may not 
challenge the working enthusiasm of operators, as well as 
being inflexible to manage changes in external environ-

ments. As a consequence of just-in-time (JIT) imple-
mentation, manufacturers aim to achieve continuously 
improved productivity, cost, and product quality by 
eliminating all wastes in their production systems [2]. 
However, the straight line cannot fully support the adop-
tion of JIT principles to manufacturing especially in the 
utilisation of multi-skilled operators. Hence, such com-
panies as Allen-Bradley and GE have replaced their tra-
ditional straight lines with U-shaped production lines, 
called U-lines hereafter [3]. Figure 1 shows the configu-
ration of the U-line. 

In the U-line, the entrance and the exit are placed on 
the same position. A rather narrow U-shape is normally 
formed since both ends of the line are located closely 
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together. Tasks are arranged around the U-line and are 
organised into workstations. A part of the U-line com-
prising a set of tasks with the same directional alignment 
as the entrance is called front zone. The opposite side of 
the front zone where the exit-side is located is called 
back zone. The set of tasks joining front and back zones 
and being the base of the U-line is located in side zone. 
Two kinds of workstations can be formed in the U-line. 
A regular workstation comprises tasks located sequen-
tially along the front (S2), back (S4), or side (S3) of the 
U-line; whereas, a crossover workstation (S1) includes 
tasks located on both the front and back of the line. 

Multi-skilled operators are located inside of the line. 
Since some certain models have to visit a crossover 
workstation twice, the operator in charge of that cross-
over workstation may have to process two different 
models in the same cycle. For example, operator S1 per-
forms task 1 of model A on the front side of the line, 
travels to the back side of the line to perform task 9 of 
model C, and then returns to the front side of the line to 
begin the next cycle. The salient characteristic of cross-
over workstations of the U-line poses additional chal-
lenges for improved performances. 

Compared to the straight-line, the U-line gains popular-
ity from its benefit offerings including improving visibil-
ity and communication, operator flexibility, rotatable 
multi-skilled operators, know-how sharing, enhancing 
teamwork, better quality control, prompt problem solving, 
faster corrective action on rework, higher product quality, 
easily adjustable output rate, volume flexibility, eliminat-
ing the need for special material handling equipment, 
fewer workstations, higher machine utilisation, and higher 
line effectiveness for breakdown prone systems [4-7]. 

The U-line is an inevitable element and becomes a 
cornerstone to obtain the main benefits of JIT production 
principles, i.e. one-piece flow manufacturing, smooth-
ened workload, and multi-skilled workforce. The U-line 
is expected to gain much more popularity in industries in 
the future. The survey found that nearly 75% of available 
U-lines are configured to produce a product with differ-
ent models or more than one type of product on the same 
line [8]. This type of production is called a mixed-model 
U-line (MUL). MUL has gradually superseded traditional 
mixed-model straight line due to its greater efficiency 
offerings, e.g. productivity, flexibility, cost, adaptability 
to demand changes, machine utilisation, and quality [9]. 

Successful utilisation of MUL needs effective solu-
tions to mixed-model U-line balancing (MULB) and 
mixed-model U-line sequencing (MUS). MULB, a long 
to medium-term decision with a typical planning horizon 
of several months, is a problem of determining the num-
ber and sequence of workstations on the line or the cycle 
time of the line to accommodate the different models of 
products; whereas MUS, a short-term decision normally 
revising on a daily basis, is a problem of determining a 

production sequence of mixed models introduced to the 
line to achieve given objectives. Although these two 
problems are heavily interrelated, they are normally ad-
dressed independently and hierarchically due to their 
own computational complexities involved. This paper 
will focus on the MULB problem.  

A great deal of research has been conducted on the 
line balancing problem since it was first published in 
mathematical form by Salveson [10]. Comprehensive 
literature reviews presented by [3,11-14]. Boysen et al. 
[15] indicated that very little has been done concerning 
the U-line balancing problem. Since Monden [4] brought 
U-lines to the attention of research community, the first 
pioneer study of the U-line balancing problems was pub-
lished by Miltenburg and Wijngaard [5]. They developed 
a dynamic programming (DP) procedure for a sin-
gle-model U-line to determine the optimal balance for 
Type I of U-line balancing problems (minimum number 
of workstations) with up to 11 tasks. However, DP was 
reported impractical for obtaining optimal balances for 
large-sized problems. They then developed a single-pass 
heuristic namely U-line maximum ranked positional 
weight to use for larger problems (111 tasks) where the 
priority of each task is given to either the time required to 
complete both that task and all the tasks that must suc-
ceed or must precede it, whichever is larger. The heuris-
tics showed satisfactory performance for large-sized 
problems. Sparling and Miltenburg [16] proposed an 
approximate solution algorithm to solve the MMUALB 
problem up to 25 tasks. The algorithm transformed the 
multi-model problem into an equivalent single-model 
problem. The optimal balance was solved by branch and 
bound algorithm with exponential computational re-
quirement to find minimum number of workstations. 
Smoothing algorithm was used to adjust the initial bal-
ance to reduce the level of model imbalance. Miltenburg 
[17] presented a reaching dynamic algorithm to balance 
and rebalance a U-line facility that consists of numerous 
U-lines connected by multiline stations. The objective 
when balancing such a facility is to assign tasks to a 
minimum number of stations while satisfying cycle time, 
precedence, location, and station-type constraints. A 
secondary objective is to concentrated idle time in a sin-
gle station. The proposed algorithm can solve U-line 
balancing problem with no more than 22 tasks without 
wide, sparse precedence graphs. 

Urban [18] presented an integer programming formu-
lation for determining the optimal balance for the U-line 
balancing (ULB) problem. By eliminating some variables 
through the use of bounds, the size of the model was re-
duced. It was shown that the proposed formulation can 
optimally balance larger problems (21 to 45 tasks) than 
the DP procedure of Miltenburg and Wijngaard [5]. 
Ajenblit and Wainwritght [19] were the first who applied 
a genetic algorithm (GA) for Type I ULB problems with 
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the objectives of minimising total idle time, balancing 
workload among stations, or a combination of both. Sev-
eral algorithms for assigning tasks to workstations were 
proposed. The fitness value of a chromosome is deter-
mined by applying all these algorithms to it and the one 
with lowest fitness value is selected. They found that 
these assignment algorithms proved to have merit and 
GA proved to be computationally efficient. Scholl and 
Klein [20] considered different types of the ULB prob-
lem, i.e. Type I, Type II, and Type E. A new branch and 
bound procedure called ULINO (U-line optimiser) 
adapted from their previous algorithm developed for the 
straight-shaped problem called SALOME was proposed. 
Computational results of up to 297-task problems 
showed that the procedures yielded promising results in 
limited computation time. 

Erel et al. [21] proposed an algorithm with a coupling 
of a solution generator module and a simulated annealing 
(SA) module. The generator assigned tasks sequentially 
to separate stations and combines two adjacent stations 
with minimum total station time until infeasibility is 
found. Then, SA reconstructed feasibility for such solu-
tions by reassigning the tasks in the combined station to 
other stations by minimizing the maximum station time. 
The algorithm was tested on a variety of data sets with up 
to 297 tasks and found quite effective. Aase et al. [22] 
proposed a branch-and-bound (B&B) solution procedure 
called U-OPT (U-line OPTimisation) for a ULB problem. 
Four design elements of the B&B procedure are investi-
gated including branching strategies, fathoming criteria, 
heuristics to obtain upper bounds at each node, and iden-
tification of initial setting solutions. Paired-task lower 
bound was largely responsible for the dominance in the 
efficacy of U-OPT over existing methods. Aase et al. [23] 
conducted empirical experiments to confirm that the 
U-shaped layout can significantly improve labour pro-
ductivity over the traditional straight-line one. Interest-
ingly, the improvement tends to be higher during high 
demand periods when operators are assigned three or 
fewer tasks on average, when the problem size is small, 
and when assembly sequence is fairly well structured. 

Martinez and Duff [24] applied heuristic rules adapted 
from the simple line balancing problem to the Type I 
UALB problems up to 21 tasks. Some heuristics were 
found to produce optimal results. To achieve improved 
solutions, each gene in a chromosome of GA represent-
ing the heuristic rule was used to break ties during the 
task assignment process. Balakrishnan et al. [25] modi-
fied 13 single-pass heuristics to balance U-lines with the 
existent of travelling time and investigated their effec-
tiveness under various problem conditions. Gokcen and 
Agpak [26] developed a goal programming model for the 
ULB problems up to 30 tasks. This approach offers in-
creased flexibility to the decision maker since conflicting 
goals can be dealt with at the same time. Urban and 

Chiang [27] considered the ULB problem with stochastic 
task times and developed a linear, integer program using 
a piecewise approximation for the chance constraints to 
find the optimal solution. The proposed method effec-
tively solved practical-sized problems optimally up to 28 
tasks. Chiang and Urban [28] developed a hybrid heuris-
tics comprising an initial feasible solution module and a 
solution improvement module for the stochastic ULB 
problem. The heuristic can identify optimal or near-op- 
timal solutions for up to 111-task problems. Kara et al. 
[29] developed a binary fuzzy goal programming for 
8-task ULB with fuzzy goals that allow decision makers 
to consider the number of workstations and cycle time as 
imprecise values. 

Baykasoglu [30] proposed multi-objective SA for 
ULB problems with the aim of maximising smoothness 
index and minimising the number of workstations. Task 
assignment rules were used in constructing feasible solu-
tions. The optimal solutions for each problem were found 
in short computation times. Hwang et al. [31] developed 
a priority-based genetic algorithm (PGA) for ULB prob-
lems for up to 111 tasks. A weighted-sum objective func-
tion comprising the number of workstations and the 
workload variation was considered. The proposed model 
obtained improved workload variation, especially for 
large size problems. Hwang and Katayama [32] proposed 
an extension version of PGA namely an amelioration 
structure with genetic algorithm (ASGA) to deal with 
workload balancing problems in mixed-model U-shaped 
lines for up to 111 tasks. ASGA was able to find better 
solutions than PGA in terms of workload variation. Boy-
sen and Fliedner [33] proposed a general solution proce-
dure for U-shaped assembly line balancing using an ant 
colony optimisation (ACO) approach. Their procedure 
was versatile in the sense that various line balancing fea-
tures found in practice can be incorporated into the 
model. Baykasoglu and Dereli [33] proposed ACO that 
integrates COMSOAL and ranked positional weight heu-
ristics for solving ULB problems. The proposed algo-
rithm found optimum solutions in short computational 
times. 

The existent of crossover workstations in MUL opens 
a chance for MUS, apart from MULB, to smoothen 
workload distribution among workstations since the 
crossover workstation allows a model mix to be proc-
essed in a cycle. As a result, MULB and MUS can play 
significant roles in workload smoothening of MUL. 
Since these problems are highly correlated, especially 
when the workload smoothening objective needs to be 
achieved, several researchers have attempted to solve 
these two problems simultaneously in an aggregated 
manner. Miltenburg [34] modelled the joint problems of 
line balancing and model-sequencing for mixed-model 
U-lines operated under a JIT environment and proposed a 
solution algorithm for solving both problems simultane-
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ously. Kim et al. [35] developed a symbiotic evolution-
ary algorithm called co-evolutionary algorithm (PCoA), 
which imitates the biological co-evolution process 
through symbiotic interaction, to handle the integration 
of balancing and sequencing problem in MUL for up to 
111 tasks. Later, Kim et al. [36] proposed an endosymbi-
otic evolutionary algorithm (EEA), an extended version 
of the symbiotic evolutionary algorithm, to simultane-
ously solve line balancing and sequencing in MUL. The 
proposed algorithm obtained much better quality solu-
tions than PCoA and a traditional hierarchical approach. 
Agrawal and Tiwari [37] demonstrated the superiority of 
the collaborative ant colony optimisation in simultane-
ously tackling disassembly line balancing and sequenc-
ing problem in MUL for up to 80 tasks. Sabuncuoglu et 
al. [38] developed a family of ant colony algorithms that 
make both sequencing and task assignment decisions 
simultaneously for ULB problems up to 111 tasks. 

Kara et al. [9] proposed SA to deal with a multi-ob- 
jective approach for balancing and sequencing MULs in 
JIT production systems for up to 30 tasks to simultane-
ously minimise the weighted sum of the absolute devia-
tions of workloads across workstations, part usage rate, 
and cost of setups. Kara et al. [39] proposed SA based 
heuristic approach for solving balancing and sequencing 
problems of mixed-model U-lines simultaneously for up 
to 30 tasks. SA was capable of minimising the number of 
workstations and minimising the absolute deviation of 
the workloads among workstations. Kara [40] presented 
a mixed, zero-one integer, nonlinear programming for 
mixed-model U-line balancing and sequencing problems 
for up to 111 tasks with the objective of minimising ab-
solute deviation of workloads. An efficient SA was also 
proposed and its performance outperformed PCoA and 
EEA.  

Literature has demonstrated that the MULB is an im-
portant problem for modern assembly systems operated 
under JIT environment. Although several exact methods 
for their solutions were proposed, only small sized prob-
lems can be optimally solved due to the complexity of 
the problem. Hence, a computational more effective al-
gorithm is needed for larger sized problem. Also, the 
algorithm has to be able to easily handle multiple objec-
tives simultaneously. In this paper, such an algorithm 
that utilises the concept of evolutionary algorithm 
namely combinatorial optimization with coincidence 
algorithm (COIN) is proposed for multi-objective MULB 
problems. Three objectives including minimum number 
workstations, minimum work relatedness, and minimum 
workload smoothness are considered simultaneously. 
The performances of COIN are compared with a 
well-known algorithm namely non-dominated sorting 
genetic algorithm II (NSGA II) and their memetic ver-
sions The purpose of this study is to see the feasibility 
and effectiveness of the COIN approach which is one of 

the most recent meta-heuristics to solve this well-known 
problem and compare it against others in terms of quality 
of solutions and solution time. 

The organisation of this paper is as follows. In the next 
section, the detailed description of the multi-objective 
optimisation problem is presented, followed by an ex-
planation of the multi-objective MULB problems. The 
proposed algorithm to solve MULB problems is elabo-
rated next, and the experimental design and results are 
explained respectively. Finally, the concluding remark of 
the research is given. 

2. Multi-Objective Evolutionary Algorithms 
A multi-objective optimisation problem (MOP) is related 
to the problem where two or more objectives have to be 
optimised simultaneously. Generally, such objectives are 
conflicting and represented in different measurement 
units, preventing simultaneous optimisations of each one. 
MOP can be formulated, without loss of generality, as 
follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑥𝑥Ω {𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑘𝑘(𝑥𝑥)}              (1) 
where solution 𝑥𝑥 is a vector of decision variables for the 
considered problem; Ω  is the feasible solution space; 
and 𝑓𝑓𝑖𝑖(𝑥𝑥) is the ith objective function (𝑖𝑖 = 1, 2, … , 𝑘𝑘). 
Two approaches often employ to solve MOP. The first 
approach is to combine each objective function into a 
single composite function, e.g. weighted sum method, 
utility theory, etc. The advantage of this method is 
straightforward computation. However, two practical 
problems are often experienced with this approach: 1) 
selection of the suitable weights can be very difficult 
even for those who are unfamiliar with the problem and 2) 
small perturbations in the weights can sometimes lead to 
totally different solutions [41]. As a result, the second 
approach, e.g. multi-objective evolutionary algorithms 
(MOEAs), has come into play. This approach determines 
a set of alternative solutions for (1) rather than a single 
optimal solution. These solutions are optimal in the wider 
sense such that no other solutions in the search space are 
superior to them when all objectives are considered. A 
decision vector 𝑥𝑥 is said to dominate a decision vector 𝑦𝑦 
(also written as 𝑥𝑥 ≻ 𝑦𝑦) if: 

𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑓𝑓𝑖𝑖(𝑦𝑦), for all 𝑖𝑖 ∈ {1, 2, … , 𝑘𝑘}      (2) 
and  𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑓𝑓𝑖𝑖(𝑦𝑦), for at least one 𝑖𝑖 ∈ {1, 2, … , 𝑘𝑘}  (3) 

All solutions that dominate the others but do not 
dominate themselves are called non-dominated (supe-
rior) solutions. A Pareto-optimal solution is a global 
optimal solution which is not dominated by any other 
solutions in the feasible solution space. A set that con-
tains all feasible Pareto-optimal solutions is called a 
Pareto-optimal set or efficient set. The collection of the 
points of the Pareto-optimal set (or the corresponding 
images of the Pareto-optimal set) along a curve in the 
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objective space that has a set of attributes collectively 
dominating all other points not on the frontier are termed 
the Pareto-optimal frontier (front) or efficient frontier 
(front). An example of the Pareto-optimal solutions for a 
two-objective minimisation problem is illustrated in 
Figure 2. It is obvious that an amount of sacrifice in one 
objective is always incurred to achieve a certain amount 
of gain in the other (inverse relationship) while moving 
from one Pareto-optimal solution to another. Providing 
Pareto-optimal solutions to the decision maker is more 
preferable to a single solution since practically, when 
considering real-life problems, a final decision is always 
based on a trade-off between conflicting objective func-
tions. 

MOEAs have recently become popular and have been 
applied to a wide range of problems from social to engi-
neering problems [42]. In general, MOEAs are ideally 
suited to MOP because they are capable of searching a 
whole set of multiple Pareto-optimal solutions in a single 
run. In addition, the shape or continuity of the 
Pareto-optimal frontier has less effect to MOEAs than 
traditional mathematical programming. The approxima-
tion of a true Pareto-optimal set involves two conflicting 
objectives: 1.) the distance to the true Pareto frontier is to 
be minimised, and 2.) the diversity of the evolved solu-
tions is to be maximised [43]. To achieve the first objec-
tive, a Pareto-based fitness assignment is normally de-
signed to guide the search toward the true Pareto-optimal 
frontier [44, 45].  
  In the view of the second objective, some MOEAs 
successfully provide density estimation methods to pre-
serve the population diversity. Although several versions 
of MOEAs have been developed [42], non-dominated 
sorting genetic algorithms-II (NSGA II) [46] is among 
the most promising one in terms of convergence speed to 
Pareto-optimal solutions and even distribution of the 

Figure 2. Pareto-optimal solutions 

Pareto frontier. NSGA II is an elitist multi-objective ge-
netic algorithm being introduced by Deb et al. (2002). It 
uses a fixed population size of N for both parent and off-
spring populations. Once a new offspring population is 
created, it is combined with its parent population. The 
size of the combined population becomes 2N. A 
non-dominated sorting method is used to identify Pareto 
frontiers (F1, F2, ..., Fk) in the combined population. The 
first frontier (F1) is the best in the combined population. 
The next population (archive) is created by selecting 
frontiers based on their rankings; the best Pareto frontier 
being selected first. If the number of members in the ar-
chive is smaller than the population size (N), the next 
frontier will be selected and so on. If adding a frontier 
would increase the number of members in the archive to 
exceed the population size, a truncation operator is ap-
plied to that frontier based on the crowded tournament 
selection by which the winner of two same rank solutions 
is the one that possesses the greater crowding distance 
(farther apart from its neighbours). This is to maintain a 
good spread of solutions in the obtained set of solutions. 

Memetic algorithms (MAs), a type of evolutionary al-
gorithms (EAs), have been recognised as a powerful al-
gorithmic paradigm on complex search spaces for evolu-
tionary computing ]47[ . MAs are inspired by models of 
adaptation in nature systems that combine evolutionary 
adaptation of populations of individuals with individual 
learning with a lifetime. A meme is a unit of information 
that reproduces itself while people exchange ideas. 
Memes are adapted by the people who transmit them 
before being passed on to the next generation.  MAs use 
EAs to perform exploration and use local search to exer-
cise exploitation. A separate local search algorithm can 
be applied to improve the fitness of individuals by spe-
cial hill-climbing. Local search in MAs is similar to sim-
ple hill-climbing with differences in that 1) the neigh- 
bourhood of the current solutions is searched systemati-
cally instead of random searching in the space of all can-
didate solutions, and 2) the neighborhood search is re-
peated until a locally optimal solution is found. An ad-
vantage of local search in MAs over other heuristics is 
that local exploitation around individual can be per-
formed much more effectively; hence, good solutions in 
a small region of the search space can be found quickly. 

 
3. Multi-Objective MULB Problem 
3.1 MULB Problem 
To plan an assembly process for any product on an as-
sembly line, its total amount of work is partitioned into a 
set of elementary operations namely tasks. Assembly line 
balancing is the allocation of a set of tasks to worksta-
tions without violating any constraints to optimize some 
measure of performance. Typical constraints include 

Pareto-optimal solutions 

Dominated solutions 

Minimize f1(x) 

Minimize f2(x) 

Pareto-optimal frontier 
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each task is allocated to one and only one workstation, 
precedence relationship that reflects technological and 
organisational constraints among the tasks is not violated, 
and total task time of any workstation does not exceed 
the given cycle time [13].  

To perform a task on a workstation, not only tools, 
equipment, machinery, and labour skills have to be se-
lected properly, but also its precedence relationship has 
to be followed strictly. A precedence diagram is often 
used to visually demonstrate such relationship. Nodes, 
node weights, and arrows on the precedence diagram 
represent tasks, task times, and precedence constraints 
between tasks, respectively. For MMAL, a merged 
precedence diagram is needed which can be created as 
follows [16]. 

1) Compute the weighted average task time for each 
task. Let M = the number of models to be produced during 
a planning horizon, 𝐷𝐷𝑚𝑚  = the demand of product model 
m (m=1,2,...,M) task i (i=1,2,...,N) of model 𝑀𝑀 has task 
time = 𝑡𝑡𝑖𝑖𝑖𝑖 , The weighted average task time 𝑡𝑡𝑖𝑖  is 

 𝑡𝑡𝑖𝑖 =  ∑ {𝐷𝐷𝑚𝑚𝑡𝑡𝑖𝑖𝑖𝑖 }𝑀𝑀
𝑚𝑚=1 ∑ 𝐷𝐷𝑚𝑚𝑀𝑀

𝑚𝑚=1⁄             (4) 

2) Merge the precedence diagram of each model to 
form the merged precedence diagram. It is assumed that 
the precedence relationship is consistent from model to 
model. The merged precedence diagram (MPD) is cre-
ated by adding arrow 𝑥𝑥𝑦𝑦 to MPD if, for any model, task 
𝑥𝑥 is an immediate predecessor of task 𝑦𝑦. 

MULB is more complex than the traditional straight 
line since not only can the set of assignable tasks be con-
sidered from the set of tasks whose predecessors have 
already been assigned (moving forward through MPD 
and allocating tasks on the front side of the U-line) as the 
straight line, but also from the set of tasks whose suc-
cessors have already been assigned (moving backwards 
through allocating tasks on the back side of the U-line). 
This permission increases possibility on how to allocate 
tasks to workstations and often leads to a fewer number 
of workstations than the straight line. Based on MPD, 
literature always assumes that each task type is assigned 
to one and only one workstation regardless of the model 
[32]. 

3.2 Objective Functions 
Although several measures can be used to evaluate the 
performance of line balancing in MUL, in this paper 
three main objectives that support JIT implementation to 
be simultaneously optimised are evaluated including 
number of workstations, variation of workload, and 
variation of work relatedness. Since the type I problem of 
MULB is considered, a fixed cycle time, assembly task 
time, and precedence relationship are given and our first 
objective is to minimize the number of workstations. 
Achieving this objective can result in low labour cost and 
less space requirement. If 𝑚𝑚 is the number of work-

station, the objective function is formulated as follows. 
𝑓𝑓1(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚              (5) 

The second objective is to smooth (minimize variation 
of) the workloads distributed across workstations. Sev-
eral benefits can be gained when MUL is operated in this 
manner including increased production rate, reduced line 
congestion, but more importantly, mitigates the concerns 
of inequity in task assignments among workers [35]. The 
workload smoothness objective can be formulated as 
follows. 

𝑓𝑓2(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�∑ (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑘𝑘)2𝑚𝑚
𝑘𝑘=1 𝑚𝑚⁄    (6) 

where 𝑆𝑆𝑘𝑘  = total time of workstation 𝑘𝑘, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  = maxi-
mum total time of all workstations = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑘𝑘  (𝑘𝑘 =
1, 2, … ,𝑚𝑚). 

The third objective is to minimize variation of work 
relatedness in a workstation. The purpose of this objective 
is to allocate interrelated tasks to the same workstation as 
many as possible. Not only can such an assignment im-
prove work efficiency, but it is also useful to assembly 
line designers since they may have greater flexibility in 
locating facilities and workstations. The formulation of 
this objective is as follows. 

𝑓𝑓3(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚 −𝑚𝑚 ∑ 𝑆𝑆𝑆𝑆𝑘𝑘𝑚𝑚
𝑘𝑘=1⁄ }      (7) 

where 𝑆𝑆𝑆𝑆𝑘𝑘= number of relatedness of tasks in work-
station 𝑘𝑘. 

Although three objectives are considered simultane-
ously in this paper, for type I problem, the first objective 
dominates the others. As a result, if there are two candi-
date solutions, the one with lower number of worksta-
tions will always selected regardless of how good the 
other two objectives are. 

4. Proposed Algorithm 
4.1 COIN 
Wattanapornprom et al. [48] developed a new effective 
evolutionary algorithm called combinatorial optimisation 
with coincidence (COIN) originally aiming for solving 
travelling salesman problems. The idea is that most 
well-known algorithms such as GA search for good solu-
tions by sampling through crossover and mutation opera-
tions without much exploitation of the internal structure 
of good solution strings. This may not only generate 
large number of inefficient solutions dissipated over the 
solution space but also consuming long CPU time. In 
contrast, COIN considers the internal structure of good 
solution strings and memorises paths that could lead to 
good solutions. COIN replaces crossover and mutation 
operations of GA and employs joint probability matrix as 
a means to generate solutions. It prioritises the selection 
of the paths with higher chances of moving towards good 
solutions. 

Apart from traditional learning from good solutions, 
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COIN allows learning from below average solutions as 
well. Any coincidence found in a situation can be statis-
tically described whether the situation is good or bad. 
Most traditional algorithms always discard the bad solu-
tions without utilising any information associated with 
them. In contrast, COIN learns from the coincidence 
found in the bad solutions and uses this information to 
avoid such situations to recurrent; meanwhile, experi-
ences from good coincidences are also used to construct 
better solutions (Figure 3). Consequently, the chances 
that the paths always being parts of the bad solutions are 
used in the new generations are lessened. This lowers the 
number of solutions to be considered and hence increases 
the convergence speed. 

COIN uses a join probability matrix (generator) to 
create the population. The generator is initialised so that 
it can generate a random tree with equal probability for 
any configuration. The population is evaluated in the 
same way as traditional EAs. However, COIN uses both 
good and bad solutions to update the generator. Initially, 
COIN searches from a fully connected tree and then in-
crementally strengthening or weakening the connections. 
As generations pass by, the probabilities of selection 
certain paths are increased or decreased depending on the 
incidences found in the good or bad solutions. The algo-
rithm of COIN can be stated as follows. 

1) Initialise the joint probability matrix (generator). 
2) Generate the population using the generator. 
3) Evaluate the population. 
4) Diversity preservation. 
5) Select the candidates according to two options: (a) 

good solution selection (select the solutions in the first 
rank of the current Pareto frontier), and (b) bad solution 
selection (select the solutions in the last rank of the current 
Pareto frontier). 

6) For each joint probability matrix 𝐻𝐻(𝑥𝑥𝑖𝑖/𝑥𝑥𝑗𝑗 ), adjust 
the generator according to the reward and punishment 
scheme as (4). 

Bad Solution

)(1 xf

)(2 xf

Good Solution

General Solution

 
Figure 3. Good and bad solutions 

𝑥𝑥𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖,𝑗𝑗 (𝑡𝑡) +
𝑘𝑘

(𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛𝑖𝑖)
{𝑟𝑟𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) − 𝑝𝑝𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1)} 

  + 𝑘𝑘
(𝑛𝑛−1−𝑛𝑛𝑛𝑛 𝑖𝑖)2 �∑ 𝑝𝑝𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1) − ∑ 𝑟𝑟𝑖𝑖,𝑗𝑗 (𝑡𝑡 + 1)𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑗𝑗=1 � 

(8) 
where 𝑥𝑥𝑖𝑖,𝑗𝑗  = the element (𝑖𝑖, 𝑗𝑗) of joint probability 
matrix  𝐻𝐻(𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 )⁄ , 𝑘𝑘 = the learning coefficient, 𝑟𝑟𝑖𝑖,𝑗𝑗  = the 
number of coincidences (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ) found in the good solu-
tions, 𝑝𝑝𝑖𝑖,𝑗𝑗  = the number of coincidences (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ) found in 
the bad solutions, 𝑡𝑡 = generation number, 𝑛𝑛 = the size of 
the problem, and 𝑛𝑛𝑛𝑛𝑖𝑖  = number of the direct predecessors 
of task 𝑖𝑖. 

7) Apply a strategy to maintain elitist solutions in the 
population, and then repeat Step 2 until the terminating 
condition is met. 

4.2 Numerical Example 

The 11-task problem originated by Jackson [49] and later 
extended to accommodate a product mix by Hwang and 
Katayama [31] is used to elaborate the algorithm of 
COIN. Three models (A, B, and C) of the product mix 
with an equal minimum part set (MPS = [1,1,1]) are 
produced on MUL with 10-minute cycle time. Their 
precedence diagrams are shown in Figure 4. 

Joint Probability Matrix Initialization  
The number of tasks to be considered is 11. Therefore, 

the dimension of from-to joint probability matrix 
𝐻𝐻(𝑥𝑥𝑖𝑖/𝑥𝑥𝑗𝑗 ) is (11 × 11). The value of each element (𝑥𝑥𝑖𝑖,𝑗𝑗 ) in 
the matrix is the probability of selecting product 𝑗𝑗 after 
product 𝑖𝑖. In order to incorporate some precedence rela-
tionship into the matrix, in each row, the element which 
belongs to the direct predecessor of the task is set to 0 to 
prohibit producing such task before its direct predecessor. 
For example, the direct predecessor of task 2 is task 1; 
hence, 𝑥𝑥2,1  = 0. Also, 𝑥𝑥2,2  = 0, since it cannot move 
within itself. Initially, the value of the remaining elements 
in the 2nd row of the matrix is equal to 1 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛2)⁄  
= 1 (11 − 1 − 1)⁄  = 0.111. Continue this computation 
for all the remaining tasks (rows), the initial joint prob-
ability matrix is shown in Table 1. 

Population Generation 
The order representation scheme is used to create 

chromosomes. The task order list in a chromosome is 
created by moving forward through MPD. If there is 
more than one task can be selected, the probability of 
selecting any task will depend on its value on the join 
probability matrix. For example, task 1 is selected for the 
first position since it is the only task to be considered. 
After selecting task 1, the set of eligible tasks comprises 
tasks 2, 3, 4 and 5. From row 1 of the joint probability 
matrix, a job is randomly selected according to its prob-
ability of selection (𝑝𝑝1,𝑖𝑖  = 0.1000, for 𝑖𝑖 = 2, …, 11). If 
the selected job is not in the set of eligible tasks, redo the 
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Figure 4. Precedence diagrams. (a) Precedence diagram of model A; (b) Precedence diagram of model B; (c) Precedence dia-
gram of model C; (d) Merged precedence diagram of models A, B and C 

 
Table 1. Initial joint probability matrix 

     j 
i 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
3 0 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
4 0 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
5 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429 
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111 
9 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 
10 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0 

 
selection. Suppose we select task 5, the new set of eligi-
ble tasks becomes tasks 2, 3 and 4. Continue this mecha-
nism until all positions in the task order list are filled and 
we obtain the task order list of 𝐿𝐿1 ={1,5,3,4,7,2,6,9, 
8,10,11}. Assume that the population size is 5 and the 
four remaining initial population consists of chromo-
somes 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10,11}; 𝐿𝐿3={1,3,2,6,8,5,10, 
4,7,9,11}; 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}, and 𝐿𝐿5={1,5,4, 
3,2,6,8,7,9,10,11}. 

Population Evaluation 
To find tentative tasks to be allocated on the U-line, 

we have to search through the task order list in both for-
ward and backward directions. The tentative task on for-
ward or backward searching is the first found task that has 
its task time less than or equal to the remaining work-
station cycle time and does not violated MPR. If both 
forward and backward tentative tasks are found, either 
one is selected randomly. But if none is found and the 
task order list still has some task not yet being allocated, a 
new workstation is opened. For example, for the task or-

der list of 𝐿𝐿1={1,5,3,4,7,2,6,9,8,10,11} and cycle time 𝑐𝑐 
= 10, the forward and backward tentative tasks are tasks 1 
and 11. If task 1 is randomly selected, the remaining cycle 
time is 10 – 6 = 4, the new forward and backward tenta-
tive tasks are tasks 5 and 11 so on and so forth. Finally, a 
feasible line balance with 𝑚𝑚 = 7 workstations and work-
station load distribution given by 𝑆𝑆1= {1,5}, 𝑆𝑆2= {10,11}, 
𝑆𝑆3= {8}, 𝑆𝑆4= {9}, 𝑆𝑆5= {3}, 𝑆𝑆6= {4,6,7}, 𝑆𝑆7= {2}. Re-
peat this procedure for the remaining task order lists to 
obtain the number of workstations and workstation load 
distribution for each of them. Having obtained feasible 
line balances, three objectives have to be evaluated for 
each chromosome. Table 2 indicates that all chromo-
somes give the same number of workstations; therefore, 
they are all eligible for Pareto ranking based on workload 
smoothness and work relatedness objectives. The Pareto 
ranking technique proposed by Goldberg [50] is used to 
classify the population into non-dominated frontiers and a 
dummy fitness value (lower value is better) is assigned to 
each chromosome (Figure 5). 
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Diversity Preservation 
COIN employs a crowding distance approach [46] to 

generate a diversified population with uniformly spread 
over the Pareto frontier and avoid a genetic drift phe-
nomenon (a few clusters of populations being formed in 
the solution space). The salient characteristic of this ap-
proach is that there is no need to define any parameter in 
calculating a measure of population density around a 
solution. The crowding distances computed for all solu-
tions are infinite since only one solution is found for each 
frontier. 

Solution Selection 
Having defined the Pareto frontier, the good solutions 

are the chromosomes located on the first Pareto frontier 
(dummy fitness = 1), i.e. 𝐿𝐿2={1,4,5,3,7,9, 2,6,8,10,11}. 
The bad solutions are those located on the last Pareto fron-
tier (dummy fitness = 5), i.e. 𝐿𝐿4={1,4,3,2,6,8,10,5,7,9,11}. 

Joint Probability Matrix Adjustment 
The adjustment of joint probability matrix is crucial to 

the performance of COIN. Reward will be given to 𝑥𝑥𝑖𝑖,𝑗𝑗  if 
the order pair (𝑖𝑖, 𝑗𝑗) is in the good solution to increase the 
chance of selection in the next round. For example, an 
order pair (1,4) is in the good solution 𝐿𝐿2={1,4,5,3,7,9,2,6, 
8,10,11}. Assume that 𝑘𝑘 = 0.3, hence the value of 𝑥𝑥𝑖𝑖,𝑗𝑗  
where 𝑖𝑖 = 1 and 𝑗𝑗 = 4 is increased by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)⁄  
= 0.3/(11 – 1 – 0) = 0.03. The updated value of 𝑥𝑥𝑖𝑖,𝑗𝑗  of the 
order pair (1,4) becomes 0.1 + 0.03 = 0.13. The values of 
the other order pairs located in the same row of the order 
pair (1,4) is reduced by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)2⁄  = 0.3/100 = 
0.003. For example, the value 𝑥𝑥𝑖𝑖,𝑗𝑗  where 𝑖𝑖 = 1 and 𝑗𝑗 = 4 
is 0.1 – 0.003 = 0.0970. Continue this procedure to all 
order pairs located in the good solution; the revised joint 
probability matrix is obtained (Table 3). 

In contrast, if the order pair (𝑖𝑖, 𝑗𝑗) is in the bad solution, 
𝑥𝑥𝑖𝑖,𝑗𝑗  will be penalised to reduce the chance of selection in 
the next round. For example, an order pair (1,4) is in the 
bad solution 𝐿𝐿4={1,4,3,2,6,8, 10,5,7,9,11}. Therefore, the 
value of 𝑥𝑥𝑖𝑖,𝑗𝑗  where 𝑖𝑖  = 1 and 𝑗𝑗  = 4 is decreased by 
𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)⁄  = 0.3/10 = 0.03. The updated value of 
𝑥𝑥𝑖𝑖,𝑗𝑗  of the order pair (1,4) becomes 0.130 – 0.030 = 0.100. 
The values of the other order pairs located in the same row 
of the order pair (1,4) is increased by 𝑘𝑘 (𝑛𝑛 − 1 − 𝑛𝑛𝑛𝑛1)2⁄   
= 0.3/100 = 0.003. For example, the value 𝑥𝑥𝑖𝑖,𝑗𝑗  where 𝑖𝑖 = 
1 and 𝑗𝑗 = 2 is 0.097 + 0.003 = 0.100. Continue this pro-

cedure to all order pairs located in the bad solution; the 
revised joint probability matrix is obtained (Table 4). 

Elitism 
To keep the best solutions found so far to be survived in 

the next generation, COIN uses an external list with the 
same size as the population size to store elitist solutions. 
All non-dominated solutions created in the current popu-
lation are combined with the current elitist solutions. 
Goldberg’s Pareto ranking technique is used to classify 
the combined population into several non-dominated 
frontiers. Only the solutions in the first non-dominated 
frontier are filled in the new elitist list. If the number of 
solutions in the first non-dominated frontier is less than or 
equal to the size of the elitist list, the new elitist list will 
contain all solutions of the first non-dominated frontier. 
Otherwise, Pareto domination tournament selection [51] 
is exercised. Two solutions from the first non-dominated 
solutions are randomly selected and then the solution with 
larger crowding distance measure and not being selected 
before is added to the new elitist list. This approach not 
only ensures that all solutions in the elitist list are 
non-dominated solutions but also promoting diversity of 
the solutions. According to our example, the current elitist 
list is empty and the solutions in the current first 
non-dominated frontier is 𝐿𝐿2={1,4,5,3,7,9,2,6,8,10, 
11}. When both sets are combined the non-dominated 
frontier is still the same. Also, the number of the com-
bined solutions is less than the size of the elitist list; hence, 
both solutions are added to the new elitist. 

 
Figure 5. Pareto frontier of each chromosome

 
Table 2. Objective functions of each chromosome 

Chromosome 
Number 

Number of  
Workstations 

Workload 
Smoothness 

Work 
Relatedness 

Pareto Frontier Crowding 
Distance 

2 4 1.4142 4.4444 1 Infinite 
3 4 2.0817 5.2500 2 Infinite 
5 4 2.9439 5.3333 3 Infinite 
1 4 4.2088 6.1250 4 Infinite 
4 4 4.3425 6.2222 5 Infinite 
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Table 3. Revised joint probability matrix (good solution) 
 
     j 
i 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0.0970 0.0970 0.1300 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970 0.0970 
2 0 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074 
3 0 0.1074 0 0.1074 0.1074 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 
4 0 0.1074 0.1074 0 0.1444 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 
5 0 0.1074 0.1444 0.1074 0 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 
6 0.1074 0 0.1074 0.1074 0.1074 0 0.1074 0.1444 0.1074 0.1074 0.1074 
7 0.1367 0.1367 0 0 0 0.1367 0 0.1367 0.1858 0.1367 0.1367 
8 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1444 0.1074 
9 0.1074 0.1444 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1074 0.1074 
10 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0.1074 0 0.1074 0 0.1444 
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0 

 
Table 4. Revised joint probability matrix (bad solution) 

     j 
i 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 
2 0 0 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
3 0 0.0741 0 0.1111 0.1111 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111 
4 0 0.1111 0.0741 0 0.1481 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 
5 0 0.1111 0.1444 0.1111 0 0.1111 0.0778 0.1111 0.1111 0.1111 0.1111 
6 0.1111 0 0.1111 0.1111 0.1111 0 0.1111 0.1111 0.1111 0.1111 0.1111 
7 0.1429 0.1429 0 0 0 0.1429 0 0.1429 0.1429 0.1429 0.1429 
8 0.1111 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.1111 0.1111 
9 0.1111 0.1481 0.1111 0.1111 0.1111 0.1111 0 0.1111 0 0.1111 0.0741 
10 0.1111 0.1111 0.1111 0.1111 0.0741 0.1111 0.1111 0 0.1111 0 0.1481 
11 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0 0 0 

 
5. Experimental Design 
5.1 Problem Sets 
In order to compare the performances of COIN against 
several comparator search heuristics, three well-known 
test problems were employed as shown in Table 5. The 
problem set 1, 2, and 3 represent small, medium, and 
large-sized problems respectively 

5.2 Comparison Heuristics 

The performances of the proposed COIN applied to 
MULB problems are compared against such a well-known 
multi-objective evolutionary as NSGA II. In addition, the  

Table 5. Test problems 

Problem Set Number of 
Products 

Number 
of Tasks 

Cycle 
Time (sec) 

1. Thomopoulos[56] 3 19 120 
2. Kim[36] 4 61 600 
3. Arcus[57] 5 111 10,000 

extended versions of COIN and NSGA II, i.e. MNSGA II 
and COIN-MA, are also evaluated. 

NSGA II 
The algorithm of NSGA II [46] can be stated as follows. 
1) Create an initial parent population of size 𝑁𝑁 ran-

domly. 
2) Sort the population into several frontiers based on 

the fast non-dominated sorting algorithm. 
3) Calculate a crowding distance measure for each so-

lution. 
4) Select the parent population into a mating pool based 

on the binary crowded tournament selection. 
5) Apply crossover and mutation operators to create an 

offspring population of size 𝑁𝑁. 
6) Combine the parent population with the offspring 

population and apply an elitist mechanism to the com-
bined population of size 2𝑁𝑁 obtain a new population of 
size 𝑁𝑁. 

7) Repeat Step 2 until the terminating condition is met. 
MNSGA II 
MNSGA II is a memetic version of NSGA II. Appro-
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priate local searches can additionally embed into several 
positions of the NSGA II’s algorithm, i.e. after initial 
population, after crossover, and after mutation [52]. The 
number of places to apply local search has a direct effect 
on the quality of solution and computation time. Hence, if 
computation time needs to be saved, local search should 
be taken only at some specific steps in the algorithm of 
MA rather than at all possible steps. In this research, we 
choose to take local search after obtaining initial solution 
and after mutation since pilot experiments and our pre-
vious research [53] indicated that these two points were 
enough to find significantly improved solutions, pull the 
solutions out of the local optimal, and reduce computa-
tional time. The algorithm of MNSGA II can be stated as 
follows. 

1) Create an initial parent population of size 𝑁𝑁 ran-
domly. 

2) Apply a local search to the initial parent population. 
3) Sort the population into several frontiers based on 

the fast non-dominated sorting algorithm. 
4) Calculate a crowding distance measure for each so-

lution. 
5) Select the parent population into a mating pool based 

on the binary crowded tournament selection. 
6) Apply crossover and mutation operators to create an 

offspring population of size 𝑁𝑁. 
7) Apply a local search to the offspring population. 
8) Combine the parent population with the offspring 

population and apply an elitist mechanism to the com-
bined population of size 2𝑁𝑁 obtain a new population of 
size 𝑁𝑁. 

9) Repeat Step 3 until the terminating condition is met. 
Four local searches modified from Kumar and Singh 

[54] originally developed to solve travelling salesman 
problems by repeatedly exchanging edges of the tour until 
no improvement is attained are examined including 
Pairwise Interchange (PI), Insertion Procedures (IP), 
2-Opt, and 3-Opt. Three criteria are used to test whether to 
accept a move that a local search heuristic creates a 
neighbour solution from the current solution as follows: (1) 
accept the new solution if 𝑓𝑓1(𝑥𝑥) is descendent, (2) accept 
the new solution if 𝑓𝑓1(𝑥𝑥) is the same and 𝑓𝑓2(𝑥𝑥) is de-
scendent; (2) accept the new solution if 𝑓𝑓1(𝑥𝑥) is the same 
and 𝑓𝑓3(𝑥𝑥) is descendent; or (3) accept the new solution if 
it dominates the current solution (𝑓𝑓1(𝑥𝑥) is the same, and 
both 𝑓𝑓2(𝑥𝑥) and 𝑓𝑓3(𝑥𝑥) are descendent). 

CNSGA II 
In this heuristic, COIN is run for a certain number of 

generations. NSGA II then accepts the final solutions of 
COIN as its initial population and proceeds with its algo-
rithm. 

COIN-MA 
In this heuristic, COIN is activated first for a certain 

number of generations. The final solutions obtained from 

COIN are then fed into MNSGA II as an initial population. 

5.3 Comparison Metrics 
Three metrics are measured to evaluate the achievement 
of two common goals for comparison of multi-objective 
optimisation methods as recommended by Kumar and 
Singh [54]: 1) convergence to the Pareto-optimal set, and 
2) maintenance of diversity in the solutions of Pareto- 
optimal set. In addition, CPU time of each heuristic for 
achieving the final solutions is measured. 

The convergence of the obtained Pareto-optimal solu-
tion towards a true Pareto-set (𝐴𝐴∗) is the difference be-
tween the obtained solution set and the true-Pareto set. 
Mathematically, it is defined as (9) and (10) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐴𝐴) =  
∑ 𝑑𝑑𝑑𝑑𝑖𝑖

|𝐴𝐴∗|
𝑖𝑖=1
|𝐴𝐴∗|

           (9) 

𝑑𝑑𝑑𝑑𝑖𝑖 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1
|𝐴𝐴∗|�∑ �𝑓𝑓𝑘𝑘(𝑥𝑥)−𝑓𝑓𝑘𝑘(𝑦𝑦)

𝑓𝑓𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚 �
2

2
𝑘𝑘=1        (10) 

where |𝐴𝐴∗| is the number of elements in set A , 𝑑𝑑𝑑𝑑𝑖𝑖  is 
the Euclidean distance between non-dominated solution 
𝑖𝑖𝑡𝑡ℎ  in the true-Pareto frontier (𝑦𝑦) and the obtained so-
lution (𝑥𝑥), 𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑓𝑓𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  are maximum and mini-
mum values of 𝑘𝑘𝑡𝑡ℎ  objective functions in the true- 
Pareto set respectively. For metric 𝐴𝐴, lower value indi-
cates superiority of the solution set. When all solutions 
converge to Pareto-optimal frontier, this metric is zero 
indicating that the obtained solution set has all solutions 
in the true Pareto set. Since the true Pareto frontier is 
unknown, its approximation is needed. The approximated 
true Pareto-optimal frontier is the result of combining all 
final non-dominated solutions obtained from of all algo-
rithms, applying Goldberg’s Pareto ranking technique to 
the combined solutions, and the first frontier of the com-
bined solutions is the approximated true Pareto-optimal 
frontier. 

The second measure is a spread metric. This measure 
computes the distribution of the obtained Pareto-solu- 
tions by calculating a relative distance between consecu-
tive solutions as shown in (11) and (12). 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐴𝐴) =  
𝑠𝑠𝑠𝑠𝑓𝑓+𝑠𝑠𝑠𝑠𝑙𝑙+∑ ‖𝑠𝑠𝑠𝑠𝑖𝑖−𝑠𝑠𝑑𝑑�‖

|𝐴𝐴|−1
𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑓𝑓+𝑠𝑠𝑠𝑠𝑖𝑖+(|𝐴𝐴|−1)𝑠𝑠𝑑𝑑�
        (11) 

𝑠𝑠𝑠𝑠𝑖𝑖 =  �∑ �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)−𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖+1)
𝑓𝑓𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑓𝑓𝑘𝑘

𝑚𝑚𝑚𝑚𝑚𝑚 �
2

2
𝑘𝑘=1          (12) 

where 𝑠𝑠𝑠𝑠𝑓𝑓  and 𝑠𝑠𝑠𝑠𝑙𝑙  are the Euclidean distances be-
tween the extreme solutions and boundary solutions of 
the obtained Pareto-optimal, |𝐴𝐴| is the number of ele-
ments in the obtained-Pareto solutions, 𝑠𝑠𝑠𝑠𝑖𝑖  is the 
Euclidian distance of between consecutive solutions in 
the obtained-Pareto solutions for 𝑖𝑖 = 1, 2, … , |𝐴𝐴| − 1 , 
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𝑠𝑠𝑑̅𝑑 is the average Euclidean distance of 𝑠𝑠𝑠𝑠𝑖𝑖 , and the 
operator “|| ||” means an absolute value. The value of this 
measure is zero for a uniform distribution, but it can be 
more than 1 when bad distribution is found. 

The third measure is the ratio of non-dominated solu-
tions 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝐴𝐴𝑗𝑗 � which indicates the coverage of one set 
over another. Let 𝐴𝐴𝑗𝑗  be a solution sets (𝑗𝑗 = 1, 2, … , 𝐽𝐽). 
For comparing each 𝐽𝐽  solution set (𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 …∪
𝐴𝐴𝐽𝐽) the ratio of non-dominated measure of the solution 
set 𝐴𝐴𝑗𝑗  to the 𝐽𝐽 solution sets is the ratio of solutions in 
𝐴𝐴𝑗𝑗  that are not dominated by any other solution in 𝐴𝐴, 
which is defined as (13),  where 𝑦𝑦 ≺ 𝑥𝑥 means the ob-
tained solution 𝑥𝑥 is dominated by the true-Pareto solu-
tion 𝑦𝑦. The higher ratio indicates superiority of one solu-
tion set over another. 

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝐴𝐴𝑗𝑗 � =
�𝐴𝐴𝑗𝑗−�𝑥𝑥∈𝐴𝐴𝑗𝑗  | ∃𝑦𝑦∈𝐴𝐴:𝑦𝑦≺𝑥𝑥��

�𝐴𝐴𝑗𝑗 �
             (13) 

All algorithms are coded in Mathlab 7.0. The test 
platform is on Intel Core2 Duo 2.00 GHz under Win-
dows XP with 1.99 GB RAM. The CPU time of each 
heuristic is kept after the program is terminated. 

5.4 Parameter Settings 
To tune MOEA for the MULB problems, an experimental 
design [55] was employed to systematically conduct and 
investigate the effect of each parameter to the responses  

of each heuristic. Recommendations from the past re-
searches, e.g. Kim et al. [36], Chutima and Pinkoompee 
[53], etc. were used as a starting point for parameter set-
tings. Extensive pilot runs were conducted around the 
vicinities of the starting point. The selection for each pa-
rameter setting was based on quality and diversity of so-
lutions. If neither quality nor diversity of solutions was 
significantly different for several settings of the parameter, 
the one with lowest CPU time was selected. Having done 
that, Table 6 shows the parameter settings found to be 
effective for each problem. 

The process of finding appropriate local searches (LSs) 
for MNSGA II and COIN-MA for each problem set is 
worth mentioning. Four local searches that gave good 
performances from previous research [53] were investi-
gated, i.e. Pairwise Interchange (PI), Insertion Proce-
dures (IP), 2-Opt, and 3-Opt. Although LS can be located 
on 3 different places in MA, pilot runs indicated that put-
ting LS after crossover did not help MA improve its per-
formances. Therefore, LSs were placed only after initial 
population and after mutation for MNSGA II and after 
mutation for COIN-MA. Full factorial experiments were 
conducted to test the performances of LSs on each 
problem with 2 replicates. The number of experiment 
runs for each problem of MNSGA II and COIN-MA is 
4*4*2 = 32 and 4*2 = 8 respectively. In total the number 
of runs is 120. ANOVA and Tukey’s multiple range test 
were conducted to test significant different at 0.05 level. 

 
Table 6. Parameter settings for each heuristic 

Parameter settings COIN NSGA II MNSGA II CNSGA II COIN-MA 
Population size 100 100 100 100 100 

 
Number of genera-

tions 

Small = 100 
Medium = 150 

Large = 300 

Small = 100 
Medium = 150 

Large = 300 

Small = 100 
Medium = 150 

Large = 300 

Small = 100 
Medium = 150 

Large = 300 

Small = 100 
Medium = 150 

Large = 300 

Crossover - Weight mapping 
crossover 

Weight mapping 
crossover 

Weight mapping 
crossover 

Weight mapping 
crossover 

Mutation - Reciprocal exchange Reciprocal exchange Reciprocal exchange Reciprocal exchange 
Probability of cross-

over - 0.7 0.7 0.7 0.7 

Probability of muta-
tion - 0.1 0.1 0.1 0.1 

 
Learning coefficient 

(k) 

Small = 0.1 
Medium = 0.2 

Large = 0.2 

 
- 

 
- 

Small = 0.1 
Medium = 0.2 

Large = 0.2 

Small = 0.1 
Medium = 0.2 

Large = 0.2 
Percentage of gen-

erations 
of COIN to NSGA II 

 
- 

 
- 

 
- 

Small = 80:20 
Medium = 60:40 

Large = 60:40 

Small = 80:20 
Medium = 60:40 

Large = 60:40 
 

Table 7. Appropriate local searches 
Problem set MNSGA II COIN-MA 

LS after 
initial population 

LS after 
mutation 

LS after mutation 

1 IP PI IP 
2 PI 3-Opt IP 
3 IP PI PI 
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The LSs appearing in Table 7 were those that per-

formed best with respect to solution quality, diversity, 
and CPU time. It is apparent that best LS combination for 
MNSGA II and COIN-MA depends on the problem set. 
However, for MNSGA II the combination of IP (LS used 
after initial population) and PI (LS used after mutation) 
appear more often than the other. For COIN-MA, IP 
seems to give better performances for small- and me-
dium-sized problems; whereas, PI performed better than 
the others for large-sized problems. As a result, these 
settings were used for MNSGA II and COIN-MA in rela-
tive performance comparison. 
6. Experimental Results 
The behaviour of COIN was demonstrated with the 61 
tasks’ problem as shown in Figure 6. At the beginning 
(generation 1), a number of rather poor feasible solutions 
were created. As the number of generations increased, 
better solutions were found as observed from the moving 
downward trend to the left of the Pareto fronts. It was 
noticeable that not much improvement was gained in the 
first 20 generations. A leaped gain was noticeable from 
generations 20 to 30. However, the improvement was 
less and less after that and the Pareto front remained the 
same after generation 100. 

The behaviour of CNSGA II (COIN plus NSGA II) 
and COIN-MA (COIN plus MNSGA II) were demon-
strated in Figure 7 and Figure 8. Both algorithms al-
lowed COIN to run for 150 generations and the final so-
lutions of COIN were considered as initial solutions of 
NSGA II and MNSGA II. Significant improvement was 
found after COIN was terminated and marginal gains 
from its previous solutions were obtained at the end of 
both algorithms. In other words, NSGA II (in CNSGA II) 
and MNSGA II (in COIN-MA) cannot provide much 
improvement to the final solutions of COIN. 

For the small-sized problem (19 tasks), Table 8 
showed that all algorithms gave the same number of 
workstations. NSGA II performed worst comparing with 
the others. By adding appropriate local search to NSGA 
II, its memetic version (MNSGA II) gained significant 
performance improvement. Although MNSGA II ob-
tained the best spread metric, it was dominated by COIN, 
CNSGA II, and COIN-MA (Figure 9). These three algo-
rithms obtained the same best Pareto front which can be 
seen from their ratio of non-dominated solution (𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁  = 
1) in Table 8. 

For the medium-sized problem (61 tasks), COIN-MA 
obtained highest 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 , followed by CNSGA II, whereas 
the other algorithms have 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 0 (Table 8). This was 
confirmed by Figure 10 meaning that some solutions of 
COIN-MA and CNSGA II were located in the Pareto front. 
MNSGA II outperformed NSGA II, but it was dominated 
by COIN. A big gap between the front of NSGA II and the 

 
Figure 6. Characteristic of COIN 

 

 
Figure 7. Characteristic of CNSGA II. 

 

 
Figure 8. Characteristic of COIN-MA 
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Figure 9. Pareto front of each algorithm (19 tasks) 

fronts of three good performers (COIN, CNSGA II, and 
COIN-MA) was noticed indicating significant gains from 
using these three algorithms. 

8.5

9.0

9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN

Gen 1

Gen 10

Gen 20

Gen 30

Gen 40

Gen 50

8.0
8.5
9.0
9.5

10.0

0 1 2 3R
el

at
en

es
s

Workload Smoothing

Characteristic of CNSGA II

Gen 1

Gen 150

Gen 300

8.0
8.5
9.0
9.5

10.0

0 1 2 3

R
el

at
en

es
s

Workload Smoothing

Characteristic of COIN-MA

Gen 1

Gen 150

Gen 300



Mixed-Model U-Shaped Assembly Line Balancing Problems with Coincidence Memetic Algorithm 

Copyright © 2010 SciRes                                                                                 JSEA 

360 

 
Table 8. Performance comparison 

Problem set Performance Meas-
ure 

NSGA II COIN MNSGA II CNSGA II COIN-MA 

1 

Number of work-
stations 4 4 4 4 4 

Convergence 0.4381 0.1317 0.0603 0.1317 0.1317 

Spread 0.6557 0.5390 0.4948 0.5390 0.5390 

RNDS 0.0000 1.0000 0.4000 1.0000 1.0000 

CPU Time (min) 6 3 13 4 7 

2 

Number of work-
stations 10 9 10 9 9 

Convergence 0.9951 0.8966 0.4419 0.3058 0.0710 

Spread 0.4504 0.4945 0.8038 0.5514 0.4271 

RNDS 0.0000 0.0000 0.0000 0.5000 0.6250 

CPU Time (min) 55 11 86 19 25 

3 

Number of work-
stations 16 16 16 15 15 

Convergence 1.0000 0.9907 0.8645 0.4100 0.0000 

Spread 0.7479 0.6951 0.4882 0.7211 0.6643 

RNDS 0.0000 0.0000 0.0000 0.0000 1.0000 

CPU Time (min) 478 20 1089 32 44 

 
For the large-sized problem (111 tasks), once again, 

COIN-MA performed best and NSGA II was ranked last 
(Figure 11). COIN outperformed NSGA and NSGA II. 
The performance of COIN was improved significantly 
with the cooperation of NSGA II (CNSGA II) and 
MNSGA II (COIN-MA). COIN-MA dominated all algo-
rithms and, from Table 8, its solutions were all in the 
Pareto front (𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 = 1). 

In terms of CPU time (Table 8), COIN used the lowest 
time to achieve the final solutions followed by CNSGA II, 
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Figure 10. Pareto front of each algorithm (61 tasks) 

COIN-MA, NSGA II, and MNSGA II. As a result, COIN 
can be considered as a fast and smart algorithm since it 
can obtain good solutions very fast. It can be used as a 
good benchmark for other algorithms. In addition, if the 
good Pareto front needs to be discovered within a limited 
CPU time, COIN-MA is recommended as an outstanding 
alternative.  

7. Conclusions 
This paper presents a novel evolutionary algorithm  
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Figure 11. Pareto front of each algorithm (111 tasks) 
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namely combinatorial optimisation with coincidence al-
gorithm (COIN) and its variances. The algorithms are 
applied to solve Type I problems of MMUALBP in a 
just-in-time production environment. COIN recognises 
the positive knowledge appearing in the order pairs of the 
good solution by giving a marginal reward (increased 
probability) to its related element of the joint probability 
matrix. In contrast, the negative knowledge found in the 
order pairs of the bad solution, which is often remiss in 
most algorithms, is also utilised in COIN (reduced prob-
ability) to prevent undesired solutions coincidentally 
found in this generation to be recurring in the next gen-
eration. The performances of COIN and its variances are 
evaluated on three objectives, i.e. minimum number 
workstations, minimum work relatedness, and minimum 
workload smoothness. Among these three, minimum 
number of workstations is dominated resulting in only 
the solutions with the same minimum number of work-
stations being considered and can be located on the first 
Pareto front. Experimental results indicate clearly that 
COIN outperforms the well-known NSGA II in all as-
pects. As a result, COIN can be considered as a new al-
ternative benchmarking algorithm for MMUALBP. The 
COIN’s variances (CNSGA II and COIN-MA) show 
significantly better performances than COIN, NSGA II, 
and MNSGA II. Although COIN-MA marginally uses  
more CPU time than CNSGA II, the other performances 
of COIN-MA are better than CNSGA. As a result, if we 
need to find an algorithm to search for an optimal Pareto 
front for MMUALBP, COIN-MA is recommended. 
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