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ABSTRACT

Recently, price contract models between suppliers and retailers, with stochastic demand have been analyzed based on
well-known newsvendor problems. In Bernstein and Federgruen [6], they have analyzed a contract model with single
supplier and multiples retailers and price dependent demand, where retailers compete on retail prices. Each retailer
decides a number of products he procures from the supplier and his retail price to maximize his own profit. This is
achieved after giving the wholesale and buy-back prices, which are determined by the supplier as the supplier’s profit is
maximized. Bernstein and Federgruen have proved that the retail prices become a unique Nash equilibrium solution
under weak conditions on the price dependent distribution of demand. The authors, however, have not mentioned the
numerical values and proprieties on these retail prices, the number of products and their individual and overall profits.
In this paper, we analyze the model numerically. We first indicate some numerical problems with respect to theorem of
Nash equilibrium solutions, which Bernstein and Federgruen proved, and we show their modified results. Then, we
compute numerically Nash equilibrium prices, optimal wholesale and buy-back prices for the supplier’s and retailers’
profits, and supply chain optimal retailers’ prices. We also discuss properties on relation between these values and the

demand distribution.
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1. Introduction

Recently, price contract models between suppliers and
retailers with stochastic demand have been analyzed
based on well-known newsvendor problems. Cachon [1]
has reviewed models with one supplier and one retailer
under several types of contracts. In a market, however,
many retailers exist and they compete in order to attract
the maximum number of consumers. In this context,
Yano and Gilbert [2] have been interesting in contracting
models in which the demand is stochastic and depends on
price. Wang et al. [3] and Petruzzi [4] have studied de-
centralized price setting newsvendor problems under
multiplicative retail demand functions. Song et al. [5]
have analyzed theoretically the optimal prices and the
fraction of a total profit under individual optimization to
that under supply chain optimization.

In Bernstein and Federgruen [6], they have analyzed a
contract model with single supplier and multiple retailers
and price dependent demand, where retailers compete on
retail prices. Each retailer decides a number of products
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he procures from the supplier and his retail price to
maximize his own profit. This is achieved after giving
the wholesale and buy-back prices, which are determined
by the supplier as the supplier’s profit is maximized.
They have proved that the retail prices become a unique
Nash equilibrium solution under weak conditions on the
price dependent distribution of demand. They, however,
have not mentioned the numerical values and properties
on these retail prices, the number of products and their
individual and overall profits.

In this paper, we analyze the model numerically. We
first indicate some numerical problems with respect to
the theorem of Nash equilibrium solutions, which Bern-
stein and Federgruen [6] proved, and we show their
modified results. Then we present Nash equilibrium
prices, optimal wholesale and buy-back prices for the
supplier’s and retailers’ profits, and optimal retail prices
under supply chain optimization, analytically and nu-
merically. We also discuss the properties on a relation-
ship between these values and the demand distribution.

In the next section, we present the competing retailers
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model introduced in [6], and we discuss the sufficient
conditions on the existence and the uniqueness of the
Nash solution. In Section 3 we investigate the model
with exponential and uniform distribution functions and
with linear and Logit demand functions. In Section 4, we
present numerical results and discuss the behavior of
Nash equilibrium solutions and properties of the profits
and prices.

2. Competing Retailers’ Model

The model of competing retailers for one supplier S
and N retailer R,,1<i< N introduced in [6], is shown

in Figure 1.
This model is set under wholesale and buyback pay-
ment scheme. The supplier S incurs retailer R,,1<

i<N a wholesale price w, for each product, com-

bined with an agreement to buyback unsold inventory at
b,. We assume that the supplier has ample capacity to

satisfy any retailer demand and produce products at a
constant production cost rate ¢, , which includes the

transportation cost to retailer R,. When w,and b, are
given, each retailer R, orders his quantity y,and cho-
oses his retail price p,. A salvage rate —co <v, <+00 1is

adopted in the supply chain. To avoid trivial setting, the
model parameters are chosen asv, <b, <w, and v, <c,

for I<i<N .
The demand D,(p) is random and depends on the

price vector p = ( D Dyt Py ) , with a cumulative dis-
tribution function Gi(x | pyse-s Py ) - It 18 restrained to a
multiplicative form D,(p)=d,(p)s,, where & is a
random variable with a cumulative distribution function

PN

Figure 1. Competing retailers’ model
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G,(.) and a probability density function g;(). In addi-
tion & 1is assumed to be positive only on xe

[xi i

min * xmax

] and independent of the price vector p. This

~ X
implies that G.X|p)=G.| —— |.
p (x[p) l(di(p)J

The demand function d4,(p) depends on the whole
price vector. It is supposed that d,(p) decreases in p;

and increases in p; for all j =i, I < I < N, that is

p, p,

Let y=(»,»,.py) denotes the order vector of
the model. The expected profit function for the retailer
R, is given by

7(p,y) = p.E[ min{y,, D.(p)} |+b,E[y, - D(p)] —w;-
where [a]" =max(0,a). It can be rewritten as

7(p.y)=(p, =)y, ~(p,~b)Ely, -D.(»] (1)

From (1), the retail prices p impact on the profits of all

retailers and his order quantity, however, affects only his

own profit. In addition the retailer wants to maximize his

order quantity. Then, the derivation of the retailer i’s

profit function given by Equation (1) on y, is equal to
Zero

on(p.y) _,

Y,

Therefore, the retailer i's optimal corresponding order

can be obtained from (1) and (2) by

@

yi(p)=di(p)G,-{M] 3)
p;i b

This result reduces the no-cooperative game in the (p,
y)-space to a p-space game. In this space the retailers
compete only on prices (reduced retailer game). Then,
considering the Equations (1) and (3), we get the retailers
profits as a function of p only, as

#(p)=d, (p){(p,- —w, )G, {uj
P _bi

_(pi _bi )E|:Gil (u]_gi:l
pi _bi

=" (p W)L (fi(p) Q)
(plw)=(p,—w)d,(p) is the profit function
(»,—w)

with a deterministic demand y, =d,(p), f(p,)= m
b =5

where 7

i
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is the critical fractile, and

L(=6" -1 E[G (=] = [ ug a1

We define L (p,) EIGFI(f’("‘))ugi(u)du and we apply

—o0

the logarithm to (4), we get for 1<i< N
log,(p) = log(p, —b,)+logd,(p) +log L,(p,)  (5)
The supplier profit function is given by
N
HM = Z((M}I —-¢)y, — (b, _Vi)E[yi _Di(p)] ) . Using
i=1

Equation (3), it can be expressed as

M,=3d (p)((wf ~a)G (%J

i=l i i

+ Q)
pi_bi
Differentiating (5) on p, for 1<i< N
OlogZ(p) __1_2di(p) ;) with
. d(p) w
— . -1
U(py=— LG UR) )
pi_bi (pi_bi) Li(pi)

Bernstein and Federgruen [6] have proved that the ex-
istence of a Nash solution p° for the reduced retailer
game is assured by the following condition (A).

(A): For each ie{l,..,N}, the function logd,(p) is
increasing in (p;,p;) forall i#j.

It is assumed in the same reference [6] that each retailer
R, chooses his price p, from a closed interval
[ o, p,.'“”‘] . The authors proved the uniqueness of the

Nash solution in the price space
H[max( P, 2w-b) p;"“] . This has provided the

i

following conditions (D) and (S) to hold:
2 det _ 2 det _
_a IOgﬂi (p|wi_bi)zza IOgﬂ-f (p|wi_bi)

(D):
p:p,

apf J#i

Ei(x)
gi(x)

for all ie{l,...,N}, where x>m, (m, is the median

(S):\V,.(x)z{—Zx—i- }r ugi(u)du—ai(x)xzso,

of the distribution G,). However, the solution under the
above conditions may exist on the boundary of the area
H[max(pim‘", 2w— b)[’ p""a*] . In this case, it does not

satisfy 91987:(P) _ o the condition (S) is modified to
p;
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(S’), as
" Ei (x)
g (x)

]. Then, the following theorem can

(S7): v,(x)= {—Zx } [" ug,(u)du—G,(x)x* <0

i
max

for all xe[x!, ,x

be obtained.
Theorem : If conditions (A), (D) and (S’) hold, then

there is a unique set of Nash equilibrium prices on

Olog #.
[1lw,,) which satisfy %,(p) =0 for all
i P
iefl,.,N}.

Proof: In the same way as in Bernstein and Federgruen
[6], there is a unique Nash solution p" in [1[w;, o)
which satisfies pl.* > w;, because for each ie{l,..., N},
7.(p)=0 when p,=w, whereas 7,(p)>0 when
Olog 7,(p)

op,

p; >w, . This implies that =0 when
p=p forall ie{l,..,N}.

In the following, the retailers sell products at these
equilibrium prices, whereas the supplier knows the be-
havior of the retailers and determines the wholesale and
buyback prices to maximize his own profit. This system
is called “individual optimization”. On the other hand,
the problem of determining retail prices and quantities of
products to maximize the entire profits of supply chain is
called “supply chain optimization”

3. Determination of the Nash Equilibrium

As shown in Figure 2, we study a two competing retail-
ers’ model. Each retailer 7 e {l,2} faces a random de-
mand D,(p), where p=(p,,p,) . We assume two

types of cumulative distribution functions of demand.
We consider first the exponential case and then the uni-
form one.

3.1 Exponential Case

The cumulative distribution function in the exponential

Ci W1 D1
. —_—
€*------

Figure 2. Two competing retailers’ model
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case is given by G(x)=1-e* for all x>0,

where E'¢; is set as one without loss of generality. The
inverse function of G (x)is given by G'(y)=-log(1-y)
(P =w,)
(p.=b)

i

forall 0<y<1.With f(p,)= , we get

1
P —b

w,—b

(Pi —w, +(w, =), )log(—bi)J

Li(p,)=

Then, using (7), we obtain

(pi_wi)

. —b.
(P _bi)[pi Wi +10g(1; _bl_j(wi _bf)J

1) Linear demand function
The linear demand is given for j #i,i,j€{l,2} by

d(p)=a,-fp,+3 B,p, with a >0,53.5,20.(8)
J#i

Up,)=

With this demand function, we obtain the system of
equations

alog/fl(p): b +U,(p)=0
op, o, = pp +PBup; s ’

dosip) B
p, &, =B, + Bp e

It can be rewritten as

_ B, —a,U,(p,)+ B, p,U,(p,)

: AU, (py)
Bi—aU(p)+BpU (p)

>

)

’ BuU(py)

The optimal order quantities y, and y, can be

evaluated to

Wl 1

-b
»n(p)= (al -Bp +1312p2)10g[p1 bl ],

-b
J’2(p):(a2_ﬁ2p2+ﬂ21p1)10g(p2 zj'
Wy _bz

Since

E Gi—l bW - =10g pi_bi + W, Db ,
p,—b, w, —b, p,—b,

from (6), the supplier profit function can be expressed as

I, :Zz“df(pi)((wi -6 _bf)log[pi _bi]+bl. P _W’J .

b _bi

W, =5

The retailers’ profit functions are given by
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2) Logit demand function
Now, the problem is studied with a logistic demand
function, expressed by
k. e*/lp,
d,(p)=—"5——
C+XYke™
j=1

for 4,C,,andk;, >0. (10)

With this demand function we obtain the system of
equations

olog7,(p)  —A(C +ke ™)

—+U, =0,
apl Cl +kle_/1p1 +k2e—/tpz 1(P1)
Olog 7 “AMC, +ke*n
g7,(p) _ ( 2,/1,, 1 7)/1[7 +U,(py) = 0.
6]72 C2 +kle 1 +kze 3

Then, we have

1 AC, -GU, (pz)_kze_/lp2 U,(p,)

b= ——lOg >
1 A k] (—1+U2(p2))
1 1 AC - U, (p)~ke U\ (p))
py, =——log .
A kz (_1+U1(p1))
The order quantities are given by

ke p—b
— 10 1 1 ,

»(p) (Cl +ke " + ke J g(wl —-b,

—Apy
k,e

P, —b
= lo .
y2(P) (Cz +ke " + ke J g(wz —bz)

The supplier profit function and retailers’ profit func-
tions are obtained in the same way as for the linear de-
mand function.

3.2 Uniform Case

The cumulative distribution function in the uniform case
is given by

x—(1-a,)
2a, ’

i

l-a,£x<1+q,,0<q,<1,i=1,2,

Gi (x)=

where Ee¢, =1. The inverse function of G;(x) is given

by G'(y)=1-a,+2ay for 0<y<l With
ﬂ(pi):(pi_Wi)/(pi_bi)’weget
7 pi =W bi =W
L(p)=|——=|1-a +a|——
(71) [pi_bi]( l l(pi_bijJ
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Then by (7) for ie{l,2}

. b l—ai+2ai[pi_vbvi]
p 1+[Wi — i] P 5
i pi—=W l_ai+ai£pi_Wij
pi_bi
1) Linear demand function

With the linear demand given by (8) and U,(p,), we
obtain

U(p)=

i

P = B, —auU,(p,)+ B,p,U,(p,)
£aU,(p,)
_ B —-aU(p)+BpU(p)
’ AU (p)
The optimal order quantities are given by

n(p) :(al - Bp "'1312172)[1—61l +2al(pl —W ]J’

>

P —b

»,(p)= (az = Bp, + By py )[l_az +2a, (%)J

The supplier profit function is equal to

m, - i[di (p,-)((wi —Ci)[l—“f +24, (%H

The retailers’ profit functions are given by

P —wW
(P1 _Wl)[l_al +2a1(pl] —bll ]J

—a,(p,—b )(sz

>

p—b

(pz—wz) 1—a2+2a2(uJ
p,—b,

—a(p, _bz)[pz—wzjz

p,—b,

#,(p)=d,(p)

2) Logit demand function
With the Logit function given by (10), we obtain
p;and p,as

1 lcz _CzUz (pz)_kzeiip2 Uz (pz)

py=——log ,
b k(=4 U,(p, )
- 1 log AC, —CU,(p, ) - ke U, (p, )‘
A kz (_’1+U1(p1))
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The optimal order quantities are given by

ke D =W
= l—a +2a | 2—2L 1],
»(p) C, +ke ™" +ke’” { : l(pl —-b,
ke ' J 2
= - l—a, +2a,| Z2—2||.
Y= i ke ( : 2( . —b,

The supplier profit function and retailers’ profit func-
tions are obtained in the same way as for the linear de-
mand function.

3.3 Supply Chain Optimization

When the supplier and the retailers determine the prices
and the order quantities to maximize the overall profit of
the supply chain, the wholesale and buyback prices are
meaningless because they are payments between the
supplier and the retailers. As the whole of the supply
chain is equivalent to a single retailer with wholesale
price (c,c,) and buyback (v,,v,), and by using (3),
the optimal order quantity (the amount of products) is

given by ¥, (p)=d,(p)G;’ [Q] By using (4), the

i i

overall expected profit of the supply chain is

i i

ﬁl(p):é(pi—ci)di(p)Li(ii_iij, 1)

where, the retail prices (p,, p,)are given. The optimal
retail prices (p,',p,’) in the integrated supply chain
maximize the profit function given by (11).

4. Numerical Examples
4.1 Geometric Analysis of the Nash Solution

The system of equations on (p,,p,) that solves the
profit functions for the two retailers is obtained in Section
3. In the case of exponential demand and linear functions,
we denote the right hand sides of two equations in (9) by

f(p,) and f,(p,), respectively. Then the equations
(9) become p, = f,(p,) and p, = f,(p,). Note that in
other cases the equations satisfied by (p,,p,) form
p,=/f,(p,) and p, = fi(p,) similarly. Geometrically,
to analyze the behavior of the system around the Nash
solution, we plot the functions f,(p,) for p,and p,
in Figure 3. There are multiple solutions for the equa-
tions, but there is a unique Nash solution (p,,p,) with
p; >w,(i=1,2), which has been proved in the theorem
of Section 2.
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A
P,

(p,p,)

N

v

I wy P[

Figure 3. Nash solution and system of equations

Given wholesale and buyback prices, we derive these
Nash retail prices, and profits of the supplier and two
retailers. We compute them for all combinations of
wholesale and buyback prices, which are integers and
satisfy ¢, <w, <w'’ and v, <b <w,, where w’ is
set as the upper bound for the optimal wholesale price for
the supplier, and derive optimal wholesale and buyback
prices for the supplier. We also compute the overall prof-
its and retail prices under the supply chain optimization,
and compare them with the ones under individual opti-
mization.

4.2 Numerical Results

In numerical examples we set parameters as shown in the
following:

(1,v,)=(0,0),
(¢,a,)=(100,100), (5,,5,)=(01,1),
(B, P5,)=(0.3,0.3) (linear function ),
1=0.03, (C,C,)=(0.005,0.005) ,
(k,,k,) =(1,1), (Logit function).

The program is coded by C and the computations are
done by using Fujitsu C compiler on PC. In Table 1, we
assume exponential demand and Logit functions, wher-
eas in Table 2 the linear function is assumed. In these
tables two cost parameter settings are considered:
(¢;,¢,)=(30,30) (symmetric) and (¢,c,)=(30,20)
(anti-symmetiric).

The values in tables are the optimal profit for supplier,
the profit for each retailer; entire expected profit (sum of
supplier’s and retailers’ profits), optimal whole-sale and
buyback prices for the supplier, Nash equilibrium retail
prices and order quantities. The values in paranthesis ()
are the total profit, optimal retail prices and order quanti-
ties for retailers under the supply chain optimization.

In the cases of Tables 1 and 2, optimal whole sale
prices and buybacks determined by the supplier give
more profits to the supplier than retailers. In the symme-
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Table 1. Exponential demand and logit function

i 1 2 1 2
G 30 30 30 20
I, (p) 32.195 35.792
z(ppy) 10227 10.227 8.917 13.843
efgg; 4 52.649 58.552
Srofits (62.430) (70.153)
w, 98 98 100 88
b, 47 47 47 47
, 175420 175420 175376  168.444
i (172.428)  (172.428)  (182.095)  (161.07)
0311 0311 0.276 0.418
i (0.606) (0.606) (0.444) (0.965)

Table 2. Exponential demand and linear function

q, 0.1 03 0.5 0.7
M,(p) 253142 235236 217638  2003.38
(P> y1) 513.03 481.51 450.56 414.12
ef;‘;rtz g 355749 331538 307751 283262
Dofy (430371) (3999.12)  (3700.00)  (3407.00)
w(=w,) 87 87 87 87
b(=b,) 75 75 75 74
- 11031 110.97 111.69 112.55
PEP) (9708 (88.46) (89.96) (91.56)
~ 23.51 24.55 25.59 26.05
nER G006 (41.75) (43.20) (44.57)

tric cost cases, the optimal retail prices of two retailers
become the same. Compared to supply chain optimiza-
tion, the retail prices are higher and the quantities of or-
ders are smaller in the individual optimal case. It is be-
cause under the chain optimization more amounts of de-
mand are satisfied by decreasing retail prices and in-
creasing order quantities, whereas in the individual opti-
mal case the supplier wants to obtain its own profit,
which leads to higher wholesale prices and as a result
retail prices become higher. In the anti-symmetric cost
case, the optimal wholesale price to the retailer with the
smaller production cost is smaller than that to another
retailer, which leads to more profits for the former re-
tailer. The reason is that the retailer with small wholesale
price sets the less retail price and more quantities of or-
der, which implies that more amounts of demand occur
in total and the supplier can sell more products to cus-
tomers. In particular, with Logit demand function the
demand depends on the retail prices more intensively,
and the wholesale prices, retail prices and the order
quantities change more.

In both cases the entire expected profits in the indi-
vidual optimal cases is about 80 to 85 % of that under
supply chain optimization. When the chain consists of

JSEA



Properties of Nash Equilibrium Retail Prices in Contract Model with a Supplier, Multiple Retailers and Price-Dependent Demand 33

Table 3. Uniform demand and linear function

5. Concluding Remarks

In this paper, we first show the sufficient condition that
unique Nash equilibrium retail prices exist and they are
greater than wholesale prices. We then give the equations
whose solutions are those retail prices. In numerical ex-
amples we compute these equilibrium prices, optimal
wholesale and buy-back prices for the supplier and sup-
ply chain optimal retailers’ prices, and discuss properties
on these values. In future research, a two-supplier prob-
lem and other types of problems will be modeled and the
properties will be discussed analytically and numerically.

i 1 2 1 2
G 30 30 30 20
I, (p) 1200.548 1473.307
7(p,y) 242306 242306 228.119  380.888
ef;;ft: . 1685.160 2082.314
Sroits (2041.22) (2515.01)
) 89 89 89 82
b, 77 77 77 73
116.154  116.154 115532 112.445
pi (96.902)  (96.902)  (97.788)  (90.259)
22105 22105 21233 32.826
Vi (37.717)  (37717)  (34.608)  (58.887)

one supplier and one retailer, it is shown in Song et al.
(2008) that the fraction is 3/4(in linear case) or
2/e=0.736 (in Logit case). The competition among
retailers makes retail prices lower, which makes the frac-
tion higher.

In Table 3, the uniform distribution of demand is
assumed with the symmetric production costs
((¢;,¢,)=(30,30)), and the a,, which corresponds to

the width of the uniform distribution, is changed from 0.1
to 0.7. It implies that large @, means the high variance

of demand. As the variance increases, retail prices are
higher, and profits of the supplier and retailers decrease.
This is because when the variance increases, the quantity
of order must be increased to apply the fluctuation of
demand, whereas the retail price must be also increased
to obtain profits of retailers.

When a, changes the optimal wholesale prices and

buyback prices for the supplier are almost the same. Note
that even if it is compared with results in the exponential
case shown in Figure 2, which has more variance than
these uniform distributions, the difference on these prices
is very small. It means that the optimal wholesale and
buyback prices for the supplier are robust in the variance
of the demand distribution.
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