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Abstract 
In this contribution we study a superposition of two finite dimensional trio 
coherent states (FTCS). The state is regarded as a correlated three-mode state 
in finite dimensional bases. The framework of Pegg and Barnett formalism, 
and the phase distribution in addition to the Poissonian distribution are ex-
amined. It is shown that the eigenvalue of the difference of the photon num-
ber (the q-parameter) is responsible for the non-classical phenomenon. Fur-
thermore, the quasi-probability distribution functions (the Wigner and 
Q-functions) are also discussed. In this case and for the Wigner function the 
non-classical behavior is only reported for the odd values of the q-parameter. 
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1. Introduction 

The usual CSs introduced by Glauber [1] are eigenstates of the annihilation op-
erator â  of the harmonic oscillator. Based on Glauber’s work, the even and odd 
CSs were introduced (Dodonov et al., 1974) [2]. The even (odd) CSs are the 
symmetric (antisymmetric) combination of the CSs. They are two orthonorma-
lized eigenstates of ( )2â  the square of the annihilation operator â  and essen-
tially have two kinds of nonclassical effects: the even CS has a squeezing but no 
antibunching effect, while the odd CS has an antibunching but no squeezing ef-
fect (Hillery, 1987; Xia and Guo, 1989) [3]. The simplest archetype examples of 
nonclassical states are of course number states, whose experimental realization is 
however difficult to achieve in the optical regime. Moreover, they share very few 
of the coherence properties that would be desirable both in practical implemen-
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tations and in fundamental experiments. On the other hand, the coherent state 
has become a useful and necessary tool for treating ideal boson fields subjected 
to external pumping sources [1] [4] [5] [6]. Although any quantum state can be 
described in terms of the coherent states due to their resolution of unity, the co-
herent states themselves do not show non-classical effects such as antibunching, 
squeezing, etc. Another way of generalizing the coherent states is the pair cohe-
rent states (PCS). They are eigen states of the product of the two annihilation 
operators of the two modes and the photon number difference of these two modes. 
They show non-classical effects. Agarwal [7] suggested that the optical pair co-
herent states (PCS) can be generated via the competition of 4-wave mixing and 
two-photon absorption in a nonlinear medium. Another scheme has been sug-
gested for generating vibrational pair coherent states via the motion of trapped 
ions in a two-dimensional trap [8]. 

Another generalized is the trio-coherent state TCS [9], whose various 
non-classical effects [10] as well as generation scheme [11] have been investigated, 
is an eigenstate of the operators ˆˆ ˆabc , ˆˆ ˆa cn n P− =  and ˆˆ ˆb cn n Q− =  such that 

, ,ˆ ,ˆ ˆ ,p qa c f p q fb ξ ξ ξ= , ˆ , , , ,p q f q q fQ pξ ξ=  

and ˆ , , , ,p q f p q fP pξ ξ= ,  

where p and q are positive integers with ξ  is complex number respectively. 
Finite dimensional states have also been introduced. The finite dimensional pair 

coherent state ( ) ,FPCS qξ  has been studied recently as the eigenstate of the  

pair operators 
( )

( )

1

2

ˆˆ
ˆˆ

!

qq ab

q
a b

ζ + 
 + 
 
 

†

†  and the sum of the photon number operators  

for the two modes ( )ˆ ˆ ˆa bQ n n= +  [12]. Also the superposition of FPCS and some 
of its properties have been studied recently [13]. 

In the present communication we develop this idea and introduce the super-
position of the finite dimensional trio coherent state (SFTCS). The correlated 
three-mode for the FTCS is defined as the eigenstate of the following three oper-
ators  
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for the three modes, and the sum of the photon number operators for the three 
modes † † ˆˆ ˆ ˆ ˆa a c c Q+ =  and † †ˆ ˆ ˆˆ ˆb b c c P− = , namely [14]: 
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where the parameter ζ  is a complex variable while the parameters 0q ≥  and 
p are integers and the operators â , b̂  and ĉ  commute pairwise. The state 

takes the form, 

( )
( ),

0

! !
, , , , ,

! ! !
n

p
n

q

q

q n p
q p N q n n p n

q n p n
ζ ζ

=

−
= − +

+∑           (2) 

in the three mode states , ,a b c a b cn n n n n n= ⊗ ⊗ , where sn  is the Fock 
state for the mode s(s = a, b and c) and the normalization constant ,q pN  is given 
by 

( )
( )

1
22

,
0

! !
,

! ! !

q
n

q p
n

q n p
N

q n p n
ζ

−

=

 −
=  

+  
∑                   (3) 

the parameter p may be a negative integer, in such case the summation starts 
from n p= , because of the appearance of the operators † ˆˆ ˆa bc  or † †ˆˆ ˆab c  in 
this form it may be legitimate to call it a finite dimensional trio coherent state. 

In this paper we address the problem of constructing and discussing some 
non-classical properties of the superposition of two finite dimensional trio co-
herent states. We shall examine some values of the parameters of the state ob-
tained. 

The correlated three-mode Schrodinger-cat states , , ,q pζ φ  are defined as 
superpositions of three (FTCS) separated in phase by φ  (Gerry and Grobe, 1995) 
[15]: 

( ),, , , , , , , ,i
q pq p N q p e q pφ φζ φ ζ ζ= + −              (4) 

where the normalization constant ,q pNφ  is given by 

( ) ( )
( )

1
222

, ,
0

! !1 1 cos 1
! ! !2

q
nn

q p q p
n

q n p
N N

q n p n
φ φ ζ

−

=

 −
= + − 

+  
∑         (5) 

Now we discuss some statistical properties of these correlated two mode states 
of Equation (4). The results that we are going to present stem from a new ap-
proach to the superposing of the finite dimensional state. Subsequently we shall 
examine the phase distribution in the framework of Pegg and Barnett formalism, 
the behavior of the sub-Poissonian distribution, the Wigner function and the 
Q-function of the state (4) are discussed. 

2. Phase Distribution 

In this section we shall look at the phase distribution of the above mentioned 
state. In the Pegg-Barnett formalism for the phase, a Hermitian phase operator is 
defined in a finite dimensional state space [16]. They used the fact that, in this 
finite dimensional Hilbert space, one can define phase states rigorously. The 
phase operator is then defined as the projection operator on the particular phase 
state multiplied by the corresponding value of the phase. The main idea of the 
formalism consists in evaluation of all expectation values of physical variables in 
a finite dimensional Hilbert space. These give real numbers, which depend pa-

https://doi.org/10.4236/jqis.2019.91005


S. I. Ali, A. M. Mosallem 
 

 

DOI: 10.4236/jqis.2019.91005 101 Journal of Quantum Information Science 
 

rametrically on the dimension of the space. Because a complete description of 
the harmonic oscillator involves an infinite number of states to be taken, a limit 
is taken only after the physical results are evaluated. This leads to proper limits 
which correspond to the results obtainable in ordinary quantum mechanics. 
Here, we study phase properties for the state (4) using this formalism. 

The Pegg-Barnett phase distribution ( )P η  is defined [16] as 

( )( ), 0
,

1 exp
2πq p lm

l m
N i l mφ ρ η η = − − ∑                (6) 

the angle 0η  is the phase reference angle and we take it to be zero. In the case 
of (4) the phase probability distribution is generalized 
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Therefore the phases distribution function can be written as 

( )
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( )
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( ) ( ) ( )
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, 3
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, exp 2

! 2 ! 2 !2π

q j
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 

∑   (7) 

which is normalized according to ( )π
, , 1 2 3 1 2 3π

, , , d dd 1q pPζ θ θ θ ζ θ θ θ
−

=∫∫∫ . Due to  

the connection between the three modes, the phase distribution depends on the 
difference between the phases of the modes. In the figures we plot ( ), ,q pPζ θ  
against the angle 2 3 1θ θ θ θ= + − , π πθ− ≤ ≤  for different values of the para-
meter ,q p  and ζ . 

To demonstrate the behavior of the distribution function ( ), ,q pP θ ζ  we have 
plotted Figure 1 for 2q p= =  and different values of the parameter ζ  adjust 

3,5ζ = . For the j = 0 case in the earlier study [13] the distribution function 
shows Gaussian behavior with one peak centered symmetrically around the cen-
ter of the base, but in the present contribution the function ( ), ,q pP θ ζ  de-
creases its maximum and the peak splits into two separated identical peaks, both 
are symmetric with respect to the origin, see Figure 1(a). The maxima for the 
distribution at 0θ =  decrease by increasing of the parameter ζ . In Figure 1(b) 
we take larger values for the parameter ( )0q q =  and the same values of ζ . 
We see that the function ( ), ,qPζ θ ζ  starts at ( ), , 0.056qPζ θ ζ = , (0.125) when 

3ζ = , (5) respectively. The maxima of the phase distribution are increased by in-
creasing of the parameter ζ  (see Figure 1(b)). However this increase turns to a 
decrease for larger values of ζ . The maximum value for ( ), ,qPζ θ ζ  shifts  
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Figure 1. The phase distribution against θ  for fixed values of 2, 0, 3p j ζ= = =  for the 
solid curve, 5ζ =  for the dot curve (a) 2q− = , (b) 10q− = . 
 
to higher values of ζ  as q increases. In general the function decreases its height 
as the q-parameter increases. This means that an increase in the value of the 
q-parameter changes the Pegg-Barnett phase distribution function. 

3. Sub-Poissonian Distribution 

In this section we discuss an example of non-classical effects of physical states. 
One of the non-classical phenomena of the quantized electromagnetic radiation 
field is the sub-Poissonian statistics. A state of a single mode, for convenience, dis-
playing sub-Poissonian statistics is characterized by the fact that the variance of the 
photon number 2

in∆  is less than the average photon number ( )†
i i ia a t n= . 

Sub-Poissonian statistics does not occur in any classical description for the light 
field, but only occurs when the field is described quaintly [17]. This can be ex-
pressed by means of the normalized second-order correlation function as [17]: 
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and 
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(10) 

where the subscript z relates to the zth mode. 
A light field has a sub-Poissonian distribution if ( )2 1zg < , which is a nonclas-

sical effect and means that the probability of detecting an incident pair of pho-
tons is less than it would be for a coherent field described by the Poissonian dis-
tribution; super-Poissonian distribution if ( )2 1zg > , which is a classical effect 
( ( )2 2zg =  for thermal light) and Poissonian distribution of photons (standard 
for the coherent state) if ( )2 1zg = . 

For fixed the parameter 2, 0p j= =  we examine the correlation function for 
the first mode ( ) ( )2

zg ζ  we have plotted Figure 2. For the first mode the func-
tion ( ) ( )2

zg ζ  shows sub-Poissonian behavior for all even values of the parame-
ter q, however for all range of the parameter ζ  see Figure 2(a). For the second 
mode and for same values of the parameter q the distribution sub-Poissonian for 
a short range of ζ . When the parameter ζ  is increased further, the trio-coherent 
state , ,q pζ  exhibits sup-Poissonian behavior. More increases of the variable 
ζ  the distribution exhibits thermal distribution as well as super-thermal dis-
tribution as observed in Figure 2(b). The nonclassical nature of the state is ap-
parent, which ζ  takes on small values shown in Figure 2(b). In the meantime, 
it is observed that for 4q =  sub-Poissonian behavior for almost the same range 
for the cases in which 8q = . On the other hand the correlation function ( ) ( )2

zg ζ  
for 8q =  exhibits thermal distribution faster than the case in which 4q = . Fur-
thermore, we can also observe that the function starts sub-Poissonian distribution  
 

 

Figure 2. The correlation function ( ) ( )2
zg ζ  against the parameter ζ  for fixed value 

2p = , X (a)-For the first mode 0j =  and 4q =  (solid curve), for 8q =  (dot curve) 
and for 4q =  (dash curve). (b)-same as (a) but for the second mode. 
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in both modes, but for large values of the parameter ζ  the distribution be-
comes sub-Poissonian and super thermal states for first and second modes re-
spectively. We note that the behavior of the case 1j =  for different values of q 
same as the case 0j =  with exchanges of the modes. 

4. Quasiprobability Distribution Sub-Poissonian  
Distribution 

It is well known that there are three quasiprobability distribution functions: 
P-representation, W-Wigner, and Q-function. These functions are regarded as 
important tools to provide insight into the nonclassical features of the radiation 
fields. In the meantime, they have advantages and disadvantages connected with 
their use. As a part of disadvantage the P-function (which describes a quantum 
state in terms of the probability that the system is in a given coherent state) is 
highly singular or negative for quantum states with no classical analogues. While 
the Wigner function may become negative for some quantum states, but it has 
the considerable advantage for squeezed states that its contour map out the va-
riances in the field quadrature. The Q-function is a positive-definite quasiproba-
bility distribution, but its simple relation to anti-normal operator products makes it 
difficult to interpret in terms of conventional photon counting or squeezing mea-
surements. They are defined by taking the Fourier transforms of their respective 
characteristic functions: 

( ) ( ) ( )

( ) ( )

* * * *
6

* * 2 2 2

1, , , exp exp
π

exp , , , d d d

I s

C s

α β γ α η αη β χ βχ

γ ξ γξ χ η ξ χ η ξ

∞

−∞

= − −

× −

∫
        (11) 

where ( ), , ,C sχ η ξ  is the s-parameterized characteristic function with the pa-
rameter 1,0, 1s = −  corresponding to P-representation, Wigner, and Q-function, 
respectively. The characteristic function can be evaluated through the relation 

( ) ( ) ( )
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† †

†

       (12) 

where ρ̂  is the density matrix given by 

ˆ , , , ,q qρ ζ ξ ζ ξ=                       (13) 

In what follows we consider the Wigner, and the Q-function and for this rea-
son we have to evaluate the integral in Equation (11) for 0s =  and 1s = − , re-
spectively. This can be achieved if one manages to calculate the characteristic 
function. From Equation (12) and after minor algebra we have 

( )

( )( ) ( ) ( ) ( )2 2 2 2 2 22

0 0

, , ,

1exp 1
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(14) 

https://doi.org/10.4236/jqis.2019.91005


S. I. Ali, A. M. Mosallem 
 

 

DOI: 10.4236/jqis.2019.91005 105 Journal of Quantum Information Science 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2
2 2 2 *

0 0

2 22 2 2 2 2 2
2 2 2

1
exp , ,

2

2 ! 2 ! 2 !
2 ! 2 ! 2 !

q j q j

n m
n m

n m m n m n
q n j n j p n j

s
B q B q

q n j p n j n j
L L L

q m j p m j m j

η χ ξ ζ ζ

χ η

− −  
      

= =

− − −
− − + + +

− 
= − + + 

 

− − + + +
×

− − + + +

∑ ∑
  (15) 

where ( )n
mL x  are associated Laguerre polynomials and the coefficient ( ),nB qζ  

given by 
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Having obtained the parameterized characteristic function, we are therefore in 
a position to find the Wigner, and Q-function. This will be evaluated in the next 
subsections. 

4.1. The Wigner Function 

To obtain the Wigner function ( ),W α β  we insert Equation (14) into Equation 
(11) and perform the integral. For 0s =  thus, we obtain 
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 × −  
 

∑ (17) 

In Figure 3 we have plotted the Wigner function against ( )Re α  and ( )Im α  
for fixed values of 5ζ =  and 2p = , assuming that ,α β  and γ  are coinci-
dence i.e. in the subspace α β γ= =  [18]. In the meantime we examined the 
function for the cases in which 0j =  and 0,4,6q =  and 8. When we consider 
the case in which 0q = , the function displays Gaussian shape with a symme-
trical behavior around zero. 

In this case one can see a sharp peak centered at the middle of the base, see 
Figure 3(a). As soon as we consider the value of the q-parameter and take, 1j =  
and 1q = , the peak of the function gets upsidedown and the nonclassical effect 
becomes pronounced. This is clear from Figure 3(b) where the negative values 
of the function are apparent. The spreading of Wigner over the plane is shown 
as q increases, this is seen for the case in which 0j =  and 6q = . In this case 
the function increases its value and starts with a doubly folded peak in the center 
towards the positive side. This indicates that the function gets more sensitive to 
the variation in the q-parameter and this of course reflects the change from 
Gaussian to Fock states; see Figure 3(c). For 1j =  and 5q =  the function dis-
plays the same shape, however, it changes its direction upsidedown and exhibits 
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Figure 3. The Wigner function against ( )Re α  and ( )Im α  for fixed values of 2p = , 

5ζ =  and (a) 0j = , 0q = , (b) 1j = , 1q = , (c) 0j = , 4q = , (d) 1j = , 5q = . 
 
negative values. In the meantime, the width of the base increases and the doubly 
folded peak gets more pronounced, see Figure 3(d). This indicates that the non-
classical behavior appears only for the odd numbers of the q-parameter while it 
disappears for the even numbers. This means that the q-parameter plays a role of 
changing the nonclassical behavior. 

4.2. Q-Function 

In the following we concentrate on one of the quasiprobability distribution func-
tions, that is the Q-function [3] [19]. The Q-function is a convenient tool to cal-
culate expectation values of anti-normally ordered products of operators. It is 
well known that the Q-function can be defined in terms of diagonal elements of 
the density operator in the coherent state. Therefore we use the density operator 
ρ  for the state (4) to study its quasi-probability distribution. The Q-function in 
this case is given by 

( ) 2

3

1, , , , , , ,
π

Q q pα β γ α β γ ζ=                  (18) 

where , ,α β γ ∈ ,   is a complex number and , ,α β γ α β γ= , with 
,α β  and γ  are the usual coherent states. Generally there are six variables 

associated with the real and imaginary parts of , ,α β γ . For visualization let us 
confine ourselves to a subspace determined by α β γ= =  [18]. In that sub-
space the Q-function for the state (4) is calculated to be 

( )
( )

( ) ( )

2
2 2

2 22

,3
0

3exp
!2, , ,

π ! 2 ! 2 !

q j
n j q p n j

q p
n

x y
p

Q N
q p n j n j
ζ α

α β γ

− 
  + + + + 

=

 − +  =
+ + +

∑   (19) 
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where ( )x Re α=  and ( )y Im α= . 
Since the maximization or minimization of the Q-function depends on the 

parameter q. Therefore, our main task is to examine the behavior of the Q-function 
result of the variation in the q-parameter. For this reason we plot Figure 4 for 
different values of the q-parameter keeping all other parameters unchanged as in 
the Wigner function case. For instance when we consider 0j =  and 0q = , the 
function exhibits Gaussian behavior similar to that of the Wigner function, see 
Figure 4(a). In this case there exists a unique maximum value at the origin and 
consequently the function ( ),Q x y  for the state 0,ζ  has one peak centered 
at ( ) ( ), 0,0x y = . For the case in which 0q > , more precisely 4q = , there ex-
ists maxima and minima at origin. For the case in which 4q = , we observe that 
the function changes its behavior from Gaussian to almost the Fock state. This is 
quite obvious from the observation of the doubly folded peaks beside an increase 
in the width of the base, see Figure 4(b). The increase in the value of q-parameter 
leads to an increase in the width of the base, this in addition to a decrease in the 
maximum value of the function. Thus we may conclude that, the shape of the 
Q-function for the state ,q ζ  where 0q ≠  is sensitive to the change in 
q-parameter where a crater is apparent in the center. However, if we increase q 
the crater-like at the center spreads out in the phase space and the diameter in-
creases as the q. 

5. Conclusion 

In the present paper we have studied the superposition of two entangled finite 
dimensional trio coherent states. These states can be produced by processes in 
which there is a strong competition between a three mode parametric conver-
sions. In the mean time, we have employed the Glauber second order-correlation 
function to examine the nonclassical properties of the state. We have shown that 
the nonclassical as well as the classical behaviors are apparent in both modes for 
large values of ζ . However, the nonclassical is more pronounced in the first 
mode case while the classical behavior is pronounced in the second mode. We 
have also considered the quasiprobability distribution functions (the Wigner and 
Q-functions) where observation of nonclassical properties is reported for the 
odd values of the q-parameter. In the meantime the Q-function displays Gaussian  
 

 

Figure 4. The Q-function against ( )Re α  and ( )y Im α=  for fixed values of 2,p =  

5ζ =  and 0j =  (a) 0q = , (b) 4q = . 
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behavior and tends to Fock state behavior as q increases. Finally, we have ex-
amined the properties of the present state in terms of the phase distribution 
function introduced by Barnett and Pegg. In this case, regardless of the value of 
q, the function is symmetric about zero. However, as the q-parameter increases 
the value of the function decreases but without broking the symmetry. 
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