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Abstract 
We demonstrate that the intensity of the energy emission obtained from the 
Joule-Lenz law applied to the case of a single free-electron particle or a 
harmonic oscillator does not depend on the change of size of the 
corresponding energy interval ( E∆ ) and time interval ( t∆ ) because the ratio 
of E∆  to t∆  representing the emission rate remains constant. For a free 
electron, this property holds on condition the calculations of E∆  and t∆  
refer to the states having a sufficiently large quantum index n. 
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1. Introduction 

The kind of electrodynamics presented in the paper seems to be not studied 
enough in the former approaches to the energy emission. Two simple physical 
cases—of a free particle in the potential box and a linear harmonic oscillator— 
are mainly considered. The formalism applied to them is based on the Joule- 
Lenz equation used predominantly before in a classical approach to a dissipated 
energy [1] [2]. But next it became evident that the electrodynamical apparatus of 
the currents intensity and their resistance entering the Joule-Lenz theory could 
be applied also to the electron microparticles [3]. 

The present calculations begin with free electrons whose behaviour in a po-
tential box is well known. With the electron-electron interaction neglected and 
the box size limited to an interval of a straight line having infinite potential 
walls, the energy quanta in the box are [4]: 
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2 2

28n
n hE
mL

=                           (1) 

where  

1, 2,3, ,n =                           (2) 

m is the electron mass, L is the box length. 
The energy emission is an effect of the change of some number n in (1) into a 

lower one. For the sake of convenience let us assume that some number 1n +  is 
changed into n giving the emitted energy equal to  

( )2 2
2

1 2

1
.

8n n
n n

E E E h
mL+

+ −
∆ = − =                 (3) 

Now the main problem concerns the time interval t∆  which is connected 
with the process represented by (3), since a knowledge of t∆  combined with 

E∆  in (3) leads to the intensity of the energy emission. In quantum mechanics 
this intensity is obtained on a probabilistic way based on the calculation of the 
matrix elements produced by the wave functions entering the beginning and end 
quantum states involved in the emission process, combined also with the 
appropriate operators [5] [6]. 

This is a tedious way which we try to replace by a more simple semiclassical 
approach based on the Joule-Lenz law:  

2E Ri
t

∆
=

∆
                          (4) 

where R is the electric resistance and i the current intensity supplied by the 
electron particle. In effect we obtain the ratio of the emitted energy E∆  and 
time t∆  of the occurence of E∆  as a function of R and i. The resistance is  

,VR
i

=                            (5) 

where we put  

,EV
e
∆

=                           (6) 

and  

,i e T=                           (7) 

where e is the electron charge and T is the time period connected with the 
electron current on level n. We find below that the same T does approach the 
time interval necessary for transition between the levels 1n +  and n. 

The formulae (5)-(7) complete the formalism necessary to calculate (4) on 
condition we have the time period nT T= . For a free electron located in state n 
this parameter should satisfy the equation for the electron velocity in state n:  

1 222 n
n

n

ELv
T m

 = =  
 

                     (8) 

obtained by assuming that the free-electron energy (1) is equal to the kinetic 
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energy given by the formula  
2

.
2

n
n

mv E=                           (9) 

A substitution of (1) into (8) provides us with  

2
2n

L nh
T mL

=                          (10) 

from which  
24 .n

mLT
nh

=                         (10a) 

2. Electric Resistance R and the Emission Rate of Energy in  
Equation (4) 

In this and next Sections we apply systematically formula (4) and complementary 
formulae (5)-(7). The aim of calculations is to present the emission intensity (4) 
for the case of the energy difference E∆  between the quantum levels given in 
(3), and next for energy differences  

2 ,n nE E+ −                          (3a) 

3 ,n nE E+ −                          (3b) 

4 ,n nE E+ −                          (3c) 

and 

5 .n nE E+ −                          (3d) 

In the first step, on the basis of (5)-(7) and (10a), we have  

( )2 2 2 2 2
2

2 2 2

1 4 4 ,
8 4

n n nTV E mL nh mL hR h
i e e nhe nhemL e mL e e

+ −∆
= = = ≅ =   (11) 

on condition n is large enough to satisfy  

2 1.n                           (12) 

A characteristic point is that the result in (11) does not depend on n. 
Evidently this result is identical with the resistance  

2

hR
e

=                           (13) 

characteristic for the integer quantum Hall effect; see e.g. [7]. 
A posteriori the result obtained in (11) justifies that  

nT t= ∆                           (14) 

where t∆  is the time interval applied on the left side of (4). For, a substitution of  
2

24n
nhE E
mL

∆ = ∆ ≅                      (15) 

entering (11) into (4) gives  

( )
2 2 2 2 2 3

2 2 2 2 2 22

1 1 .
4 4 16n n nn n

E nh Re h e h nh n h
t t T T TmL T e T mL mL

∆
≅ = = = = =

∆ ∆
   (16) 
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The one-by-last step of (16) obtained from (10a) compared with the second 
step entering (16) leads to the equation  

2 2

2 2

1 1
4 4 n

nh nh
t TmL mL
=

∆
                     (17) 

which is equivalent to the formula (14). 

3. Resistance R and the Transition Time of Electron in Case  
of the Emission Energy ΔE = ΔEn+1 > ΔEn  

Let us assume here that  

( )2 2 2
2

1 2 2 2

2
8 2n n n

n n nhE E E E h eV
mL mL+ +

+ −
∆ = ∆ = − = ≅ =       (18) 

and  

( )
2 2 2

1
4 4 8 ,

1n n
mL mL mLt T T
nh n h nh+∆ = + = + ≅

+
          (19) 

where the second T-component in (19) is the time necessary for transition 
between the levels 2n +  and 1n + :  

( )
2

1
4 ;

1n
mLT

n h+ =
+

                      (20) 

see (10a). 
In this case the resistance R becomes  

2 2 2

2 2 2 2

8 4 .
2 2

V nh t nh mL hR
i e nhmL e mL e e

∆
= = = =            (21) 

We find that the value of R is four times larger than that obtained in (11). The 
condition for n satisfied in calculating R is here  

4 4 or 1.n n                       (22) 

We can check the Joule-Lenz equation (4) by substituting into it the results 
obtained in (18)-(21):  

( ) ( ) ( )
2 2 2 2 2 2 3 2 3

2 2 2 2 2 2 2 2 42 2

4 4 4 1 .
64 162 8 8

E nh nh h e h e n h n h n h
t mL mL e e m Lt mL mL

∆
= = = = =

∆ ∆
 (23) 

Evidently both sides of (4) fit together on condition the formula (19) for t∆  
is consequently applied in calculating the current intensity i. 

4. Next Step of the Extension of ΔE, R and Δt Applied to the  
Joule-Lenz Law 

In this step we take into account  

( )2 2 2
2 2

2 3 2 2 2

3 6 3
48 8n n n

n n n nhE E E E h h
mL mL mL+ +

+ −
∆ = ∆ = − = ≅ =    (24) 

for which the formula  
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6 9n                            (25) 

is assumed. The subscript 2n +  of E∆  in (24) indicates the interval E∆  
larger by one step than that having subscipt 1n +  in Sec. 3; see (18). 

On the other side we apply  

( ) ( )
2 2 2 2

1 2
4 4 4 12

1 2n n n
mL mL mL mLt T T T
nh n h n h nh+ +∆ = + + = + + ≈

+ +
     (26) 

valid for large n. In effect the resistance R becomes  
2 2

2 2 2 2

3 1 12 9 .
4

V E nh mL hR t
i nhe mL e e

∆
= = ∆ = =            (27) 

With the aid of the above formulae a next check of the application of the 
Joule-Lenz law in (4) can be done:  

( ) ( ) ( )
2 2 2 2 2 3

2 2 2 2 2 22 2

3 9 19 .
4 1612 144

E nh nh h e n h n hh
t mL mL e t mL mL

∆
= = = =

∆ ∆
   (28) 

5. Further Extensions of the Formula (4) to Large ΔE and Δt 

These extensions demonstrate us a constant result of the emission rate E t∆ ∆  
obtained for different separations between the quantum levels n q+  and n. Let 
us consider two examples of E∆  and t∆  being larger than applied before. 
The first one is  

( )2 2 2 2
2

3 4 2 2 2

4 8
8 8n n n

n n nh nhE E E E h
mL mL mL+ +

+ −
∆ = ∆ = − = ≅ =     (29) 

valid on condition  

8 16 or 2.n n                      (30) 

The t∆  connected with E∆  in (29) is  

( ) ( ) ( )

1 2 3
2 2 2 2 24 4 4 4 16 .

1 2 3

n n n nt T T T T

mL mL mL mL mL
nh n h n h n h nh

+ + +∆ = + + +

= + + + ≈
+ + +

     (31) 

Both formulae (29) and (31) give for the left side of (4):  

( )
2 2 3

2 2 22
.

16 16

E nh nh n h
t mL mL mL

∆
= =

∆
              (32) 

On the right-hand side of (4) we obtain  
2 2

2 2 2 2

1 16 16V V t E t nh mL hR
i e nhe mL e e

∆ ∆ ∆
= = = = =         (33) 

and  

( ) ( )
2 2

2 2 2
2 22

.
16

e ei n h
t mL

= =
∆

                  (34) 

Therefore the product of (33) and (34) gives  
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( ) ( )
2 2 3

2 2 2
2 2 22 2

16
16 16

h e n hRi n h
e mL mL

= =              (35) 

which is a result equal to that obtained in (32). 
As the end step let us take  

( )2 2 2 2
2

2 2 2

5 10 5 .
48 8

n n nh nhE h
mL mL mL

+ −
∆ = ≅ =             (36) 

The resistance corresponding to (36) becomes  
2 2

2 2 2 2

1 5 20 25 ,
4

V E nh mL hR t
i nhe e mL e

∆
= = ∆ = =           (37) 

since t∆  being an extension of (31) appropriate to transition energy (36) is  
220 .mLt

nh
∆ ≈                        (38) 

In the next step  

( ) ( )
2 2

2 2 2
2 22

,
20

e ei n h
t mL

= =
∆

                (39) 

so by combining 2i  in (39) with R from (37) we obtain  

( ) ( ) ( )
2 2 3 2 3

2 2 2
2 2 2 22 2 2

25 125 .
400 1620

h e n h n hRi n h
e mL mL mL

= = =       (40) 

On the other hand the ratio of (36) and (38) gives  

( )
2 2 3

2 2 22

5 1
4 1620

E nh nh n h
t mL mL mL

∆
= =

∆
               (41) 

which is a result identical with that obtained in (40). 
We conclude this section by a remark that the emission rate of energy due to a 

free electron enclosed in a one-dimensional potential box examined semiclassically 
with the aid of the Joule-Lenz law does not depend on the separation between 
states  

andn q n+                        (42) 

on condition we have satisfied the relation  

.n q                         (42a) 

It is worth to be noted that the emission rate of a free particle energy 
multiplied by ( )2t∆  gives a result independent of parameters n and L. For 
example by multiplying (41) by the square value of the time interval in (38) we 
obtain  

25 .E t h∆ ∆ =                         (43) 

It is easy to see that a general formula of that kind will be  
2E t q h∆ ∆ =                        (43a) 

when the intervals E∆  and t∆  suitable for a given q are taken into account. 
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6. Emission Rate of Energy for the Harmonic Oscillator 

In general our aim is to consider the emission rate of energy  

1 1
1

nE E E nh nh
T

ν+∆ = − = =                 (44) 

of a linear harmonic oscillator due to the energy change, say, between the 
quantum levels 1n +  and 1n = . The frequency ν  of the oscillator refers to 
the time period T of the oscillation:  

1 .Tν =                         (44a) 

We apply the Joule-Lenz law beginning with transition  

1 .n nE E E hν+∆ = − =                     (45) 

The resistance R entering the law is  

2 2

V E h hR T
i ei e e

ν∆
= = = =                  (46) 

since  

.i e T=                         (47) 

Evidently the R in (46) is identical with that obtained for the lowest 
free-electron transition in (11). In effect of (45)-(47) the right-hand side of the 
Joule-Lenz law (4) becomes  

2
2

2 2 2 .h e hRi
e T T

= =                    (48) 

The left-hand side of (4) in the oscillator case is  

.E h h
t t T t

ν∆
= =

∆ ∆ ∆
                    (49) 

The requirement of equality between (48) and (49) gives  

2

h h
T t T

=
∆

                       (50) 

or  

.t T∆ =                        (50a) 

In effect the time rate of the energy change is  

2
2 .E h h

t T
ν

∆
= =

∆
                    (51) 

In case of the energy separation done by two quantum levels, namely  

2 2 1 1 ,n n n n n nE E E E E E E+ + + +∆ = − = − + −           (52) 

the time interval t∆  required to attain the difference (52) is twice the interval T 
necessary to attain the difference between two neighbouring levels [see (50a)]:  

2 2 .t t T T T∆ = ∆ = + =                  (53) 

This means that the emission intensity is  

22 ,
2

E h h h
t T T

ν ν ν∆
= = =

∆
                 (54) 
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so the intensity for the case of the energy difference (52) is the same as intensity 
obtained in the case of (45); see (51). 

Let us examine still the right-hand side of the Joule-Lenz law presented in (4) 
for E∆  in (52). In this case  

2 2

2 2 4E E t h hR T
ei e e e e

ν∆ ∆ ∆
= = = =              (55) 

which is the same R as obtained in (18). The calculation indicates that R in two 
different physical systems—free particle in the box and harmonic oscillator—can 
be the same on condition the separation number q between the quantum levels 
n q+  and n is unchanged. 

In general the time interval necessary to make a travel of the harmonic 
oscillator between q successive quantum levels, say from the n q+  level to n 
level, requires q intervals required for transitions between 1n +  and n:  

1 .qt q t qT∆ = ∆ =                      (56) 

By taking into account that the energy change between n q+  and n is  

,n q nE E q E qhν+ − = ∆ =                   (57) 

where E∆  is given in (45), we obtain  

2

q

q E qh h h
t qT T

ν ν
ν

∆
= = =

∆
                  (58) 

for all emission rates of the harmonic oscillator. 
An evident consequence of (58) is that product  

( ) 2
qq E t T h∆ ∆ =                     (59) 

holds for any emission rate entering (58). 

7. Conclusions 

A semiclassical examination of properties of the emission intensity has been 
done, first, for the energy quanta of a free-electron particle enclosed in a linear 
potential box, next for the spectrum of a harmonic oscillator. Different separa-
tions between the beginning and end quantum levels involved in the emission 
process are taken into account. The calculations have been performed on the ba-
sis of a semiclassical Joule-Lenz law adapted to examination of the quantum sys-
tems. 

In the first step it is found that the emission rate for a free particle is depen-
dent on the box length L and the index n of the quantum state involved in emis-
sion, but not on a mutual separation of the beginning and end quantum levels. 
This property holds especially well when n is a large number. 

On the other hand, in the case of the harmonic oscillator, the emission rate of 
energy does depend neither on the separation between the states involved in 
emission, nor on the index n of the quantum level associated with these states. 
Certainly no selection rules for transitions between the states known from the 
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quantum mechanics do apply in the examined semiclassical theory. 
A characteristic point is that the detected behaviour of the emission intensity 

for a free particle and harmonic oscillator is qualitatively different than obtained 
in the case of the hydrogen atom [8] [9] [10]. In the hydrogen case, the semiclas-
sical emission rate depends essentially on both quantum numbers n′  and n la-
belling respectively the beginning and end state of emission. 

However, there exists a property which is common for a semiclassical 
emission examined in all three physical cases mentioned above [3] [10] [11]. It 
concerns the intensity of emission done between two neighbouring quantum 
levels, say 1n +  and n; here n should be not a very small integer number. When 

E∆  is the energy interval between states 1n +  and n, and the time interval 
necessary to perform the transition from 1n +  to n is t∆ , it satisfied the 
relation  

.E t h∆ ∆ =                          (60) 

Therefore  

1 E
t h

∆
=

∆
                         (61) 

and  

( )2

.
EE

t h
∆∆

=
∆

                       (62) 

It is easy to check that the above properties provide us with the emission 
behaviour for a free particle as well as harmonic oscillator equal to that obtained 
in the present paper. For a free electron (62) gives with the aid of (15), (14) and 
(17):  

( )
2 3

2216

E n h
t mL

∆
=

∆
                    (62a) 

which is a result identical with the formulae (16), (23), (28), (32) and (41) 
attained in Secs. 4 and 5. 

In the case of the harmonic oscillator (62) becomes  

2E h
t

ν∆
=

∆
                       (62b) 

which is identical with the expressions presented in (51) and (58). 
Let us note that the choice of E∆  equal to the energy distance between two 

neighbouring quantum states is in agreement with the well-known quantum- 
mechanical selection rule allowing for the dipole radiation of the harmonic 
oscillator. 
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