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ABSTRACT 

Value at Risk (VaR) is an important tool for estimating the risk of a financial portfolio under significant loss. Although 
Monte Carlo simulation is a powerful tool for estimating VaR, it is quite inefficient since the event of significant loss is 
usually rare. Previous studies suggest that the performance of the Monte Carlo simulation can be improved by impor-
tance sampling if the market returns follow the normality or the distributions. The first contribution of our paper is to 
extend the importance sampling method for dealing with jump-diffusion market returns, which can more precisely 
model the phenomenon of high peaks, heavy tails, and jumps of market returns mentioned in numerous empirical study 
papers. This paper also points out that for portfolios of which the huge loss is triggered by significantly distinct events, 
naively applying importance sampling method can result in poor performance. The second contribution of our paper is 
to develop the hybrid importance sampling method for the aforementioned problem. Our method decomposes a Monte 
Carlo simulation into sub simulations, and each sub simulation focuses only on one huge loss event. Thus the perform-
ance for each sub simulation is improved by importance sampling method, and overall performance is optimized by 
determining the allotment of samples to each sub simulation by Lagrange’s multiplier. Numerical experiments are given 
to verify the superiority of our method. 
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1. Introduction 

Value at Risk (VaR) is an important tool for quantifying 
and managing portfolio risk. It provides a way of meas-
uring the total risk to which the financial institution is 
exposed. VaR denotes a loss  that will not be ex-
ceeded at certain confidence level 1−p over a time hori-
zon from t to . To be more specific, 



t  t

( )t t tP V V p    , 

where V  denotes portfolio value at time . Typically, p 

is close to zero. For convenience, we define t t tV V   

and  as the portfolio gain and the return 

over the time span  Some academic papers focus on a 
relevant problem: computes the probability p of a portfo-
lio loss to exceed a given level   [ ], and our paper will 
focus on this problem. 

( t t )t tV V / V

1

t .

VaR can not be evaluated by simple yet exact analyti-
cal formulas when the assumptions on the processes of 
the assets’ values or the composition of financial portfo-
lios are complex [2]. The asset in this paper is assumed 

to be stock for convenience. The Monte Carlo simulation 
is a flexible and powerful tool to estimate VaR since it is 
usually more easily to sample the stock prices from com-
plex diffusion price processes than to estimate the distri-
butions of the stock prices at a certain time point. We can 
repeatedly evaluate possible future values of a financial 
portfolio by sampling prices of stocks that compose the 
portfolio and the distribution of the portfolio gain can 
then be estimated. However, estimating VaR by the 
Monte Carlo simulation is very inefficient since the event 
that the portfolio loss exceeds  is rare (note that p is 
close to zero) and a large number of samples is thus re-
quired to obtain an accurate probability estimate of this 
rare event. By assuming the market returns follow nor-
mal distributions, Glasserman et al. develop an efficient 
variance reduction method based on importance sam-
pling that can drastically reduce the number of samples 
required to achieve accurate probabilities estimates of 
rare events [3]. In their method, the stock prices are sam-
pled from a new probability measure where the event of 
significant loss is more likely to happen than in the 
original one. This new probability measure is selected to 


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“asymptotically minimize” the second moment of the 
estimator for estimating . (Details will 

be introduced in Section 2.) 

( t t tP V V   )

Empirical studies claim that the stock returns observed 
from the real world markets show higher peaks and 
heavier tails than what is predicted by a normal distribu-
tion as illustrated in Figure 1 [4−6]. For estimating VaR, 
the heavy tail phenomenon must be taken into account 
since this phenomenon causes a significant loss of the 
stock price more likely to happen. To address this prob-
lem, Glasserman et al. extend their work by assuming 
that the stock returns follow t distributions [7]. Indeed, 
most financial papers address the aforementioned prob-
lem by assuming that the stock prices follow the 
jump-diffusion model [8], GARCH models [9], or the 
stochastic volatility model [10] instead of t distribution. 
The first contribution of this paper is to extend Glasser-
man et al. [7] to the jump diffusion model, which as-
sumes that the stock returns and the jump sizes follow 
normal distributions and the arrival of jumps is modeled 
by a Poisson process. In this paper, the probability dis-
tributions of the stock returns, jump sizes, and the arrival 
of jumps are probably tilted to “asymptotically mini-
mize” the second moment for estimating the probability 
of the huge loss event. 

Glasserman’s method performs poorly for portfolios of 
which huge loss is triggered by significantly distinct 
events. Take a portfolio, shorting straddle options (which 
will be introduced later), illustrated in Panel (a) of Figure 
2 as an example. This portfolio suffers significant loss 
when the stock price increases or decreases drastically. 
Thus tilting the probability measure of the stock price to 
make one huge-loss event, says a significant decrease in 
the stock price, more likely to happen will make the other 
event (a significant increase in the stock price) much 
rarer. The numerical results in our paper show that  

Figure 1. High peaks and heavy tails of stock returns 

The solid line denotes the return modeled by a normal distribution and 
the dashed line denotes the return modeled by a t distribution, which is 
closer to the distribution of the real world market returns than the for-
mer distribution 

)()V( tVtt 

)()V( tVtt 

 
Figure 2. The relationship between the stock price and the 
portfolio gain 
The x- and y-axis denote the stock price and the portfolio gain, respec-
tively. Panel (a) denotes the case of shorting straddle options near the 
option maturity date. Panel (b) denotes the case of three-minimum 
portfolio mentioned in [2]. X, Y , and Z denotes there huge-loss events f 
this portfolio. 

 
naively applying Glasserman’s method deteriorates the 
performance. Glasserman et al. argue that the aforemen-
tioned problem can be solved by the delta-gamma ap-
proximation [11,12] if the portfolio gain can be well ap-
proximated by a quadratic function of the stock price. 
But it is obvious that many portfolios, like the shorting 
straddle options and the three-minimum portfolio (see 
panel (b) of Figure 2) can not be well approximated by 
quadratic functions. 

The second contribution of this paper is the hybrid 
importance sampling algorithm to solve the aforemen-
tioned problem. The hybrid importance sampling algo-
rithm is composed of sub simulations; each sub simula-
tion focuses on one significant loss event. For example, 
our algorithm for estimating the probability of huge loss 
for shorting straddle options can be decomposed into two 
sub simulations. On focuses on the significant decrease 
in the stock price and the other focuses on the significant 
increase in the stock price. The algorithm for the 
three-minimum portfolio can be decomposed into three 
sub simulations. These three sub simulations focus on 
huge-loss events X, Y, and Z, respectively. Each sub 
simulation tilts its probability measure of the stock price 
to “asymptotically minimize” the second moment for 
estimating the probability of the huge-loss event focused 
by that sub simulation. Finally, the computational re-
source allocated to each sub simulation is determined by 
Lagrange’s multiplier to asymptotically minimize the 
second moment for estimating the overall huge loss 
probability. 

Generally speaking, cross-discipline research, like 
bioinformatics and financial engineering, become more 
prevailing and important for both academics and practi-
tioners. This paper merges the simulation technique from 
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applied mathematics and algorithm design and perform-
ance comparisons knowhow from computer science dis-
cipline to develop efficient numerical programs to solve 
finance problem. It plays a great platform to interchange 
the ideas, the challenges, and the techniques among the 
computer scientists, mathematicians, and financial ex-
perts.  

The paper is organized as follows. The assumptions of 
the Merton’s jump diffusion model, the Glasserman’s 
importance sampling method, and the definitions of 
straddle options are introduced in Section 2. In Section 3, 
we will use shorting straddle options as an example to 
demonstrate how the probabilities of the jump diffusion 
process are tilted for each sub simulation and how the 
number of samples is allocated to each sub simulation to 
optimize the overall performance. Numerical results in 
Section 4 verify the superiority of our method. Section 5 
concludes the paper. 

2. Preliminaries 

2.1 The Stock Price Process 

Define St as the stock price at year t. Under the Merton’s 
jump diffusion model, the stock price process can be 
expressed as 

( 1)Xt
t

t

dS
dt dW e dN

S
 


    t         (1) 

where is the standard Wiener process, μ is the aver-

age stock return per annum, σ is the annual volatility, X is 
a normal random variable that models the jump size, and 

tW

tN  denotes the Poisson process. We further assume 

that 2, )~ (X N   and ( 1)tP dN dt 

t

. Define the stock 

return over the time horizon as follows: 

1

,
tN

t t t
t

t i

S S
r t tZ

S
 







      iZ     (2) 

where  ~ 0,1Z N , tN

 

denotes the number of jumps be-

tween time t and ,t t 2~ ( , )iZ N   . Note that the 

aforementioned model degenerates into the Black- Scho-
les lognormal diffusion process [13] when λ = 0 (i.e. 

 in Equation (2)). 0tN

2.2 Glasserman’s Importance Sampling Method 

This subsection sketches Glasserman’s importance sam-
pling method [3] by assuming that the stock price process 
follows the log-normal diffusion process. Consider a 
portfolio which is composed of a stock. Let A denotes the 
event that the portfolio gain is less than  : 

 

 

( ) ( ) 0

S( )-S( )
    = 0

( ) ( )

    = 0                                                      (3)
( )

    = - 0                                                         (

t

t p

A S t t S t

t t t

S t S t

r
S t

r r

     

  
  

 
 

  
 

 







 
4)

   = Z: f(Z) - 0       (5)t p pr r t tZ r         

 

where we substitute Equation (2) into Equation (3) and 

(5), and p
t

r
S





into Equation (4). 

To minimize the second moment for estimating the 
probability of event A, Glasserman samples Z from a new 
probability measure   instead of the original prob-

ability measure   (where  ~ 0,1Z N ). The likelihood 

ratio for these two probabilities measures is 

exp ( ) ( ) ,
d

f Z
d

  


 


           (6) 

where Ψ(θ) ≡ logE [exp (θf(Z))]. Define E
  as the 

expected value measured under   and 

 : ( ) 0 ,pA Z f Z t t Z r             

where ~ ( ,1)Z N t   . Then we have 

*9(1 ) 1 exp( ( ) ( )) .A A dp E E f Z
           

The second moment of the estimator is then  

Second moment 

1 exp( 2 ( ) 2 ( )) exp(2 ( )).AE f Z
             (7) 

To asymptotically optimize the performance of the 
Monte Carlo simulation, a proper θ is selected to mini-
mize exp (2Ψ(θ)) by the following equation:  

' ( ) 0                    (8) 

  is then determined by substituting θ (obtained 

from Equation (8)) into Equation (6). 

2.3 Straddle Options 

Stock options are derivative securities that give their 
buyer the right, but not the obligation, to buy or sell the 
underlying stocks for a contractual price called the exer-
cise price K at maturity. Assume that the options mature 
at time t t   then the payoffs of a call option and a put 
option at maturity are max and max  , 0t tS K   
 K S , 0t t  , respectively. Shorting straddle options 

denotes a portfolio that shorts units call options and 1D
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2D  units put options with the same strike price. To be 

more specific, the portfolio gain at maturity is 

   1 2max ,0 max ,0t t t tD S K D K S     . The portfo-

lio gain is interpreted in terms of stock return defined 

Equation (2) in Figure 3. Note that 
tr

*
0

t

t

K S
r

S


                  (9) 

The portfolio gain can be expressed as follows: 

Portfolio Gain (10) 
* *
0 2 0 1 0

*
2 t

( ) ,    

,                           ,

t t t

t t

r S r r S if r

r S if r

 



   


*

0

,

1

tr

r





where 1 D   and 2 D2 

tr

. The portfolio gain is less 

than if the stock return is larger than or lower than 

, where 

 *
1r

*
2r

* *
* 0 2 0 1

1
1

t t

t

r S r S
r

S

 


 



and *
2

2
.

t
r

S 




t

 

3. Contributions 

We will use shorting straddle options as an example to 
illustrate the major contributions of this paper. First, the 
huge loss events of this portfolio are identified. The 
Monte Carlo simulation is then decomposed into two sub 
simulations; each focuses on one huge loss event. Next, 
the probability distribution for each sub simulation is 
tilted to asymptotically minimize the second moment of 
the estimator under the jump diffusion assumption. Fi-
nally, the allotment of samples for each sub simulation is 
determined by Lagrange’s multiplier to optimize the 
overall performance. 

3.1 Identify the Huge Loss Events 

In Figure 3, the portfolio gain of shorting straddle op-
tions is less than  when the stock return  exceeds 

threshold or is below

 r
*

1r
*
2r . For convenience, events 1A  

and 2A are used to denote the events  *
1tr r  and *

2rtr  , 

respectively, as follows: 

 * *
1 1 0 2 0 1: ( ) ( )t t tA r f r r r r r       * 0 ,

,

   (11) 

 *
2 2 2: ( ) 0t t tA r f r r r     

where and formula* / tr   S 1( )tf r and 2( )tf r are derived 

from Equation (10). Since 1A and 2A are mutually exclusive, 

the probability that the portfolio gain is less than  is 

1 1 2 1 2
1 1A A A Ap E E E           .  

The Monte Carlo simulation for estimating p can be 
decomposed into two sub simulations; one focuses on 

event 1A , and the other one focuses on event 2A . 

3.2 Importance Sampling under the Jump   
Diffusion Assumption 

Next, we will describe how to efficiently estimate
1

1AE  
   

and
2

1AE  
  by importance sampling. Assume that the sub 

simulations for estimating and tilt their 

probabilities from 
1

1AE  
  2

1AE  
 

  to 
1  and

2 , respectively. 

Then 1  and 2  are derived as follows: Define 

1 1( ) log  1 1( te ))E f rxp(   
))tf r

and . 2 2( 2 2( ))tf r  ) log exp(E  

1 1exp( (E     can be calculated as follows: 

* *
1 1 1 0 2 1 0 1

* * *
1 0 2 1 0 1 1 1 1

exp( ( )) exp( ( ))

             = exp(- ) (exp( )).

t t

t

E f r E r r r r

r r r E r

    

      

*         

  
 

Note that 

1 1 1 1
1

(exp( )) exp( ( ))
tN

t i
i

E r E t tZ Z     




 
       
   



2 2 2
1 1 1 1 1 1

1

 exp( 0.5 ) exp( ) '
N t

i
i

t t E Z       




 
      

  


1 1 1 1
1 0 1

2 2 2
1 1 1 1

0

2 2 2
1 1 1 1

0

exp( ) exp( )
!

                          = exp( 0.5
!

( exp( 0.5 ))
                          =

!

tt

t

t

N n n
t

i i
i n i

n
t

n

n
t

n

e
E Z E Z

n

e
n n

n

e

n








   


     

      

 

  








   
    
     

 

 

  




2 2 2

1 1 1 10.5
t                          =exp( ),te         

where t t   . Thus 1 can be obtained by numerically 

solving the equation '
1 1( ) 0   (see Equation (8)) as 

follows: 

' * * * 2 2
1 1 0 2 0 1 1 1 1

2 2 2 2 2
1 1 1 1 1 1 1

( )

( )exp( 0.5 ) 0.t

r r r t t       

           

        

     
 

Similarly, it can be derived that 

2 2 2
2 2 2 2

2 2
2 2 2 2 2 2

0.5*
2

exp( ( )) exp( 0.5

).

t

t t

E f r t t

r e     

2      

   

      

  
 

2  can also be solved numerically by the equation 
'
2 2( ) 0  as follows: 
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)()V( tVtt 



tr

2slope tS  1slope tS 

*
0r

*
2r

*
1r

 
Figure 3. Shorting straddle options 
The x- and y-axis denote the stock return and the portfolio gain, respectively. 

 

2 2 2
2 2 2 2

' 2 2
2 2 2 2 2

0.52 2
2 2 2

( )

( )t

t t r

e     

     

      

      

   

*

0.
 

 

Finally, the new probability distribution
1 sampled 

by the first sub simulation can be derived by Equation (6) 
as follows: 

    

   

1

2
1

2 2

2 2 20.52 1 1 2 2 21 1
1 1 1 11 1

1 1 1 1

( )

/ 2 2
1 1 1 1

2
0

0.5

2
2

exp( ( ) ( ))

1 1
        = exp

!2 2

1 1
        =  

!2 2

n
k Kt

t

t

n Zn
Z t

t
n

n
eZ t

t

d d f r

e
e e f r

n

e e
e

n

     






        

 


 

 



 



 

 




   


    

 
       
   

 
 
 




  2
2

1 1 1

22

0

 .

n
k KZn

n

e

   



  
 



 
 
 

 
  




 

 
That is, the first sub simulation tilts the probability 

from  to 
1 , where the distributions of random vari-

ables defined in Equation (2) are changed as follows: 

 1 1~ ,1Z N t     

 2 2 2
1 1 1 10.5~t tN Poisson e        

  and  2 2
1 1~iZ N

    
1 1

1 1 1 1 11 1 expA tE E A f r


            . 

Thus
1

1AE  
 

 is estimated by sampling the unbiased es-

timator     1 1 1 1xpA tf r
1

1 e      from
1 in the first  

,     . 

Note that 

   

sub simulation. Similarly, the probability distribution 

2  used by the second sub simulation can be derived as 

    
      

2
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   
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  
     
  
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Note also that 

    
2 22

2 2 2 21 1 expA A tE E f r


           .  

The second sub simulation estimates by sam-

pling the unbiased estimator 

2
1AE  
 

    
2 2 21 expA t 2 2f r   

from 
2 . 

3.3 Allocation of Computational Resources to 
Each Sub Simulation 

Finally, we try to minimize the upper bound of the sec-
ond moment for estimating p given a constraint on com-
putational resources. The number of stock return samples 
serves as a proxy of computational resources. Assume 
that we can only sample N stock returns, and the num-
bers of stock returns sampled in the first and the second 
simulations are n1 and n2, respectively. By Equation (7), 
the upper bounds of the second moment of the estima-

tor     
1 1 1 1 11 expA tf r   and     

2 2 2 2 21 expA tf r 

1



under the probability measure 
2

 and   are 

  1 1p 2ex   and   2 2exp 2 , respectively. The 

second moment for estimating p is then 

     1 1 2 2

2 2

exp 2 2exp

n n

  
        (14) 

To minimize Equation (14) under the constraint 
, n1 and n2 can be solved by Lagrange multi-

plier as follows: 
1 2 Nn n 

  
     

1 1
1

1 1 2 2

exp 2
N

exp 2 exp 2
n



 




  
   (15) 

  
     

2 2
2

1 1

exp 2

2 2

N
exp 2 exp 2

n



  

   (16) 

4. Numerical Results 

Table 1 illustrates how the probability tilting mechanism 
proposed in this paper greatly improves the performance 
of the Monte Carlo simulation. Consider a portfolio 
which is composed of a stock. The probability that the 
portfolio loses more than 5% in 0.008 year is estimated 
with three different approaches: Original denotes the 
naive Monte Carlo simulation that samples the stock re-
turn from Equation (2). Lognormal denotes Glasserman 
et al. importance sampling method under the Black- 
Scholes lognormal diffusion assumption (see subsection 
2.2). Jump diffusion denotes the importance sampling 
method derived in Equation (13). We do 100 estimations 

Table 1. Estimating the huge loss probability under differ-
ent probability measures 

Probability 
Measure 

Original Lognormal 
Jump Dif-

fusion 

p


 0.0336 0.0339 0.0338 

Var( p


) 
62.49 10  61.21 10  73.69 10

The stock price is assumed to follow Merton’s jump diffusion process: 
The stock average annual return μ is 0.05, the annual volatility of the 
stock price σ is 0.3, the time span Δt is 0.008 year, the jump frequency λ 
is 6, the average jump size η is 0, and the standard derivation of jump 

size δ is 0.03. p


and Var p
 

  
 

denote the estimated probability and the 

variance, respectively. 

for each Monte Carlo simulation method and each esti-
mation samples 10000 stock returns. The probability for 
the portfolio to lose more than 5% is about 3.38%. Ob-
viously, the method proposed in this paper reduces the 

variance at a ratio of 
7

6

3.69 10
1/ 7

2.49 10







 , which is better than the 

Glasserman’s method
6

6

1.21 10
1/ 2

2.49 10





 
   

. 

Now we proceed to verify the superiority of the hybrid 
importance sampling algorithm in Table 2 and 3, where 
the stock price processes are assumed to follow the log-
normal diffusion process and the Merton’s jump diffu-
sion process, respectively. The first column in these two 
tables denotes the probability measure of the stock return 
sampled by each Monte Carlo simulation method, where 
  denotes the original probability measure defined in 
Equation (2), 

1  denotes the probability measure de-

fined in Equation (12), and 
2  denotes the probability 

measure defined in Equation (13). Hybrid denotes the 
hybrid importance sampling algorithm that is composed 
of two sub simulations, which sample stock returns from 

1  and 
2 , respectively. The numbers of samples 

allocated to these two sub simulations are determined in 
Equation (15) and (16), respectively. The second column 

p


 denotes the estimated probability for each Monte 

Carlo simulation, and the third column Var p
 

  
 

 denotes 

the variance of the estimated probability for each Monte 
Carlo simulation. 

We first focus on Table 2. The event that the portfolio 
loss exceeds  is about 0.0349. This event can be de-
composed into two mutually exclusive events A1 and A2 
(see Equation (11)). The event A1 (with probability 



 1 0.0049P A  ) is less likely to happen than the event A2 

(with probability  2 0.0299P A  ). Although tilting the 

probability measure of the stock return from   to 
1  

makes the Monte Carlo simulation estimate  1P A more 

efficiently and accurately, it also damages the accuracy 
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for estimating . It can be observed that this tilting 

produce inaccurate probability estimation (0.0139) with 
large variance. Similar problem applies to the Monte 
Carlo simulation that tilts the probability measure to 

 2P A

2 ; this Monte Carlo simulation is inadequate to esti-

mate . But tilting the probability measure to  1P A
2  

is better than tilting the probability to
1 since the event 

A2 constitutes the bulk of the event that the portfolio loss 
exceeds . Note that both important sampling methods 
mentioned above are less efficient than the primitive 
Monte Carlo simulation (that samples the stock return 
form ). On the other hand, the hybrid importance 
sampling algorithm performs better than the primitive 
Monte Carlo simulation. It produces accurate probability 
estimation and reduces the variance at a ratio of 





7

6

2.28 10

3.55 10





 






1 / 15 





stock return to 
1

P  (or 
2

P ) also performs poorly in this 

case. Note that the hybrid importance sampling algorithm 
still outperforms the primitive Monte Carlo simulation by 

reducing the variance at a ratio of 
7

6

5.44 10
1 / 7.5

4.05 10





 
   

. 

5 Conclusions 

The paper improves the performance for estimating VaR. 
We first extend Glasserman’s importance sampling 
method to Merton’s jump diffusion process. Then we 
suggest a novel Monte Carlo simulation, the hybrid im-
portance sampling algorithm, which can efficiently esti-
mate the VaR of complex financial portfolios. Numerical 
results given in this paper verify that our method greatly 
improve the performance. 
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