
J. Software Engineering & Applications, 2010, 3: 255-267 
doi:10.4236/jsea.2010.33031 Published Online March 2010 (http://www.SciRP.org/journal/jsea) 

Copyright © 2010 SciRes.                                                                                 JSEA 

255

Information Content Inclusion Relation and its Use 
in Database Queries 

Junkang Feng1, Douglas Salt2 
 

1Business College of Beijing Union University, Beijing, China; 1,2Database Research Group School of Computing, University of the 
West of Scotland, Paisley, UK. 
Email: {junkang.feng, douglas.salt}@uws.ac.uk 
 
Received October 31st, 2009; revised November 19th, 2009; accepted November 25th, 2009. 

 
ABSTRACT 

A database stores data in order to provide the user with information. However, how a database may achieve this is not 
always clear. The main reason for this seems that we, who are in the database community, have not fully understood and 
therefore clearly defined the notion of “the information that data in a database carry”, in other words, “the information 
content of data”. As a result, databases’ capability is limited in terms of answering queries, especially, when users 
explore information beyond the scope of data stored in a database, the database normally cannot provide it. The 
underlying reason of the problem is that queries are answered based on a direct match between a query and data (up to 
aggregations of the data). We observe that this is because the information that data carry is seen as exactly the data per se. 
To tackle this problem, we propose the notion of information content inclusion relation, and show that it formulates the 
intuitive notion of the “information content of data” and then show how this notion may be used for the derivation of 
information from data in a database. 
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1. Introduction 

When we query a database, it is said that we are retrieving 
information from it. This is taken for granted. But, how 
this happens is not always fully understood. As a result, 
when a user queries a database [1], the query can only be 
answered through a “direct match” between the selection 
criteria within a query and data (up to aggregations of the 
data) [2]. In a case of querying a database beyond this, the 
system is unlikely to answer the query. A conventional 
query is, in essence, concerned with only the proposi-
tional content of data [3]. We believe that data carries 
information [4–6]. A piece of data may carry information 
about another, and moreover it may carry information 
about a real world situation [7,8]. Therefore, if we can 
define and formulate the notion of “the information con-
tent of data”, not only may we obtain insight about the 
essence of conventional queries, but also we may derive 
more information beyond “direct match”.  

However, it would appear that the notion of “informa-
tion content of data” is elusive. It has been taken as the 
instance of a database and the information capacity of a 
data schema as the collection of instances of the schema 
[9–11]. Another view on the topic of the relationship 

between information and data is that if it is truthful, 
meaningful data is semantic information [12]. We argue 
that such views miss two fundamental points. One is a 
convincing conception of “information content of data”. 
To equate data with information overlooks the fact that 
data in a database is merely raw material for bearing and 
conveying information. Information must be veridical [7], 
that is, it must relate to a contingent truth [12], while for 
data there is no such requirement. The other is a frame-
work for approaching the information content of data 
whereby to reveal information. 

That is to say, we define the following research ques-
tion that we tackle in this paper: how the “information 
content” of data in a database may be defined with 
mathematical rigor, and how this notion after have been 
defined may help retrieve information through reasoning 
that cannot otherwise be possible through conventional 
queries.  

To answer this research question, we purpose to look at 
the relationships between the information content of data, 
database structure and domain knowledge, which may be 
captured as business rules. These include how tacit do-
main knowledge may be explicitly expressed and used. 

In this paper, we present a novel framework for ap-
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proaching the information content of data in a database, 
which is centered on the notion of information content 
inclusion relation. It helps us understand how a database 
does its job, i.e., providing information, and helps a da-
tabase system improve its capability of providing infor-
mation through inference. The latter is achieved by in-
troducing a variety of information sources such as domain 
knowledge. With the help of external information sources, 
queries that deal with a wider range of information than 
the propositional content of data within a database may be 
answered. The underlying thought of the framework is 
based on a concept of information content of a signal. 
Dretske [4] firstly introduced the concept. Then Xu et al. 
[13] extended Dretske’s idea and gave a more detailed 
definition of the information content of a state of affairs. 
Our thoughts are based on the latter definition. 

The next section gives a number of foundational con-
cepts. Then the framework and a prototype of imple-
mentation are presented in the third section. The last sec-
tion concludes the paper. 

2. Foundational Concepts 

A number of concepts are defined in this section and they 
are foundational for defining the notion of “information 
content inclusion relation”. 

2.1 Information Content 

Fred Dretske [4] gave the definition of information con-
tent as follow: 

“A state of affairs contains information about X to just 
that extent to which a suitably placed observer could learn 
something about X by consulting it.” 

Then he formalized the above as 
“Information Content: A signal r carries the informa-

tion that s is F = The conditional probability of s’s being F, 
given r (and k), is 1(but, given k alone, less than 1).” 

Note that k stands for prior knowledge about informa-
tion source s. 

Here is an example: That John is awarded a grade “A” 
for his Programming course contains the information that 
he has scored 70% or above for that course. 

Dretske’s above definition needs to be extended, 
however, as it does not capture explicitly the crucial role 
that individual objects, situations and events play in car-
rying information, and it is these individual things that 
actually carry information. In the above example, it is the 
individual event namely “John is awarded a grade “A” for 
his Programming course” that carries the information 
“John has scored 70% or above for that course”. Dretske’s 
definition is based on probability, and a single event does 
not have a probability [7], and a type of events has. To 
extend Dretske’s definition and therefore make such a 
concept accurate, let us define a few very basic notions 
first. 

2.2 Random Variables 

Definition 1 
Let s be a selection process under a set C of conditions, 

O a possible outcome of s, O can therefore be of one of a 
number values, i.e., the possible outcomes. O is said to be 
a random variable. 

That is to say, a random variable is a variable that can 
hold one of a number of possible values at a time and 
which one of the values to be hold is determined randomly. 
For example, in a database, table Students contains at-
tributes such as ID, Name and DOB. A random variable 
could be any one attribute or a collection of attributes of 
the Students table in the sense that for a randomly chosen 
tuple, the value of its ID cannot be pre-determined and can 
only be one of all the possible values for ID. 

2.3 Random Events 

Definition 2 
Let s be a selection process under a set C of conditions, 

O a possible outcome of s, and such an outcome is called a 
state, and E the power set of all the possible values for O, 
i.e., all the states, X is a random event if E X and there is 
a probability of X, i.e., P(X). 



For example, to select a student record from table Stu-
dents randomly in database and the record being con-
cerned with a particular student is a random event. 

A random event has to occur within a “probability 
space”, which we define below: 

Definition 3 
Let s be a selection process under a set C of conditions, 

O a possible outcome of s, E the power set of all the pos-
sible values for O, i.e., all the states, and E Xi for i = 1,…, 
n, Ps is the probability space of the random events Xi for i 
= 1,…, n, if Ps = {P(X1), P(X2),…, P(Xn)} and ∑P(Xi) = 1. 



Note that this notion is also useful for explaining what it 
means by “probability distribution” and the change of 
“probability distribution”, which is necessary and suffi-
cient for information to flow. 

2.4 Particulars of Random Events 

Furthermore, as mentioned earlier, Xu et al. pointed out 
that even though Dretske’s definition was plausible, the 
role that individual events play in our looking at the in-
formation content of a state of affairs was overlooked. To 
amend this, Xu et al. [13] put forward a definition of 
particulars of a random event as follow: 

Definition 4 
Let s be a selection process under a set C of conditions, 

X a random event concerning s, Xi an instance of s, Xi is a 
particular of X if Xi is in a state Ω, written Ω = state(Xi), 
and X Ω. 

As in the example above, to select a student record from 
table Students is a random variable, the record happens to 
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be John’s is a random event, and one occurrence of John’s 
record is a particular of the random event. 

3. Information Content Inclusion Relations 

Having defined the foundational concepts, we can now 
define the notion of “information content inclusion rela-
tion”. As this notion formulates the intuitive notion of “the 
information content of a signal/data”, we formulate the 
latter first. 

3.1 Information Content of a State of Affairs  

Data in a database may be seen as a type of signals, and as 
said earlier data may be seen as random events and ran-
dom variables. A random event is also informally called 
state of affairs by Dretske in [4]. 

Definition 5 
Let s be some selection process or mechanism the result 

of which is reduction of possibilities, and therefore be an 
information source, and k prior knowledge about s1 

Let r be a random event, and ri a particular of r at time ti 
and location li; 

Let s’s being F be a random event concerning s, and sj 
some particular of s’s being F at time tj and location lj; 

ri carries the information that there must be some sj 

existing at time tj and location lj, that is, the state of affairs 
of s is F at tj and lj, if and only if the conditional prob-
ability of s’s being F given r is 1 (and less than 1 given k 
alone).  

Definition 6 
That a particular ri carries the information that a par-

ticular sj exists can also be termed that the information 
content of ri includes sj, or in other words, sj is in the 
information content of ri. 

3.2 Information Content Inclusion Relations  
(IIR) 

The term, information content inclusion relation, was 
firstly put forward by Feng in 1998 [14]. We now give an 
amended definition below: 

Definition 7 
Let X and Y be a random event respectively, there exists 

an information content inclusion relation, IIR for short, 
from X to Y, if every possible particular of Y is in the 
information content of at least one particular of X. 

3.3 Types and Sources of IIR 

We observe that there are four types of IIR in terms of 
where a state of affairs takes place, and we list them and 
some of their sources in the table below: 

Information Inclusion  
Relation - 

Information content of X 
includes Y, denoted IIR(X, Y)

Sources 

X, Y are random events both in 
the database world 

Syntactic relations between 
data constructs and data values

X is a database random event. Y 
is random event in the real world

“Semantic values” [15] of data

X is a real world random event. 
Y is a database random event 

Rules and processes of data-
base design and database op-

erations 

X,Y are random events both in 
the real world 

Relations between real world 
objects and events, business 

rules 

The first two types of IIRs above constitute the infor-
mation content of data in a database. Furthermore, we 
observe that for a database to provide information and 
nothing else, all the four types and all IIRs must be con-
sistent with one another. To elaborate this observation 
would require much more work, and thus we leave it till 
another paper later. 

3.4 Rules for Inferences on and of IIR 

IIR can be formally reasoned about. Modifying those 
presented in Xu et al [13], we present the following in-
ference rules for reasoning about IIR. 

“Sum”: If Y = X1∪X2…∪Xn, then IIR(Xi, Y) for i = 
1,…,n. 

This rule says that if it is the disjunction of a number of 
random events, then a random event X is in the informa-
tion content of any of the latter. A trivial case is where X 
and Y above are not distinct. The rest of the rules can be 
interpreted similarly. 

“Product”: If X = X1∩X2 …∩Xn, Y = Xi for i = 1, …, n, 
then IIR(X, Y). 

Transitivity: If IIR(X, Y), IIR(Y, Z), then IIR(X, Z). 
Union: If IIR(X, Y), IIR(X, Z), then IIR(X, Y∩Z). 
Augmentation: If W = W1∩W2…∩Wn, Z is the product 

of a subset of {W1, W2,…, Wn}, IIR(X, Y), then IIR(W∩X, 
Z∩Y). 

Decomposition: If IIR(X, Y∩Z) then IIR(X, Y), IIR(X, 
Z). 

The above set of rules is proven sound and complete. 
The proofs can be found in [13]. 

4. Preparing the Information Base for  
Database Queries 

Given a set of IIRs, all IIRs that are logically implied by 
them and therefore are derivable, which we call the “clo-
sure” of the former, constitute the information base for 
answering queries that are posed to a database. 

4.1 The Closure of a Set of IIRs 

Definition 7 1 Note that k here goes only as far as what counts as a possibility involved 
in s, and it is not concerned with whether an observer is able to learn and
actually learns something about s by consulting something else such as r.

Let F be a set of IIRs. F closure (denoted F+) is the set of 
IIRs logically implied by F. F  F+. If F= F+, F is called 
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a complete set of IIRs in the sense that no more IIRs that 
are logically implied by F can be derived from it by using 
the IIR inference rules. 

The F above are called the original IIR, which are 
identified by applying the definition of IIR directly to a 
variety of sources such as the real world, database systems 
and domain knowledge, and which are not those that are 
derivable by using the inference rules on known IIR. For 
example, the referential integrity of a relational database 
is a kind of constraints in a relational database, from 
which, original IIR can be derived. 

To compute F+ given F, we can compute instead X+ for 
all X, where X is a random event, which is normally easier 
than computing F+ directly. Once X closure is known, to 
know if IIR(X, Y) holds given F (i.e., whether it is implied 
by F) is a matter of verifying if Y is in the X closure or not. 
If so, IIR(X, Y) holds. Otherwise, as far as the given F 
goes, IIR(X, Y) does not exist. 

4.2 IIR Closure of a Random Event 

All random events that are derivable by using the IIR 
inference rules on a given set of original IIR and therefore 
are in the information content of the given random event 
constitute the IIR closure of the random event. For ex-
ample, “Student ID = B001” is a random event, and “Stu-
dent Address = 1 High Street” is in its information content. 
Likewise, “Student Postcode = PA1 2BE” is in that of 
“Student Address = 1 High Street”. Through Transitivity 
(see Subsection 3.4), “Student Postcode = PA1 2BE” is 
also in the information content of “Student ID = B001”. 
All such random events as “Student Postcode = PA1 2BE” 
and “Student Address = 1 High Street” would constitute 
the IIR closure of “Student ID = B001”. Let X denote 
“Student ID = B001”, then we use X + to done the IIR 
closure of X. 

Figure 1 shows how the information base for answer-
ing queries is identified and formulated by means the 
foundational concepts, IIR and inference rules for IIR. 

5. A System for Querying a Database with  
IIR 

With the idea of IIR and other associated notions just 
presented, we have created a system for reasoning about 
the information content of data whereby to help derive 
information in a database by drawing on Wang and Feng 
[16] and Eessaar [17]. Intuitively, the system works like 
this. 

Let us re-iterate that to select a student from table Stu-
dents is seen as a random event, and the term “particulars 
of a random event” is used to describe a single occurrence 
of a random event. For example, student John’s record 
happens to be selected from table Students, and this par-
ticular occurrence of John’s record being selected is a 
“particular” of the random event that the record happens 
to be John’s. A random variable may be seen as an ag-
gregation of random events. In a table, an attribute can be  

 

Random Events that may 
have IIR Relations

IIR Closures as the 
Information Base for 

Database Queries 

Information Content
of Data

Particulars of random events 

Random 
Variables

Captures

Individual occurrences 
of a random event is 
called

Data are seen as

An aggregation of 
random events may 
form

Data 

Formulation
of Data

 

Figure 1. The information base for database queries 
 

seen as a random variable because it normally contains 
many random events in it. For example, Student Name is a 
random variable, which contains Student Name being 
John and Student Name being Herman, among others. The 
IIR closure of Student ID being B001, for example, con-
tains Student Name being “John”, Student Major being 
“history” and Class Name being “BD445”. If a user que-
ries about the class name about John, the query can be 
answered by searching in this IIR closure of Student ID 
being B001. That is, once IIR closures are known, queries 
can be checked against these closures. This way some 
information that cannot be found by conventional queries 
may be discovered. 

Figure 2 illustrates the structure of our experimental 
system. It consists of three main parts. The upper part is 
where users pose queries to the system. The middle part is 
the Datalog implementation of information content rea-
soning. The lower part shows a variety of sources of 
original IIR, namely domain knowledge and the syntactic 
and semantic properties of the database that are inherent to 
it. 

The form of the queries is the conventional SQL. Most 
programming efforts were made on computing the IIR 
closures. The core algorithm is based on the IIR rules. 
Original IIRs were then added into the unit. This is one of 
the most difficult tasks in the programming required for 
the construction of the system as when more original IIR 
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were discovered more computation capability has to be 
added into the program such that the closures can con-
tinually increase accordingly. The output of the unit is 
simple however, which are IIR closures. User queries, 
then, are checked against these closures. Thus, more in-
formation can be discovered through queries. 

The process of discovering original IIRs could be hard. 
There is a variety of sources out there that could poten-
tially contain huge amount of original IIRs [13]. The two 
main sources though are domain knowledge and the 
properties of the database per se. The latter can be further 
divided into those of semantic and syntactic levels re-
spectively. Hereinto, the syntactic level includes plenty of 
constraints such as data dependencies, integrity rules and 
the cardinality ratio between tables. 

We now wish to demonstrate how the experimental 
system was created using IIR. The previous version of the 
system was coded in Oracle’s PL/SQL [18]. It is now 
coded in the deductive database language, Datalog 
(Datalog Learning System, Universidad Complutense de 
Madrid, System v.1.6.2). First, we show how our IIR 
inference rules may be implemented by using Datalog in 
order to make use of the deduction power of it. 

5.1 Datalog Implementation of IIR Inference  
Rules 

It will now be shown that the above inference rules may be 
coded as rules (with example facts) in the Datalog lan-
guage. 

5.1.1 Conventions 
1) Random Events 

Any lower case literal is considered a constant in 
Datalog. We shall conflate these to random events or 
products of random events. In general, a Datalog constant, 
x ≡ X, where x is a Datalog constant, and X is a random 
event, which in the case of a database could be an attribute 
being a particular value extant in a database. 

2) Information Content Inclusion Relation (IIR) 
IIRs may be expressed as a relationship between either 

random events (Datalog constants), or Datalog variables, 
where the Datalog variable, when evaluated will contain a 
Datalog constant, and therefore, by extension a represen-
tation of a random event. We shall adopt the convention of 
using the predicate iir to indicate or derive an IIR between 
Datalog constants. Hence these will have the form: 

iir(a,b). 

iir(X,Y). 

iir(a,X). 

iir(X,a). 

where a and b are Datalog constants, and X and Y are 
Datalog variables. 
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Figure 2. A system for reasoning about information content 
of data in a database 

 
3) Products of Random Events 
If we have IIR(A∩C∩D,B), then A∩C∩D represents 

the product of random events A, C and D containing the 
information content of random event B. This product may 
be represented in Datalog in the following manner: 

product(pACD,a,c,d). 

where we have adopted the following conventions, a, c, d 
and pACD are Datalog constants. We assume a ≡ A, c ≡ C, 
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and d ≡ D, and the single Datalog fact product(pACD, a, c, 
d)is equivalent to  

pACD=A∪C∪D. 

4) Sums of Random Events 
If we have L=P∪Q∪A, then random event L repre-

sents the sum of random events P, Q and A. That is, we use 
L to refer to a random event where at least one of P, Q and 
A is extant. We choose to represent the sum in Datalog in 
the following manner: 

sum(l,p). 
sum(l,q). 
sum(l,a). 

where we have adopted the following conventions l, p, q 
and a are Datalog constants, and we assume that l ≡ L, p ≡ 
P, q ≡ Q and a ≡ A. The three facts above may be con-
sidered as L=P∪Q∪A. The reason we have adopted this 
convention is that it allows the construction of sums 
containing two or more than two random events, and 
allows their eventual evaluation as binary relations, be-
tween any two random events. As Datalog is just the 
evaluation of a series of Horn clauses, then such structures 
are evaluated in conjunction for validity. This is exactly 
the effect we desire as random events that may happen, 
may be considered as unions of the state space for those 
random events, and thus may be treated as conjunctions 
happening across all random event closures. This also 
makes the coding in Datalog considerably simpler and 
more elegant. 

5.1.2 IIR Inference Rules 
1) “Sum” Rule 

In Subsection 3.4, the “Sum” rule was given: If Y = 
X1∪X2…∪Xn, then IIR(Xi, Y) for i = 1,…, n. With the 
convention above, to code the “Sum” in Datalog, we use 
the rule: 

iir(X, Y):-sum(Y, X). 

This indicates that the information content of the sum Y 
is contained in any of the sum’s members, denoted X. So 
given 

sum(l, p). 
sum(l, q). 
sum(l, a). 

if we run the query ‘iir(X,l)?’, we get the response: 

{ 
iir(a,l), 
iir(p,l), 
iir(q,l) 

} 
Info: 3 tuples computed. 

This indicates iir(a,l), iir(p,l) and iir(q,l), respectively. 
2) “Product” Rule 
In Subsection 3.4, the “Product” rule was given: If X = 

X1∩X2 …∩Xn, Y = Xi for i = 1, …, n, then IIR(X,Y). With 
the convention given earlier for products, in 

product(pEG,e,g). 
e, and g are Datalog constants, pEG represents the 

product of random events E and G, pEG = E∩G 
The “Product” rule may now be represented by the 

Datalog rule as follows: 

iir(P,X):-product(P,X,A). 
iir(P,X):-product(P,A,X). 

This depicts, that any product P, has an IIR with any 
member of that product. The variable A represents a place 
holder, indicating to Datalog that for any matching 
predicates, then this variable is not to be returned in the 
query. In answer to the query, iir(pEG,X), asking what is 
in the information content of product of random event, E 
and G, Datalog returns the following: 

{ 
iir(pEG,e), 
iir(pEG,g) 

} 
Info: 2 tuples computed. 

These indicate IIR(E∩G,E) and IIR(E∩G,G) respec-
tively. 

In general, to represent the product rule for a product 
consisting of n random events, then an additional n rules 
are required to show the product rule for a set of random 
events. 

3) Transitivity 
Assuming that we have IIR(C,A), IIR(A,B) which  may 

be represented by the following Datalog facts: 

iir(c,a). 
iir(a,b). 

where we have adopted the following conventions, c, a, 
and b are Datalog constants, X, Y and Z are Datalog 
variables. We assume c ≡ C, a ≡ A, and b ≡ B. The rule 
required in Datalog to represent transitivity may now be 
coded in Datalog as the following: 

iir(X,Y):-iir(X,Z),iir(Z,Y). 

and iir(X,Y)represents an IIR between two random events 
X and Y. This rule states that if any random event contains 
in its information content a second random event, which 
in turns contains in its own information content a third 
random event, then the first has the third in its information 
content. In answer to the query, iir(c,X), asking what is in 
the information content of random event, C, Datalog re-
turns the following: 

{ 
  iir(c,a), 
  iir(c,b) 
} 
Info: 2 tuples computed. 

These indicate IIR(C,A) and IIR(C,B) respectively, and 
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the latter is arrived at due to Transitivity. 
4) Union 
In Subsection 3.4, the Union was given: If IIR(X, Y), 

IIR(X, Z), then IIR(X, Y∩Z). 
We now need to represent the relationship between 

these random events in Datalog, which may be done with 
the following facts: 

iir(a,b). 
iir(a,c). 
product(pCB,c,b). 

c, b, and a are Datalog constants. We assume c ≡ C, b ≡ B, 
and a ≡ A, and pCB represent the products of the random 
events C and B, such that pCB=C∩B. 

We now need to create a Datalog rule which will link 
the product of random events C and B to random event A. 

iir(X,P):-product(P,Y,Z),iir(X,Y),product(P,Y,Z),iir(X
,Z). 

This will return all products of random events that have 
contain a random event with an existing IIR with the first 
argument. 

In answer to the query, iir(a,X), asking which random 
events and products of random events are in  the infor-
mation content of random event A,  Datalog returns the 
following: 

{ 
  iir(a,b), 
  iir(a,c), 
  iir(a,pCB) 
} 
Info: 3 tuples computed. 

These indicate IIR(A,B), IIR(A,C) and IIR(A,B∩C) re-
spectively, and IIR(A,B∩C) is arrived at due to the Union 
rule. 

5) Augmentation 
Augmentation is a little more involved. Let us as-

sumeW=X∩Y∩Z, M = X∩Y, and IIR(A,B). We code these 
in Datalog as the following facts: 

iir(a,b). 
product(m,x,y). 
product(w,x,y,z). 

where w, x, y, z, a and b are Datalog constants. 
We assume w ≡ W, x ≡ X, y ≡ Y, z ≡ Z, a ≡ A, b ≡ B, and 

iir(a,b)represents IIR(A,B), product(m,x,y) represents M = 
X∩Y, product(w,x,y,z) represents W=X∩Y∩Z. Then ac-
cording to Augmentation, if IIR(A,B), M is a subset of W, 
then IIR(A∩W, B∩M). In general, to implement Aug-
mentation we must use the following Datalog rules: 

iir(P,W1∩Y):-iir(X,Y),product(W,W1,W2,W3),produ
ct(P,X,W). 

iir(P,W1∩Y):-iir(X,Y),product(W,W1,W2,W3),produ
ct(P,W,X). 

For W2 and W3 we would have a similar pair of Datalog 
rules. 

If there are further products containing differing num-
bers of random events, then augmentation rules must be 
created for these as well.  In general there will be two 
additional rules for each defined product of n members. 

The two rules above effectively gives IIR from the 
product M to a product between random events W and Y. 
We need some further rules to show these as binary rela-
tions, to allow the further uncovering of available IIR. 
This is allowable as we have no other iir predicates with 
three arguments, so only those relationships, arising from 
the representations of random events being involved in 
augmentation will be evaluated. So to derive binary rela-
tionships the additional rules required are: 

iir(P,W):-iir(P,W∩Y). 
iir(P,Y):-iir(P,W∩Y). 

This states, that the first argument, i.e. a random event, 
contains the information content, of another random event, 
if that latter random event is in a product derived from the 
augmentation rules above.  There are two instances of the 
rule to allow both parts of the product to be uncovered. In 
answer to the query, iir(m,X), asking which random 
events are contained in the information content of random 
event M, Datalog returns the following:  

{ 
  iir(m,b), 
  iir(m,w) 
} 
Info: 2 tuples computed. 

Indicating IIR(M,B) and IIR(M,W), respectively. Note 
that the product W will be further decomposed by the 
product and decomposition rules. 

6) Decomposition 
According to Decomposition, if IIR(D,E∩G), then 

IIR(D, E) and IIR(D, G). This may now be coded in 
Datalog as follows. 

iir(d,pEG). 
product(pEG,e,g). 

where d, e, g and pEG are Datalog constants. We assume 
d ≡ D, e ≡ E, and g ≡ G, product(pEG,e,g) is equivalent to 
pEG=E∩G. To decompose this product we must use the 
Datalog rules: 

iir(X,Y):-product(P,Y,A),iir(X,P). 
iir(X,Y):-product(P,A,Y),iir(X,P). 

This states, that the first argument, i.e., a random event, 
contains the information content, of another random event, 
if that latter random event is in a product which is in the 
information content of the random event, represented by 
the first argument.  There are two instances of the rule to 
allow for unordered evaluation. In answer to the query, 
iir(d,X), asking which random events are contained in the 
information content of random event D, Datalog returns 

Copyright © 2010 SciRes.                                                                                 JSEA 



Information Content Inclusion Relation and its Use in Database Queries 262 

the following: 

{ 
  iir(d,e), 
  iir(d,g), 
  iir(d,pEG) 
} 
Info: 3 tuples computed. 

These indicate IIR(D,A), IIR(D,G) and IIR(D,E∩G), 
respectively. Note that the first two are created due to 
Decomposition. 

We will now consider two examples herein. Firstly we 
shall consider a notional group of IIR and determine 
whether we can elaborate the closure, i.e., all the pertinent 
(i.e., logically implied) IIR arising from a set of specified 
IIR. Secondly we will consider a more real world example 
of a student database. 

5.2 An Example of IIR Closures 

Example 1 
For our first example, we assume that the following IIR 

are given: 
F={IIR(A∩B,C), IIR(C,A), 
IIR(B∩C,D), 
IIR(A∩C∩D,B), 
IIR(D,E∩G), 
IIR(B∩E,C), 
IIR(C∩G,B∩D), 
IIR(C∩E,A∩G) } 
In addition, we assume following random events (Note 

that some of them are products/sums of some others): 
W=X∩Y∩Z 
M=A∩W, 
L=P∪Q∪A, 
T=B∩D∩W 
In which as said before IIR(X,Y) is a simplified version 

of I(X)ЭY. Each upper-case letter stands for a random 
event in a notional database, extant at given spatial and 
temporal coordinates. That is, each random event is an 
entity in a database containing a specific set of attribute 
values. Additionally we adopt the convention that any 
intersection of random events, such as A∩B  implies that 
both random events must have, or should have occurred 
concurrently, which results in a product of random events. 
Lastly the union of random events indicates that at least 
one of any of the random events in the union takes place, 
which results in a sum of random events.  

Supposing we wanted to know the IIR closures of all 
combinations of the database entities (i.e., random events) 
based on the above given IIR. It has been proved by Xu et 
al, 2008 that for the above IIR, the IIR inference rules 
given in Subsection 3.4 are sound and complete to derive 
all IIR that are logically implied by a given set of IIR. 

We are now in a position to code the example, specified 
above. Here is the listing of the code. 

1) Example Code 

% Purpose of this program is to try and 
% generate the IIR closure for 
% specific set of random events given 
% the original IIR  
 
% facts 
% ===== 
% Here is the IIR we wish to represent 
% in Datalog 
 
% 1. IIR(A∩B,C) 
% 2. IIR(C,A) 
% 3. IIR(B∩C,D) 
% 4. IIR(A∩C∩D,B)  
% 5. IIR(D,E∩G) 
% 6. IIR(B∩E,C) 
% 7. IIR(C∩G,B∩D),  
% 8. IIR(C∩E,A∩G) 
% 9. W = X∩Y∩Z 
% 10. M = W∩A 
% 11. L = P∪Q∪A 
  
% To find the closure BDW+ 
 
%12. T = B∩D∩W 
 
% The number of Datalog constants we 
% employ are: 
% t, a, b, c, d, e, g, l, m, n, w, x, 
% y, z, pAB, 
% pBC, pACD, pEG, pBE, pCG, pBD, pCE, 
% pAG 
% 23 constants in total 
 
% 1. IIR(A∩B,C) 
product(pAB,a,b). 
iir(pAB,c). 
 
% 2. IIR(C,A) 
iir(c,a). 
 
% 3. IIR(B∩C,D) 
product(pBC,b,c). 
iir(pBC,d). 
 
% 4. IIR(A∩C∩D,B)  
product(pACD,a,c,d). 
iir(pACD,b). 
 
% 5. IIR(D,E∩G) 
product(pEG,e,g). 
iir(d,pEG). 
% 6. IIR(B∩E,C) 
product(pBE,b,e). 
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iir(pBE,c). 
 
% 7. IIR(C∩G,B∩D),  
product(pCG,c,g). 
product(pBD,b,d). 
iir(pCG,pBD). 
 
% 8. IIR(C∩E,A∩G) 
product(pCE,c,e). 
product(pAG,a,g). 
iir(pCE,pAG). 
 
% 9. W = X∩Y∩Z 
product(w,x,y,z). 
% 10. M = W∩A 
product(m,w,a). 
 
% 11. L = P∪Q∪A 
sum(l,p). 
sum(l,q). 
sum(l,a). 
 
% The final rule expresses the product 
% BDW+. This allows us 
% to find the closure for these three 
% random events. 
 
%12. T = B∩D∩W 
product(t,b,d,w). 
 
% rules 
% ===== 
 
% product 
 
% for a product of 2 members  
 
iir(P,X):-product(P,X,A). 
iir(P,X):-product(P,A,X). 
 
% for a product of 3 members 
 
iir(P,X):-product(P,X,A,B). 
iir(P,X):-product(P,A,X,B). 
iir(P,X):-product(P,A,B,X). 
 
% Note: variables A and B are place 
% holders in the above  
% predicates - we are not interested 
% in their content. 
 
% We need no further product rules as 
% there are no products 
% containing more than 3 random  
% events. 

% transitivity 
 
iir(X,Z):-iir(X,Y),iir(Y,Z). 
 
% union 
 
iir(X,P):-product(P,Y,Z),iir(X,Y),product(P,Y,Z),iir(X

,Z). 
 
% augmentation 
 
% We have products of 2 and 3 members  
% so need two sets 
% of augmentation rules. 
% each of these requiring 2 (n +2) 
% rules where n is the number in  
% the product and two sets allows 
% any ordering. 
 
iir(P,W):-product(P,X,W),iir(X,Y),product(W,W1,W2,

W3). 
iir(P,W):-product(P,W,X),iir(X,Y),product(W,W1,W2,

W3). 
iir(P,W1):-product(P,X,W),iir(X,Y),product(W,W1,W

2,W3). 
iir(P,W1):-product(P,W,X),iir(X,Y),product(W,W1,W

2,W3). 
iir(P,W2):-product(P,X,W),iir(X,Y),product(W,W1,W

2,W3). 
iir(P,W2):-product(P,W,X),iir(X,Y),product(W,W1,W

2,W3). 
iir(P,W3):-product(P,X,W),iir(X,Y),product(W,W1,W

2,W3). 
iir(P,W3):-product(P,W,X),iir(X,Y),product(W,W1,W

2,W3). 
 
iir(P,Y):-iir(X,Y),product(P,W,X),product(W,W1,W2,

W3). 
iir(P,Y):-iir(X,Y),product(P,X,W),product(W,W1,W2,

W3). 
 
iir(P,W):-product(P,X,W),iir(X,Y),product(W,W1,W2

). 
iir(P,W):-product(P,W,X),iir(X,Y),product(W,W1,W2

). 
iir(P,W1):-product(P,X,W),iir(X,Y),product(W,W1,W

2). 
iir(P,W1):-product(P,W,X),iir(X,Y),product(W,W1,W

2). 
iir(P,W2):-product(P,X,W),iir(X,Y),product(W,W1,W

2). 
iir(P,W2):-product(P,W,X),iir(X,Y),product(W,W1,W

2). 
 
iir(P,Y):-iir(X,Y),product(P,W,X),product(W,W1,W2). 
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iir(P,Y):-iir(X,Y),product(P,X,W),product(W,W1,W2). 
 
 
% sum 
 
% rules (Note the variables A and B are 
% place holders). 
% this is a sum of 3 members. 
 
iir(X,Y):-sum(Y,X). 
 
We will now attempt to generate the closure for a spe-

cific product of B∩D∩W. We have represented this prod-
uct by assigning this product to random event T. This 
generates the following set of tuples, in response to the 
query iir(t,X): 

{ 
  iir(t,a), 
  iir(t,b), 
  iir(t,c), 
  iir(t,d), 
  iir(t,e), 
  iir(t,g), 
  iir(t,l), 
  iir(t,m), 
  iir(t,pAB), 
  iir(t,pAG), 
  iir(t,pBC), 
  iir(t,pBD), 
  iir(t,pBE), 
  iir(t,pCE), 
  iir(t,pCG), 
  iir(t,pEG), 
  iir(t,w), 
  iir(t,x), 
  iir(t,y), 
  iir(t,z) 
} 
Info: 20 tuples computed. 

That is, all defined random events and their various 
products are in the information content of the product 
B∩D∩W, as expected, except for the additional members 
of the sum L. 

5.3 What We Learnt from This Example 

This example shows that we can use Datalog to implement 
all the inference rules that we developed for carrying out 
deduction on IIR. Moreover, this example also demon-
strates that IIR closures can be computed by using Datalog. 
In the section that follows, we give the algorithm for 
computing IIR closures. 

5.4 An Algorithm for Computing IIR Closures 

We now give an algorithm for uncovering logically 

implied IIR as pseudo logic below. 
Select random events 
Create a product of the random events (as these events 

may be considered to have occurred simultaneously). 

LOOP until  
OR any iteration gives the same product as be-
fore  
OR all available random events are included 
OR no further random events can be obtained for 
the product 
OR any remaining IIR do not contain any subset 
of the current product 

IF any random event of the product has 
an IIR transitive relation with further 
random events 

Use the union rule to add these 
further random events to the 
product of random events 

END-IF 
IF any single random event and any 
sub-product of the product may be used 
in the IIR augmentation rule 

Use the augmentation rule to 
add each member of the 
product to the product of ran-
dom events. 

END-IF 
IF any random event of the product 
belongs to a union of random events 

Use the sum rule and the union 
rule to add the sum to the 
product of random events 

END-IF 
END-LOOP 

The result product of random events is the closure of 
the set of original random events that was selected at the 
beginning of the algorithm. 

Note the algorithm implicitly uses the decomposition 
rule, and product rule, when utilizing sub-products of the 
resultant random event product string. 

5.5 An Example of Querying a Database Using 
IIR Closures 

Example 2 
The next example is taken from Wu and Feng [17], but 

we use our Datalog system to complete the job. This 
example is concerned with how to derive IIR upon an 
example of a real-world database. We show how our 
Datalog system accomplishes this task. Functional de-
pendencies between attributes constitute a basis for IIR 
between values of attributes. The reasoning behind this is 
that an instance, i.e., a tuple of an entity (represented by a 
relation) such as student, class and enrolment can be seen 
as a collection of particulars of some random events, and 
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moreover the random events may be involved in certain 
IIR. Some IIR are captured by functional dependencies 
between attributes. For example, attribute student id 
functionally determines attributes surname, major, level 
(or year) and age. Attribute value “student id being 100” 
is a random event, so is “surname being Smith”, and 
moreover, the latter is in the information content of the 
former, which can be denoted as IIR(“student id being 
100”, “surname being Smith”). This IIR is underpinned 
by the aforementioned functional dependency.    

We now show how this example is coded up in Datalog 
as follows: 

% Facts 
 
student(100,smith,history,gr,25). 
student(150,parks,geology,so,21). 
student(200,baker,finance,gr,24). 
student(250,glass,history,sn,19). 
student(300,baker,geology,sn,20). 
student(350,rosso,finance,jr,18). 
student(400,bryan,geology,sr,22). 
 
class(ba200,tth9,sc110). 
class(bd445,mwf3,sc213). 
class(bf410,mwf8,sc213). 
class(cs150,mwf3,ea304). 
class(cs250,mwf1,eb210). 
 
enrollment(100,bd445). 
enrollment(150,ba200). 
enrollment(200,bd445). 
enrollment(200,cs250). 
enrollment(300,cs150). 
enrollment(400,ba200). 
enrollment(400,bf410). 
enrollment(400,cs250). 
enrollment(450,ba200). 
 
businessRule(history,swimming). 
businessRule(geology,diving). 
businessRule(finance,basketball). 
 
% rules 
iir(X,Y):-student(A,B,X,C,D),businessRule(X,Y). 
 
% functional dependencies 
 
iir(X,Y):-student(X,B,C,D,E),enrollment(X,Y). 
iir(X,Y,Z):-enrollment(A,X),class(X,Y,Z). 
 
result(A,B,C,D,E,F,G,H,I):- 
student(A,B,C,D,E), 
iir(A,F), 
iir(F,G,H), 
iir(C,I). 

If the program is run with the following query: 
result(A,B,C,D,E,F,G,H,I). 
It gives the following results: 

{ 
result(100,smith,history,gr,25,bd445,mwf3,sc213,swim-

ming), 
result(150,parks,geology,so,21,ba200,tth9,sc110,diving), 
result(200,baker,finance,gr,24,bd445,mwf3,sc213,basket-

ball), 
result(200,baker,finance,gr,24,cs250,mwf1,eb210,basket-

ball), 
result(300,baker,geology,sn,20,cs150,mwf3,ea304,div-

ing), 
result(400,bryan,geology,sr,22,ba200,tth9,sc110,diving), 
result(400,bryan,geology,sr,22,bf410,mwf8,sc213,div-

ing), 
result(400,bryan,geology,sr,22,cs250,mwf1,eb210,div-

ing) 
} 
Info: 8 tuples computed. 

These are IIR closures arrived at of “Student ID being 
100”, “Student ID being 150”, etc. respectively, which 
constitute the “information base” (see Figure 1) for que-
ries. If a query is looking for “all the students that like 
diving”, by checking the IIR closures, we get students 
Parks, Baker and Bryan. 

5.6 What We Learnt from This Example 

This example demonstrates that our approach works on 
real world situations. We code tuples in a database as 
Datalog “facts”, and identify part of original IIR from 
functional dependencies between attributes of a relation, 
which are then used in coding Datalog “rules”. Then IIR 
closures are computed, which serve as the information 
base for answering queries. Our Datalog system works 
exactly as expected. 

6. Contributions of This Work 

We observe that this work makes the following contribu-
tions to the field of databases. Fist of all, a justifiable 
approach to defining the notion of the “information con-
tent” of data with mathematical rigor was developed. This 
approach appears superior to intuitive approaches that we 
have seen thus far in the literature that is based on equat-
ing data with information. 

Secondly, we have shown that reasoning about infor-
mation content of data (rather than data per se) is possible, 
and this can be achieved by identifying a set of sound 
inference rules, and then these rules are implemented with 
a logic based system, i.e., Datalog. 

Thirdly, we also have demonstrated that information 
content based reasoning can go beyond “direct match” 
that conventional query answering employs. The former 
reveals information that the latter cannot find. 
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Therefore, in summary, we have constructed and tested 
an innovative approach to a fundamental problem in the 
field of databases, namely the information that data in a 
database carry. This may be seen constituting some sig-
nificant value in further developing database theory and 
we also have shown that this is also applicable to real 
world problems. 

7. Conclusions 

In this paper, we have proposed a novel approach to the 
information content of data in a database. We gave a set of 
basic concepts and described an experimental system that 
makes use of this notion. A number of examples were 
used to test our system. With information sources outside 
a database imported into the system, the information 
content of a random event (data values) within the data-
base expanded dramatically. Users could make the most 
of the information content of data by posing queries. Thus, 
more information can be discovered than conventional 
queries. The increase of random events’ closures is based 
on the boost in original IIR and the inference capability 
using IIR. Identification of original IIR rules could be 
hard due to wide range of sources outside database. 
However, once original IIR have been identified and then 
integrated into the computing unit of our system, the 
system provides a powerful engine for users to query a 
database. Our experiment shows that with the IIR infer-
ence capability hidden information within database can be 
discovered with the increase of original IIR derived from 
database itself and external sources. 

With IIR rules, we discussed the relation of information 
content inclusion between random events. Such a relation 
at a higher level, i.e., that between random variables re-
quires more work. How the relations on different levels 
are connected also deserves further investigation. The 
process of identifying original IIR was done manually, for 
which a semi-automated technique making use of 
meta-data to suit the need of a user is desirable and looks 
feasible. Moreover, how to approach and inference about 
the information content of data that are stored in inde-
pendent and yet inter-operating databases should be in-
vestigated. 

In summary, our work thus far seems to have shown 
that the information that a database can potentially pro-
vide is definable by using the notion of information con-
tent inclusion relation (IIR). Furthermore, the inference 
rules for formally reasoning about such a relation enables 
the development of a seemingly elegant way, by means of 
IIR closure, of identifying the information content of data 
in a database, which serves as a basis for answering que-
ries. 
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