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ABSTRACT 

A method is presented for incrementally computing success patterns of logic programs. The set of success patterns of a 
logic program with respect to an abstraction is formulated as the success set of an equational logic program modulo an 
equality theory that is induced by the abstraction. The method is exemplified via depth and stump abstractions. Also 
presented are algorithms for computing most general unifiers modulo equality theories induced by depth and stump 
abstractions. 
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1. Introduction 

In abstract interpretation, program analyses are viewed as 
program execution over non-standard data domains. 
Cousot and Cousot first laid solid logical foundations for 
abstract interpretations [1,2]. Their idea is to define a 
collecting semantics for a program which associates each 
program point with the set of all storage states that are 
possibly obtained when the execution reaches the point. 
In practice, an abstraction of the collecting semantics is 
calculated by simulating over a non-standard data do-
main the computation of the collecting semantics over 
the standard data domain. The standard data domain and 
the non-standard domain are called the concrete domain 
and the abstract domain respectively. 

Abstract interpretation has been used to perform vari-
ous analyses of logic programs such as occur check 
analysis [3], mode analysis [4–6], sharing analysis [7,8] 
and type analysis [6,9,10]. Further more, a number of 
abstract interpretation frameworks for logic programs 
have been brought about [5], Jones et al. [11], Bruy- 
nooghe [9] and Marriott et al. [12]. With an abstract in-
terpretation framework, the design of a particular analy-
sis reduces to the design of an abstract domain and a 
number of abstract operations on the abstract domain. 

The safeness of the analysis is verified by formalizing a 
correspondence between the concrete domain and the 
abstract domain and proving that the abstract operations 
safely simulate the concrete operations with respect to 
the correspondence. The correspondence between the 
abstract domain and the concrete domain can be formal-
ized either as an abstraction (function) from the concrete 
domain to the abstract domain, or as a concretization 
(function) from the abstract domain to the concrete do-
main, or as a joined pair of abstraction and concretization, 
or as a relation between the concrete domain and the ab-
stract domain. We assume that the correspondence is 
given as a surjective abstraction from the domain of con-
crete terms into a domain of abstract terms1. 

A program analysis is currently performed with re-
spect to a fixed abstraction; and different analyses corre-
sponding to different abstractions are performed sepa-
rately even when there is a strong relationship between 
them. Take depth abstractions for example, a depth 3 
analysis will be performed separately from a depth 2 
analysis even if the result of the depth 2 analysis can be 
used to perform the depth 3 analysis, as we will show 
later in this paper. This paper is concerned with refining 
program analyses whereby the result of a coarser analysis 
corresponding to a stronger abstraction is used to obtain a 
finer analysis corresponding to a weaker abstraction. In 
particular, we are concerned with obtaining finer success 
patterns of a logic program from coarser success patterns 
of the same program. We introduce an ordering relation 
on abstractions of terms. We then argue, for a class of 

1In case an abstraction is not surjective, we can always construct a new 
of abstract terms by eliminating those abstract terms that are not im-
ages of any concrete term under the abstraction. The abstraction is a 
surjective abstraction from the domain of concrete terms to the new 
domain of abstract terms. 
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abstractions, that the set of success patterns of a logic 
program P with respect to an abstraction α is tantamount 
to the success set of the equational logic program 

 where Eα is an equality theory induced by α. 

Therefore, either the fixpoint semantics or the procedural 
semantics defined for equational logic programs can be 
used to compute success patterns of logic programs. 
From this observation, the success patterns of a logic 
program P can be computed by incremental refinement. 
A set of coarser success patterns of P relative to a 
stronger abstraction α1 can be obtained by computing the 
fixpoint semantics of the equational logic pro-
gram . If the success patterns are not fine enough 

for the application at hand, candidates for finer success 
patterns relative to a weaker abstraction α2 can be gener-
ated from the coarser success patterns and verified by 
using either the procedural or the fixpoint semantics of 
equational logic program . This refinement proc-

ess is repeated until success patterns are fine enough for 
the application. 

αP E

P
1α

E

2α
P E

The remainder of this paper is organized as follows. 
Section 2 presents a fixed-point and a procedural abstract 
semantics of logic programs for a class of abstractions 
and lays a foundation for incremental refinement of suc-
cess patterns of logic programs with respect to that class 
of abstractions. Sections 3 and 4 devote to incremental 
refinement of success patterns of logic programs for 
depth abstractions and stump abstractions respectively. In 
Section 5, we conclude this paper with a summary of the 
paper and some points to future work in analysis refine-
ment. 

2. A Foundation for Incremental Refinement  

Let  be respectively a set of function symbols, 
a set of predicate symbols and a denumerable set of 
variables. denotes the set of terms con- 

structible from  and V, and  denotes the 

set of atoms constructible from  and  where  
is a set of terms. The Herbrand universe are 
theHerbrand base  of a logic program 

Vars,,

Term ),( V




),( SAtom 
 S S


P  are  

),(= Term  

and  

),(=  Atom  

respectively. Let . Let  be 

a set of abstract terms, and 

),(= VarsTermTerm  Term

  be an abstraction from 

 to . Term Term  induces an equivalence relation 
 on Term ,  ))(=)((=)( 2121 tttt 




/= TermTerm

. So, abstract 

terms in  is identified with equivalence classes of 

. That is, . 

Term

   is called stable if 

))().((.,   ststSubTermst   where  

is the set of substitutions. Let .  is an 

equality theory on Term . We extend 

Sub

}{=  E E

  to an 

abstraction from ),( TermAtom   to  

as follows: 

)Term,(
))nt

Atom

,),((=)),,(( 11 n tpttp (  .   

and  are extended accordingly. E

) (, AtomorTermstLet   and Sub , .   is an 

-unifier of  and  if E t s   st  t

E E

.  and  are 

-unifiable if they have one or more -unifiers. 

s

   

is more general than   with respect to , denoted as E


E , iff there is an Sub  such that   XX   

for all VarsX  . An -unifier E   of t and s is a 

maximally general -unifier ( -mgu) of E E t  and s iff, 

for any other -unifier E   of t and s, 
E . 

2.1 Fixpoint and Procedural Abstract Semantics 

This section presents a fixpoint and a procedural abstract 
semantics of a definite logic program P  with respect to 
a stable abstraction  . It is well known that the success 
set of P  is tantamount to the least fixpoint of the 
following function )()(:   T

1( ) = { : . , , m

 by van 

Emden and Kowalski [13].  

.I H H B B P  T   

1 }mB I B I

 

                     (1) 

For any logic program P  and any abstraction  , 
 is an equational logic program. The fixpoint 

semantics of  given by Jaffar et al. [14] is  
EP

EP

 T ()(: / 


   with )/ 

 T

#
1( ) = {[ ] : . ,α

α
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being defined as follows. 

, m .H B B P   T 

# #
1[ ] [ ] }mα

B σ I B σ

  

α
I    

]([)( 

   TAAEP 





)

         (2) 

According to Jaffar et al. [14],  

 

for any A  T. We adopt  as the fixpoint 
abstract semantics of P  relative to  . The following 

lemma states the  is a safe approximation of 

 with respect to 

 T

T  . 
Lemma 1 If   is a stable abstraction then 

)][.(  


  TT AAA  . 

The procedural semantics of an equational logic 
program  is the equational SLD resolution with EP
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respect to the equality theory , denoted as . 

 plays same role for  as SLD for 
E

P
SLD

SLD E P . 

 differs from SLD in the sense that, in , 

-unification plays the role of normal unification in 

SLD. In the following, we adapt  so that it works 

on equivalence classes of 

SLD

E
SLD

SLD

  on . Define Atom

)(=][=][ 


tt 
t  . Notice that equivalence classes 

of terms (resp. atoms) are identified with abstract terms 
(resp. abstract atoms). The application of a substitution 
  to an equivalence class  can accomplished by 

applying 


][t

  to any term  in  taking t


][t


 
 ][  as 

the result because of the stability of 

t

  which also 
allows us to define an -mgu of  and  as 

an -mgu of 
E


][t


][s

E t  and s . The basic step in  can 

now be defined as follows. 
SLD

#

pA
#W

E

Definition 1 Let  and 

 be a variant of a clause of P.  

is called -derived from  and  using -mgu 
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It is proven by Jaffar et al. [14] that  
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
]

SLD

[A

)

]

SLDA P

[

   

where  denotes that  is provable 

from P using . This implies that  can be 

used to verify whether an abstract atom  is a 

success pattern of P with respect to 


]AP SLD




[

SLD

 A



  according to 
lemma 1. In summary, 

(P E α ) ([ ]A A )
α

ω ( [ ] )P Aα
SLD

α α T  

(3) 

2.2 Foundation for Incremental Refinement 

Let 
1  and  be two abstractions. Define 

2 1 2 

1 2

 

iff  for all . When ss  tt  2


1
Termt, s   , 

we say that 1  is weaker or finer than  and that  

is stronger or coarser than 
2 2

1 . Note that if 
1 2 

1α

  then 

 for any . In other words, 
2

][


t
1

][

t Termt   is 

a finer partition on  (and ) than Term Atom
2α

 . If 

1 2   then 
1α

E
2α

E . Therefore, we have 

1 2( ) 
1α

(( )P Eα α
2

( αP E ))      (4) 

By Equations (3) and (4), 

))]([)].(([)( 2

2

1

1
21  






  TT AAA HB  

(5) 

Equation (5) lays a foundation for incremental refine- 
ment of success patterns of logic programs. An initial set 
of the success patterns of a logic program P  can be 
obtained by computing  which is a safe appro- 

ximation of  relative to 

 T

T  . If the success 

patterns in  are not finer enough for the 
application at hand then finer success patterns can be 
computed by a generate-and-test approach as follows. 
Firstly, a weaker abstraction 

 T




 is formed and candi- 

dates elements for  are generated from . 
The formation of 

T  T
  and generation of candidates 

elements for  can be done by splitting one or 
more equivalence classes of . Secondly,  is 

used to verify if a particular candidate element is in 
. This process of refinement is repeated until 

success patterns are fine enough. 

 T

 SLD
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If α α  ,  for any , i.e., the 
   ][][ AA A

  equivalence class including A  is contained in the 

  equivalence class including A . Let  be a 

refinement operator that splits an  equivalence class 

 into the set of 

 ,R


C   equivalence classes contained in 

. C

}=][:]{[=)(, CAAACR
  HB  

Then candidates elements for  can be 

generated from  by applying  to  

where  is defined . 
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*

, R
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 T  T
*
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For a given set S of   equivalence classes,  

returns the union of the sets of  equivalence classes 

resulting from applying  to  equivalence 

classes in . 

*

, R



 ,R 

S

2.3 An Example of Incremental Refinement 

We illustrate the idea of incremental refinement of 
success patterns of logic programs by means of depth 
abstractions proposed by Sato et al. [15]. A depth 
abstraction partitions Term  into a finite number of 
equivalent classes. Two terms belong to the same class 
iff their term trees are identical to a certain depth n, 
called the depth of abstraction. For example, 

 is equivalent to  to depth 2. 

Let  denote depth  abstraction.  replaces 

each sub-term of t at depth n with a _ that denotes any 

))(),(( bgafh

nd

))(),(( agbfh

)(tdnn
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term. Letting , we have p

=))(bg (_))(_),(=))(),(((),((( 11 gfpagbfpdafpd . 

Deferring a formal presentation of depth abstractions 
until Section 3, we now show how  can be used 

when it is necessary to increase the depth of abstraction. 
SLD

Example 1 Let 1= d  and P={a(f(c)). b(f(h(c))). p(x) 

 a(x), b(x). }. We have ,   =01dT

(_))}({=11 fbd T (_)),( fa

(_)),( fa

(_)),( fa

=31d T

2dT

2d

2,d

(_)}(_),hf

(_))),(( ff

(,(_))) fp

2d

=2d T

))(()), cfb

(2 bd

, 

(_))}((_)),({=21 fpfbd T , 

(_))}((_)),({=31 fpfbd T , 

and 

(_))}((_)),((_)),({=1 fpfbfad T  . 

Suppose now we want to be more precise and decide 
to compute . Note that the set of ground atoms 

that  approximates is a subset of the set of 

ground atoms that  approximates. Instead of 

computing the least fixpoint of , we compute 
 by a generate-and-test approach. We first 

generate a set of candidate elements for  and 
then use  resolution to eliminate false candi- 

dates. The generation of candidates is accomplished by 
applying the refinement operator  defined in 

Section 3 to elements in . For each element in 

,  generates a set of candidates by subs- 

tituting each occurrence of _ with every element from 
. Thus, the set of candidates is  



SLD

1d

,
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(_)))(((_))),(()),((( hfpffpchfb }. 

After eliminating candidates that are not provable from 
P using ,we have SLD

(_)))}(()),(({ hfbcfa . 

p(f(c)) has been eliminated as follows. First, ←p(f(c)) 
is resolved with the clause  resulting 

in .Then goal  is resolved 

with the unit clause . However,  

cannot be resolved with b(f(h(c))) because d2(b(f(c)))= 
d2(b(f(c))) while . 

)(),()( xbxaxp 
))(( cfa

))(c 

(_)))((=)))) hfbc

(( cfa

(

( fa

((hf

))(( cfb

The following two sections demonstrate incremental 
refinement of success patterns of logic programs by 
considering two families of abstractions, namely depth 
abstractions and stump abstractions. 

3. Depth Abstractions 

The idea of enumerating success patterns of logic 
programs to a certain depth is due to Sato and Tamaki 
[15]. Depth abstraction has been used to ensure 
termination of an analysis, e.g. [10,16,17]. All terms 
(resp. atoms) identical to a certain depth are considered 
equivalent. For example, both  and 

 have main functor  and the 

first and the third of their arguments are same. Both of 
their second arguments have  as main functor. If 

this information is enough, then we can use either 
 or  as a repre- 

sentative of them. Since we are not interested in the 
arguments of  we shall replace each argument of 

 with a special symbol _, denoting any term, that is, 

we use f(a,g(_,_),b) to represent both  

and . actually repre- 

sents an infinite number of terms. 

)(0),1),(,( bhgaf

/3f

/2

)(0))),( bhh

(0),1),(,( hgaf

)_),(_, b

)(0))),((2,,( bhhgaf

)(0),1),(,( bhgaf

/2g

/2g

(0))),((2,,( hhgaf

g

(2,

, g

,( gaf

)b (af

)b

This section defines depth abstractions, constructs a 
refinement operator and an equational unification algo- 
rithm for such abstractions, and exemplifies incremental 
refinement of success patterns with respect to depth 
abstractions. 

3.1 Depth Abstractions 

Let  be a term. Then t is a depth 0 

sub-term of t, and a term s is a depth k sub-term of t if s 
is a depth 

),,(= 1 mttft 

1)( k  sub-term of ti for some mi 1 . 

Definition 2 Let t be a term. The depth k abstraction of 
t, denoted by , is obtained by replacing each depth 

k sub-term of t with an _. 

)(tdk

0>))(,),((=)),,((

0=_=)(

1111 ktdtdfttfd

ktd

mkkmk

k

 
 

For instance, the depth 2 abstraction of ( ( , ),f g X Y  

( ( )))g h Z

(f

 is , and its depth 3 abstrac- 

tion is . 

(_))_),(_,( ggf

(_)))(),, hgYX(g

Lemma 2 For any , dk is stable. 0k

3.2 A Refinement Operator for Depth  
Abstractions 

Let  be an abstract term denoting an  equiva- 

lence class.  

#t
1


kd

)){_},((){_},(:
~

 TermTermd   

defined below splits  by replacing each _ in  with 
an abstract term from in every possible way. 

#t #t

1dl

Copyright © 2010 SciRes.                                                                                 JSEA 



Incremental Computation of Success Patterns of Logic Programs 202 

}|_),(_,{=(_)
~

ffd   

)}(.1|),,({=)),,((
~

11 jjmm tdsmjssgttgd   

Its extension yields a refinement operator  

))){_},(,(:
~

 TermAtomd  

)){_},(,((  TermAtom . 

)}(
~

.1 | ),,({=)),,((
~
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)){_},(()){_},((:
~*  TermTermd 
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is the extension of  to sets of abstract atoms.  d

)(
~

=)(
~ #

#

* AdSd
SA


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Lemma 3 If  then  dR
kdkd

~
=

1, 
 and *

, 1d dk k
R


 

 for any . *= d 0k

3.3 An -Unification Algorithm 
kdE

Now we present an -unification algorithm and prove 

its correctness. The following algorithm for -unifi- 

cation results from modifying Robinson's unification 
algorithm [18]. Function  is true iff 

kdE

kdE

),,( tXkoccur X  

occurs in  at any depth . t kj <

Algorithm 1 This algorithm decides if  and  

are -unifiable and, if -unifiable, returns an 

-mgu of  and . 

1t 2t

kdE
kdE

kdE 1t 2t

01  function Dunify( k , , )  (1t 2t  ,unifiable ) 

02  begin 
03  if then 0=k ),(),(  trueunifiable   

04      else if  or  is a variablethen 1t 2t
05      begin let X be the variable and t the other 

term 
06        if then tX = ),(),(  trueunifiable   

07        else if then  ),,( tXkoccur

{,,( XtXk  })),( tDunifyunifiable   

08        else )})({,(),( tdXtrueunifiable k  

09      end else 
10      begin let t1 = f(x1,…,xn) and t2 = g(x1,…,xm) 
11        if f ≠ g or m ≠ n then falseunifiable  

else 
12        begin ,0j ),(),( 0  trueunifiable   

13          while  and do mj < unifiable

14          begin 1 jj  

15           (unifuable,τj)←Dunify (k-1,xjσj-1,yjσj-1)  

16              if  then unifiable jjj  1  

17            end 
18          m   

19        end 
20      end 
21      return ),( unifiable  

22  end 

The line 07 in algorithm 1 deals with -unification 

of X and t where X occurs in t at some depth . This 

does not necessarily mean failure of the -unification 

of X and t. For instance,

kdE

kdE

)}

kj <

({= YfX   is a -mgu 

of X and f(X). Algorithm 1 reduces the problem of 
-unification of X and t into the problem of 

-unification of X and . 

1dE

kdE

kdE }{ tXt 

Lemma 4 If two terms  and  are -unifiable, 

then algorithm 1 terminates and gives a unique (module 
renaming) -mgu of  and . Otherwise, the 

algorithm terminates and reports the fact. 

1t

1t

2t

2t

kdE

kdE

3.4 Refinement of Success Patterns for Depth  
Abstractions 

All depth abstractions are comparable with respect to . 
Abstractions corresponding to bigger depths are finer 
than those corresponding to smaller depths. Formally,  



Lemma 5 For any kj 0 , .  k jd d

Lemma 5 implies that, for any , if 

 then . This enables 

us to refine success patterns of P by increasing abstra- 
ction depth. Suppose that success patterns in  
are not fine enough and it is necessary to compute 

. Rather than throwing away  and 

computing  from scratch, we compute  
by 

A

1kdT

1kdT
kdT


kd

kd
A T][

kdT

kdT

 


1

1
][ kd

kd
A T





1) applying to  resulting in a set of 

candidate elements for  since 

*~
d

kdT

1kdT


kdT

 kdd T )(
~

1* ;  

2) applying  to eliminate those candidate 

elements that are not provable from P using . 
kdSLD

kdSLD

The following two examples illustrate incremental 
refinement of success patterns of logic programs with 
respect to depth abstractions. 

Example 2 Let 

={ ( , ), ( , ) ( , ), ( , ), ( ( ), ( )) ( , )}P p a b p X Y q X Y q a b q r X s Y q X Y   

We have 
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(_))}(_),((_)),(_),(),,(),,({=4

(_))}(_),((_)),(_),(),,(),,({=3

(_))}(_),(),,(),,({=2

)},(),,({=1

=0

1

1

1

1

1

srpsrqbaqbap

srpsrqbaqbap

srqbaqbap

baqbap

d

d

d

d

d








T

T

T

T

T

 

1 1= 4 = { ( , ), ( , ), ( (_), (_)), ( (_), (_))}
d d

ω p a b q a b q r s p r s T T  

Example 3 Let P be the same as example 2 and 
suppose that success patterns in  are not fine 
enough. We compute  as follows. We first apply 

1dT
2dT

*~
d  to  resulting in the following candidate 
elements for . 

1dT
2dT 

So,  

(_)))((_)),(((_))),((_)),(()),((_)),(()),((_)),((

(_))),((_)),(((_))),((_)),(()),((_)),(()),((_)),((

(_))),(),(((_))),(),(()),(),(()),(),(((_))),(),((

(_))),(),(()),(),(()),(),(((_))),((_)),((

(_))),((_)),(()),((_)),(()),((_)),(((_))),((_)),((

(_))),((_)),(()),((_)),(()),((_)),(((_))),(),((

(_))),(),(()),(),(()),(),(((_))),(),((

(_))),(),(()),(),(()),(),((),,(),,(

sssrprssrpbssrpassrp

ssrrprsrrpbsrrpasrrp

ssbrprsbrpbsbrpasbrpssarp

rsarpbsarpasarpsssrq

rssrqbssrqassrqssrrq

rsrrqbsrrqasrrqssbrq

rsbrqbsbrqasbrqssarq

rsarqbsarqasarqbaqbap

 

We then apply to eliminate those candidate  
2dSLD

elements that are not provable from P by using , 
2dSLD

we have 

2d T  = p(a,b),q(a,b),q(r(a)),s(b)),q(r(r(_)),s(s(_))), 

p(r(a),s(b)),p(r(r(_)),s(s(_))) 

(_)))((_)),(( ssrrq  has not been removed because it is 

provable from P by using . The -refutation 
2dSLD

2dSLD

process is as follows. 

(_)))((_)),((=0 ssrrqG   

2)}(1/2),(1/{=

1)1,(1))(1),((=
{

0

0

YsYXrX

YXqYsXrqC




 

2))(2),((=1 YsXrqG   

2}3/3,3/{=

3)3,(3))(3),((=
{

1

1

YYXX

YXqYsXrqC




 

2)2,(=2 YXqG   

}2/,2/{=

),(=
{

2

2

bYaX

baqC


 

=3G  

Variables 2X  and 2Y  in  

2)}(1/2),(1/{=0 YsYXrX , 

occur neither in  nor in the head of . They are 

introduced by -unification to indicate that they can 

be replaced by any other terms. 

0G

2d

0C

E

(_))))((_)),(( rssrp  has been eliminated because it is 

not a provable from P by using . The - 

refutation process is as follows. 

2dSLD
2dE

(_))))((_)),((0 rssrpG   

1)1,(1)1,(=0 YXqYXpC   

2))}((1/2)),((1/{=0 YrsYXsrX  

2)))((2)),(((1 YssXrrqG   

1 = ( ( 3), ( 3)) ( 3, 3)C q r X s Y q X Y  

1 = { 3 / ( 4), 3 / ( 4)}X r X Y s Y  

2 =G ( ( 4), ( 4))q r X s Y  

The -refutation fails because no clause head - 

unifies with . 
2dE

2dE

4))(4),(( YsXrq

4. Stump Abstractions 

Xu and Warren have introduced a family of abstractions, 
called stump abstractions, that reflect recursiveness [19]. 
The idea is to detail each atom in  to the extent in 
which some function symbol has been repeated for a 
given times. 

T

This section defines stump abstractions, constructs a 
refinement operator and an equational unification 
algorithm for such abstractions, and exemplifies 
incremental refinement of success patterns of logic 
programs with respect to stump abstractions. 

4.1 Stump Abstractions 

Let t be a term and s a sub-term of t. We define  

as a function which, for each function symbol g in 

),( tsfc

 , 
registers the number of nodes labelled by g in the path 
from the root of the term tree of t to but excluding the 
root of the term tree of s. Let  where N is 

the set of natural numbers. Define 

)( Nw 
=w f  

[ ( )w f w f 1]  and if  then  0>)( fw ! =w f
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[ ( )w f w f  1] .Define  

as follows. If then

TermTermfc 
=),( tsfc

: (Σ )N 

.0fts   . If 

 and  for some ),,(= 1 mttft  wts i =),fc( mi 1  

then ( , ) =fc s t w

),,(= 1 kssgs 

),( tsrd

= (t f

( (3, 2), ) = 2rd f t

1( ( , , ))w ms f t t

 .Otherwise, is undefined. If 

 then the repetition depth of s in t, denoted 

as is defined as .For instance, 

letting ,

, and   . 

f

(1),h

rd

t

,( tsrd

(
=

(_,

f s



(g

),( tsfc

))(,( gtsfc

(1, 2)), ( ( (1),g h f h

(1,2),(g 1=)t

Term w 
=s

)(=) gw

! 1 !( ), , ( ))

, _)
w f w f mt s t

(3,2))))f

N )(tsw

),,( 1 kssg 

_),(_,g

( ) 0

( ) = 0

w f

f w

Definition 3 Let , and .  

is obtained by replacing each sub-term  

of t satisfying  with . 

Formally,  

f





(_))(gr

w

)

=





1,{=  grw

N

Σ. ( ) ( )



(1)))))(((( gsgrsw

(, Nyx 

 

For instance, letting , 

. 

1}0, s

=

Lemma 6 For any , sw is stable. 

4.2 A Refinement Operator for Stump  
Abstractions 

Let  and define  

x y f  x f y f

y x

 . 

As shown later, x y s  s . Intuitively, the bigger 

the limit for each function symbol, the weaker the 
abstraction. 

Definition 4 Define 

)){_},((  Term) N(: s   

as follows. 

1

{ (_,

{ ( ,

f

f t

w

Σg 

( , ) =

( , ) =

f

f

, _)}

, ) |m jt t



N

( ) = 0

)} ( ) 0

w f

w f( ! ,s w f g

f

s w

s w 
 

For given  and , ),( fw

)){_},

s

ws

(

 is the 

set of the abstract terms identifying the  equivalence 

classes of those ground terms whose main functors is f. 



(

The following defined function  

){_},()(:~  Term  N Terms  

splits an equivalence class of ground terms for a coarser 
stump abstraction into the set of equivalence classes of 
ground terms for a finer stump abstraction. 

Σ( , _) = ( , )fs w s

) |

w

1 .

f

m m



)) = {

 

1 1( , ,( , ( , , ( ! , )}j js w g t t g s  s sj m   s w g t   

Its extension as in the following gives rise to a refine- 
ment operator for stump abstractions 

,{_}(,()(:~  TermAtomNs   

))){_},(,(())  TermAtom  

),,({=)),,(,(~
11 mm sspttpws   

)},(~.1| jj twssmj   

))){_},(,(()(:~*  TermAtomNs   

))){_},(,((  TermAtom  

is the extension of s~  to sets of abstract atoms.  

#

* #( , ) = ( , )
A s

s w S s w A


   

Lemma 7 For any x y , ),(~=, ysR
ysxs  and 

),(~= **

, ysR
ysxs . 

4.3 An -Unification Algorithm 
wsE

The -unification algorithm is given in algorithm 2. 

The function Sunif has three parameters. The first 
parameter w maps each function symbol into the limit of 
its repetition depth. The second and third parameters are 
terms to be unified. For any variable X and term t, 

 is true iff X occurs in . 

wsE

,(w ), tXoccur )(tsw

Algorithm 2 This algorithm decides if t1 and t2 are 
-unifiable and, if so, returns an -mgu of t1 and t2. wsE

wsE

01  function Sunify( , , )  (w 1t 2t  ,unifiable ) 

02  begin 
03   if  or  is a variable then 1t 2t

04   begin let X  be the variable and t  the other 
term 

05     if  then tX = ),(),(  trueunifiable   

06     else if  then ),,( tXwoccur )),( unifiable  

}{,,( tXtXwSunify   

07     else )})({,(),( tsXtrueunifiable w  

08   end  else 
09   begin let and  ),,(= 11 nxxft  ),,(= 12 mxxgt 

10     if f ≠ g or m ≠ n then  else falseunifiable
11     if  then 0=)( fw ),(),(  trueunifiable   

else 
12       begin j←0,   ),(),( 0  trueunifiable   

13         while  and  do mj < unifiable

14           begin 1 jj  

15             (unifiable, τj)←Sunify(w!f,xjσj-1,yjσj-1) 
16             if  then unifiable jjj  1  

17           end 
18         m   

19       end 
20   end 
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21   return ),( unifiable  

22  end 

The line 06 in algorithm 2 deals with -unification 

of X and t where X occurs in  by reducing the 

problem of -unification of X and t into the problem 

of -unification of X and . 

wsE

)(tsw

}t
wsE

wsE {Xt

Lemma 8 Let  and  be terms. If  and  are 

-unifiable, then algorithm 2 terminates and gives an 

unique (module renaming) -mgu of  and 

.Otherwise, the algorithm terminates and reports the fact. 

1t 2t 1t 2t

1t
wsE

2t
wsE

4.4 Refinement of Success Patterns for  
Stump Abstractions 

The following lemma establishes the appropriateness of 
incremental refinement method for stump abstractions. 

Lemma 9 For any )(, Nyx  , y xx y s s   . 

Lemma 9 implies that if  then 

 for any 


ys

ys
A T][


xs

xs
A T][ x y . This enables us to refine 

success patterns of P by increasing repetition depths for 
some function symbols. Suppose that success patterns in 

 are not fine enough and it is necessary to 

compute  for some y such that 

xsT

ys
T x y

ys
T



. Rather 

than throwing away  and computing  

from scratch, we compute  by  


ys

T

xsT 

1) applying ),(~* ys  to  resulting in a set of 

candidate elements for  since 

xsT

ys
T

sy ω T  

;  * ( ,
sxs y ωT )

2) applying  to eliminate those candidate 

elements that are not from 
ysSLD

P  using . 
ysSLD

The following two examples illustrate incremental 
refinement of success patterns for stump abstractions. 

Example 4 Let  

= { ( , ), ( , ) ( , ), ( , ), ( ( ), ( )) ( , )}P p a b p X Y q X Y q a b q r X s Y q X Y   

We have 

0.1 fsT =  

1.1 fsT =  )},(),,({ baqbap

2.1 fsT =  ))}(),((),,(),,({ bsarqbaqbap

4=5

(_)))((_)),(((_))),((_)),((

)),(),(()),(),((),,(),,(
=4

(_)))((_)),(()),(),((

)),(),((),,(),,(
=3

.1.1

.1

.1






















fsfs

fs

fs

ssrrpssrrq

bsarpbsarqbaqbap
ssrrqbsarp

bsarqbaqbap







TT

T

T  

So,  =5= .1.1  fsfs   TT









(_)))((_)),(((_))),((_)),((

)),(),(()),(),((),,(),,(

ssrrpssrrq

bsarpbsarqbaqbap
 

Example 5 Let P be the same as example 4. Suppose 

that success patterns in  are not fine enough. 

We compute  as follows. We first compute 

 and then use  to eliminate 

those candidates in 

 .1fs
T

.2,(

 .2fs
T

).2,(~ .1*  fs
fs T

.2fsSLD


)~ .1*  fs
f T

.2fsSLD


s  that are not 

provable from P using . The result is 


















(_))))(((_))),((((_)))),(((_))),(((

))),(()),((())),(()),(((

)),(),(()),(),((),,(),,(

=.2

sssrrrpsssrrrq

bssarrpbssarrq

bsarpbsarqbaqbap
fs T  

(_))))(((_))),((( sssrrrq  has not been removed because 

it is provable from P  using  as follows. 
.2fsSLD



0

0

0

= ( ( ( (_))), ( ( (_))))

= ( ( 1), ( 1)) ( 1, 1)

= { 1/ ( ( 2)), 1/ ( ( 2))}

G q r r r s s s

C q r X s Y q X Y

σ X r r X Y s s Y




= ( ( ( 2)), ( ( 2)))G q r r X s s Y

 

1

1

1

2

2

2

3

3

3

4

= ( ( 3), ( 3)) ( 3, 3)

= { 3 / ( 2), 3 / ( 2)}

= ( ( 2), ( 2))

= ( ( 4), ( 4)) ( 4, 4)

= { 4 / 2, 4 / 2}

= ( 2, 2)

= ( , )

= { 2 / , 2 / }

=

C q r X s Y q X Y

σ X r X Y s Y

G q r X s Y

C q r X s Y q X Y

σ X X Y Y

G q X Y

C q a b

σ X a Y b

G ε









 

(_))))(())),(((( sssasrrq  has been eliminated because it 

can not proved from P using  as shown in the 

following. 
.2fsSLD



0G = ( ( ( ( ))), ( ( (_))))q r r s a s s s  

0 = ( ( 1), ( 1)) ( 1, 1)C q r X s Y q X Y  

0 = { 1/ ( ( )), 1/ ( ( 2))}X r s a Y s s Y  

1G = ( ( ( )), ( ( 2)))q r s a s s Y  

1 = ( ( 3), ( 3)) ( 3, 3)C q r X s Y q X Y  

1 = { 3 / ( ), 3 / ( 2)}X s a Y s Y  

2G = ( ( ), ( 2))q s a s Y  

The refutation process fails because there is no clause 
of P whose head -unifies with . 

.2fsE


2))(),(( Ysasq
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5. Conclusions and Future Work 

We have proposed a method for incrementally computing 
success patterns of logic programs for stable abstractions. 
We have introduced a partial order on abstractions to 
reflect relative strength of abstractions. The method 
makes use of a fixed-point and a procedural abstract 
semantics of logic programs with respect to stable ab- 
stractions, a refinement operator that splits an equi- 
valence class induced by a coarser abstraction into a set 
of equivalence classes induced by a finer abstraction, and 
equational unification. The refinement operator is specified. 

We have applied the method for incremental refine- 
ment of success patterns of logic programs for depth 
abstractions and stump abstractions by constructing 
suitable refinement operators and equational unification 
algorithms. For depth abstractions, abstraction depth can 
be increased uniformly while for stump abstractions, 
repetition depth for each function symbol can be incre- 
ased independently. 

For depth abstractions, abstraction depth can only be 
increased uniformly. That means that every equivalence 
class has to be split when analysis is refined. It would be 
better to be able to split some equivalence classes and 
keep others intact. However, it is not clear if such a 
fine-tuning approach will guarantee the stability of the 
resulting abstraction α which is a prerequisite of using 

to eliminate false candidates. SLD

Another interesting topic on incremental refinement of 
success patterns of logic programs is to study the 
possibility of applying to eliminate false candidates 
where  is the abstraction resulting from refinement. 
Yet another interesting topic on incremental refinement 
of success patterns of logic programs is to combine 
domain refinement such as that proposed in this paper 
with compositional approach towards logic program ana- 
lysis proposed by Codish et al. [3] since compositional 
approach is the only feasible way to analyze large 
programs. It is necessary to study the interaction between 
the refinement of analyses of program modules and the 
composition of analyses of program modules. 

T

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