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Abstract 
Bell’s inequality itself is usually considered to belong to mathematics and not 
quantum mechanics. We think that this is making our understanding of Bell’ 
theory be confused. Thus in this paper, contrary to Bell’s spirit (which inherits 
Einstein’s spirit), we try to discuss Bell’s inequality in the framework of quan-
tum theory with the linguistic Copenhagen interpretation. And we clarify that 
the violation of Bell’s inequality (i.e., whether or not Bell’s inequality holds) 
does not depend on whether classical systems or quantum systems, but de-
pend on whether a combined measurement exists or not. And further we con-
clude that our argument (based on the linguistic Copenhagen interpretation) 
should be regarded as a scientific representation of Bell’s philosophical argu-
ment (based on Einstein’s spirit). 
 

Keywords 
Bohr-Einstein Debates, Bell’s Inequality, Combined Observable, Linguistic  
Copenhagen Interpretation, Quantum Language 

 

1. Review: Quantum Language (=Measurement Theory (=MT)) 
1.1. Introduction 

Recently (cf. refs. [1]-[10], also see (B0) - (B3) later), we proposed quantum lan-
guage, which was not only characterized as the metaphysical and linguistic turn 
of quantum mechanics but also the linguistic turn of dualistic idealism. And 
further we believe that quantum language should be regarded as the foundations 
of quantum information science. Quantum language is formulated as follows.  

(A) 
( )

( )

( ) ( )
( )
( )

measurement theory

Axiom 1 Axiom 2 how to use Axioms 1 and 2language

Quantumlanguage Measurement Causality Linguistic Copenhagen interpretation
=

= + +  

Note that this theory (A) is not physics but a kind of language based on the 
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quantum mechanical world view. That is, we think that the location of quantum 
language in the history of world-descriptions is as follows.  

And in Figure 1, we think that the following four are equivalent (refs. [1] [8]):  
(B0) to propose quantum language (cf. ⑩ in Figure 1, ref. [1] [8]).  
(B1) to clarify the Copenhagen interpretation of quantum mechanics (cf. ⑦ in 

Figure 1, refs. [2] [7] [11]), that is, the linguistic Copenhagen interpretation is 
the true figure of so-called Copenhagen interpretation.  

(B2) to clarify the final goal of the dualistic idealism (cf. ⑧ in Figure 1, refs. [3] 
[9]).  

(B3) to reconstruct statistics in the dualistic idealism (cf. ⑨ in Figure 1, refs. 
[4] [5] [6] [12]).  

In Bohr-Einstein debates (refs. [13] [14]), Einstein’s standing-point (that is, 
“the moon is there whether one looks at it or not” (i.e., physics holds without 
observers)) is on the side of the realistic world view in Figure 1. On the other 
hand, we think that Bohr’s standing point (that is, “to be is to be perceived” (i.e., 
there is no science without measurements)) is on the side of the linguistic world 
view in Figure 1 (though N. Bohr might believe that the Copenhagen interpretation 
(proposed by his school) belongs to physics).  

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try 
to discuss Bell’s inequality (refs. [15] [16] [17] [18]) in quantum language (i.e., 
quantum theory with the linguistic Copenhagen interpretation). And we clarify 
that whether or not Bell’s inequality holds does not depend on whether classical 
systems or quantum systems (in Section 3), but depend on whether a combined mea-
surement exists or not (in Section 2). And further we assert that our argument (based 
on the linguistic Copenhagen interpretation) should be regarded as a scientific re-
presentation of Bell’s philosophical argument (based on Einstein’s spirit). 

 

 
Figure 1. The history of the world-descriptions. 
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1.2. Quantum Language (=Measurement Theory);  
Mathematical Preparations 

Now we shall explain the measurement theory (A). 
Consider an operator algebra ( )B H  (i.e., an operator algebra composed of all 

bounded linear operators on a Hilbert space H with the norm  

( ) 1sup
HuB H HF Fu== ), and consider the pair [ ] ( ), B H  , called a basic struc-

ture. Here, ( )( )B H⊆  is a C*-algebra, and   ( ( )B H⊆ ⊆  ) is a partic-
ular C*-algebra (called a W*-algebra) such that   is the weak closure of   in 
( )B H . 
The measurement theory (=quantum language) is classified as follows.  

(C) 

( )
( ) ( )( )
( ) ( )( )

1

2 0

measurement theory A

C : quantum system theory when

C : classical system theory when

H

C

 == 
= Ω

 



 

That is, when ( )H=  , the C*-algebra composed of all compact operators 
on a Hilbert space H, the (C1) is called quantum measurement theory (or, quan-
tum system theory), which can be regarded as the linguistic aspect of quantum 
mechanics. Also, when   is commutative (that is, when   is characterized by 

( )0C Ω , the C*-algebra composed of all continuous complex-valued functions va-
nishing at infinity on a locally compact Hausdorff space Ω  (cf. [19] [20])), the 
(C2) is called classical measurement theory (or, classical system theory).  

Also, note (cf. [19]) that, when ( )H=  ,  
1) ( )( )* trace classTr H= = , ( )B H= , ( )* Tr H=  (i.e., pre-dual 

space).  
Also, when ( )0C= Ω ,  
2) * =  “the space of all signed measures on Ω ”,  

( ) ( )( )( )2, ,L B Lν ν∞= Ω ⊆ Ω , ( )1
* ,L ν= Ω , where ν  is some measure on 

Ω  (cf. [19]). Also, the ( ),L ν∞ Ω  is usually denoted by ( )L∞ Ω .  
Let ( )( )B H⊆  be a C*-algebra, and let ∗  be the dual Banach space of 
 . That is, ∗  = {ρ | ρ is a continuous linear functional on  }, and the norm  

ρ ∗
 is defined by ( ) ( )( ){ }sup | such that 1B HF F F Fρ ∈ = ≤


 . Define the 

mixed state ( )ρ ∗∈  such that 1ρ ∗ =
 and ( ) 0Fρ ≥  for all F ∈  such 

that 0F ≥ . And define the mixed state space ( )*mS   such that  

( ) { }* * | is a mixed state .m ρ ρ= ∈S    

A mixed state ( )( )*mρ ∈S   is called a pure state if it satisfies that  
( )1 21ρ θρ θ ρ= + −  for some ( )*

1 2, mρ ρ ∈S   and 0 1θ< <  implies 1ρ ρ=  
2ρ= . Put  

( ) ( ){ }* * | is a pure state ,p mρ ρ= ∈S S   

which is called a state space. It is well known (cf. [19]) that ( )( ) {*p H u u=S   
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(i.e., the Dirac notation) | }1Hu = , and ( )( ) { 0 0

*
0 |p C ω ωδ δΩ =S  is a point meas-

ure at }0ω ∈Ω , where ( ) ( ) ( )
0 0df fωω δ ω ω

Ω
=∫  ( )( )0f C∀ ∈ Ω . The latter 

implies that ( )( )*
0

p C ΩS  can be also identified with Ω  (called a spectrum 

space or simply spectrum) such as  

( )( )
( )

( )

*
0 spectrum

states pace

p C ωδ ωΩ ↔ ∈ ΩS

                 

(1) 

For instance, in the above 2) we must clarify the meaning of the “value” of 
( )0F ω  for ( ),F L ν∞∈ Ω  and 0ω ∈Ω . An element ( )F ∈  is said to be essen-

tially continuous at ( )( )*
0

pρ ∈S  , if there uniquely exists a complex number 
α  such that  
• if ( )

**, 1ρ ρ∈ =


  converges to ( )( )*
0

pρ ∈S   in the sense of weak* 
topology of * , that is,  

( ) ( ) ( )( )0 ,G G Gρ ρ→ ∀ ∈ ⊆   

then ( )Fρ  converges to α .  
And the value of ( )0 Fρ  is defined by the α . 
According to the noted idea (cf. [21]), an observable ( )O : , ,X F=   in   

is defined as follows:  
1) [σ-field] X is a set,   ( ( )2 =⊆ X X , the power set of X) is a σ-field of X, 

that is, “ 1 2 1
, , nn

∞

=
Ξ Ξ ∈ ⇒ Ξ ∈   ”, “ \XΞ∈ ⇒ Ξ∈  ”, “ X ∈ ”.  

2) [Countable additivity] F is a mapping from   to   satisfying: a) for 
every Ξ∈ , ( )F Ξ  is a non-negative element in   such that ( )0 F I≤ Ξ ≤ , 
b) ( ) 0F ∅ =  and ( )F X I= , where 0 and I is the 0-element and the identity 
in   respectively. (c): for any countable decomposition { }1 2, , , ,nΞ Ξ Ξ   
of Ξ  (i.e., ( ), 1, 2,3,n nΞ Ξ ∈ =  , 1 nn

∞

=
Ξ = Ξ , i jΞ Ξ =∅  ( i j≠ )), it 

holds that ( ) ( )1 nnF F∞

=
Ξ = Ξ∑  in the sense of weak* topology in  .  

Remark 1. Quantum language has two formulations (i.e., the C*-algebraic for-
mulation and the W*-algebraic formulation). In this paper, we devote ourselves to the 
W*-algebraic formulation, which may, from the mathematical point of view, be su-
periority to the C*-algebraic formulation. That is, in the above 2), the countable addi-
tivity (i.e., ( ) ( )1lim N

N nnF F→∞ =
Ξ = Ξ∑ ) is naturally discussed in the W*-algebraic 

formulation. However, the C*-algebraic formulation has a merit such that we can 
use it without sufficient mathematical preparation. For the C*-algebraic version 
of this paper, see my preprint [10].  

1.3. Axiom 1 [Measurement] and Axiom 2 [Causality] 

With any system S, a basic structure [ ] ( ), B H   can be associated in which the 
measurement theory (A) of that system can be formulated. A state of the system 
S is represented by an element ( )( )*pρ ∈S   and an observable is represented 
by an observable ( )O : , ,X F=   in  . Also, the measurement of the observable 
O  for the system S  with the state ρ  is denoted by [ ]( )M O, S ρ  (or more 
precisely, ( ) [ ]( )M O : , , ,X F S ρ=  ). An observer can obtain a measured value 
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x ( X∈ ) by the measurement [ ]( )M O, S ρ .  
The Axiom 1 presented below is a kind of mathematical generalization of 

Born’s probabilistic interpretation of quantum mechanics (cf. ref. [22]). And thus, 
it is a statement without reality. 

Now we can present Axiom 1 in the W*-algebraic formulation as follows.  
Axiom 1 [ Measurement ]. The probability that a measured value x  ( )X∈  

obtained by the measurement ( ) [ ]( )M O : , , ,X F S ρ=   belongs to a set ( )Ξ ∈  
is given by ( )( )Fρ Ξ  if ( )F Ξ  is essentially continuous at ( )( )*pρ ∈S  .  

Next, we explain Axiom 2. Let [ ] ( )11 1, B H   and [ ] ( )22 2, B H   be basic struc-
tures. A continuous linear operator 1,2 2:Φ   (with weak* topology) 1→   (with 
weak* topology) is called a Markov operator, if it satisfies that 1) ( )1,2 2 0FΦ ≥  for 
any non-negative element 2F  in 2 , 2) ( )1,2 2 1I IΦ = , where kI  is the identity 
in k , ( )1, 2k = . In addition to the above 1) and 2), in this paper we assume 
that ( )1,2 2 1Φ ⊆   and ( ){ }21

1,2 2 2 2 2sup | such that 1 1F F FΦ ∈ ≤ =


 . 
It is clear that the dual operator * * *

1,2 1 2:Φ →   satisfies that ( )( )* *
1,2 1

mΦ S 

( )*
2

m⊆S  . If it holds that ( )( ) ( )* * *
1,2 1 2

p pΦ ⊆S S  , the 1,2Φ  is said to be 
deterministic. If it is not deterministic, it is said to be non-deterministic or de-
coherence. Here note that, for any observable ( )2 2O : , ,X F=   in 2 , the 

( )1,2 2, ,X FΦ  is an observable in 1 . 
Now Axiom 2 in the measurement theory (A) is presented as follows:  
Axiom 2 [Causality]. Let 1 2t t≤ . The causality is represented by a Markov 

operator 
1 2 2 1, :t t t tN NΦ → . 

1.4. The Linguistic Interpretation (=The Manual to Use Axioms 1 
and 2)  

In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, 
metaphysical statements), and thus, it is nonsense to verify them experimentally. 
Therefore, what we should do is not “to understand” but “to use”. After learning 
Axioms 1 and 2 by rote, we have to improve how to use them through trial and 
error.  

We can do well even if we do not know the linguistic interpretation. However, 
it is better to know the linguistic interpretation (=the manual to use Axioms 1 
and 2), if we would like to make progress quantum language early. 

The essence of the manual is as follows:  
(D) Only one measurement is permitted. And thus, the state after a measure-

ment is meaningless since it cannot be measured any longer. Thus, the collapse 
of the wavefunction is prohibited (cf. [7]). We are not concerned with anything 
after measurement. That is, any statement including the phrase after the mea-
surement is wrong. Also, the causality should be assumed only in the side of sys-
tem, however, a state never moves. Thus, the Heisenberg picture should be adopted, 
and thus, the Schrödinger picture should be prohibited. Also, it is added that 
there is no probability without a measurement.  
and so on. For details, see [8]. 
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1.5. Generalized Simultaneous Measurement, Parallel Measurement 

Definition 2. [Generalized simultaneous observable, Generalized simultaneous 
measurement] Let [ ] ( ), B H   be a basic structure. Consider observables  

( )O , ,k k k kX F=   ( )1,2, ,k K=   in  . Let ( )1 1,K K
k k k kX= =×    be the product 

measurable space, i.e., the product space 1
K
k kX=×  and the product σ-field  

1
K

k k=  , which is defined by the smallest σ-field that contains a family  
{ }1 | , 1, 2, ,K

k k k k k K=× Ξ Ξ ∈ =  . An observable  

( )qp
1 11,2, ,

O O , ,K K
k k k k kk K

X F= ==
= = ×


 ×  in   is called the generalized simultaneous 

observable (or, quasi-product observable, combined observable, etc.) of Ok   
( )1,2, ,k K=  , if it holds that  

( )
( ) ( )
1 2 1 1

, , 1, 2, ,
k k k K

k k k k

F X X X X X

F k K
− +× × × ×Ξ × × ×

= Ξ ∀Ξ ∈ =

 


             (2) 

Also, the measurement [ ]( )0
M O, ρS  is called a generalized simultaneous mea-

surement of measurements [ ]( )0
M O , ρk S  ( )1,2, ,= k K . A generalized si-

multaneous observable is called a simultaneous observable, if it holds:  

( )

( ) ( )
1 2 1 1

1
, , 1, 2, ,

− +

=

Ξ ×Ξ × ×Ξ ×Ξ ×Ξ × ×Ξ

= Ξ ∀Ξ ∈ =×

 



k k k K

K

k k k k
k

F

F k K

 

Note that the existence and the uniqueness of a generalized simultaneous ob-
servable ( )1 1O , ,= == ×K K

k k k kX F   in   are not assured in general, however the 
simultaneous observable always exists if observables Ok  ( )1,2, ,k K=   com-
mute, i.e.,  

( ) ( ) ( ) ( ) ( ), , ,Ξ Ξ = Ξ Ξ ∀Ξ ∈ ∀Ξ ∈ ≠
lk k l l l l k k k k lF F F F k l          (3) 

Definition 3. [Parallel observable, Parallel measurement] For each  
1,2, ,k K=  , consider a basic structure [ ] ( ),

kk k B H
   and a measurement  

( ) [ ]( )M O : , , ,
k kk k k kX F S ρ=  . We consider the spatial tensor W*-algebra  

( )( )1 1
K K
k k k kB H= =⊗ ⊆ ⊗ , and consider the product measurable space  

( )1 1,K K
k k k kX= =×   . Consider the observable ( )1 1 1O , ,K K K

k k k k k kX F= = =⊗ = ×    in  

1
K

kk=⊗   such that  

( ) ( ) ( )1 1 , 1, 2, , .K K
k k k k k k kF F k K= =× Ξ = ⊗ Ξ ∀Ξ ∈ =   

which is called the parallel observable of ( )O : , ,k k k kX F=   ( )1,2, ,k K=  .  

And let ( )*1 1ρ= =
 ∈  
 ⊗ ⊗K Kp

k kk kS  . Then the measurement 
1

M
=⊗K

kk 
  

( )
1

1 =11 1O , , ,
ρ=

== =  
 ⊗

 = × 
 ⊗ ⊗ K

kk

K KK K
k k k k k kk kX F S   (which is also denoted by  

[ ]( )1M O , ρ=⊗
k k

K
k k S ) is called a parallel measurement of  

( ) [ ]( )M O , , , ρ=
k kk k k kX F S   ( )1,2, ,= k K . Note that the parallel  

measurement always exists uniquely. 
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2. Bell’s Inequality Always Holds in Classical  
and Quantum Systems 

Our Main Assertion about Bell’s Inequality 

In this paper, I assert that Bell’s inequality should be studied in the framework of 
quantum language (i.e., quantum theory with the linguistic Copenhagen inter-
pretation). Let us start from the following definition, which is a slight modifica-
tion of the generalized simultaneous observable in Definition 2. That is, Defini-
tions 2 - 4 are due to the linguistic Copenhagen interpretation (D), “Only one 
measurement is permitted”.  

Definition 4 [Combined observable (cf. ref. [12])] Let [ ] ( ), B H   be a basic 
structure. Put { }1,1X = − . Consider four observables: ( )( )2 2

13 13O , ,X X F=  , 
( )( )2 2

14 14O , ,X X F=  , ( )( )2 2
23 23O , ,X X F=  , ( )( )2 2

24 24O , ,X X F=   in 
 . The four observables are said to be combinable if there exists an observable 

( )( )4 4O , ,X X F=   in   such that  

( ){ }( ) { } { }( )
( ){ }( ) { } { }( )
( ){ }( ) { } { }( )
( ){ }( ) { } { }( )

13 1 3 1 3

14 1 4 1 4

23 2 3 2 3

24 2 4 2 4

, ,

, ,

, ,

,

F x x F x X x X

F x x F x X X x

F x x F X x x X

F x x F X x X x

= × × ×

= × × ×

= × × ×

= × × ×

                 (4)

 

for any ( ) 4
1 2 3 4, , ,x x x x X∈ . The observable O  is said to be a combined ob-

servable of Oij  ( )1,2, 3,4i j= = . Also, the measurement  
( )( ) [ ]( )0

4 4M O , , ,X X F S ρ=   is called the combined measurement of  

[ ]( )013M O , S ρ , [ ]( )014M O , S ρ , [ ]( )023M O , S ρ  and [ ]( )024M O , S ρ .  
Remark 5. 1) Note that the Formula (4) implies that  

{ }( ) { }( ) { }( ) { }( )13 14 23 24, ,F x X F x X F x X F x X× = × × = ×  

{ }( ) { }( ) { }( ) { }( )13 23 14 24, ,F X x F X x F X x F X x× = × × = ×  

for all x X∈ .  
2) Syllogism (i.e., [ ] [ ] [ ]A B B C A C ⇒ ∧ ⇒ ⇒ ⇒  ) does not hold in quan-

tum systems but in classical systems (cf. ref. [8]). A certain combined observable 
plays an important role in the proof of the classical syllogism (cf. ref. [12]).  

The following theorem is all of our insistence concerning Bell’s inequality. We 
assert that this is the true Bell’s inequality.  

Theorem 6. [Bell’s inequality in quantum language] Let [ ] ( ), B H   be a ba-
sic structure. Put { }1,1X = − . Fix the pure state ( )( )0

pρ ∗∈S  . And consider 
the four measurements ( )( ) [ ]( )0

2 2
13 13M O , , ,X X F S ρ=  , 

( )( ) [ ]( )0

2 2
14 14M O , , ,X X F S ρ=  , ( )( ) [ ]( )0

2 2
23 23M O , , ,X X F S ρ=   and 

( )( ) [ ]( )0

2 2
24 24M O , , ,X X F S ρ=  . Or equivalently, consider the parallel mea-

surement ( )( ) [ ]( )0

2 2
1,2, 3,4 M O , , ,i j ij ijX X F S ρ= =⊗ =  . Define four correlation 

functions ( )1,2, 3,4i j= =  such that  
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( )
( ){ }( )( )0

,
= ,ij ij

u v X X
R u v F u vρ

∈ ×

⋅∑  

Assume that four observables ( )( )2 2
13 13O , ,X X F=  , ( )( )2 2

14 14O , ,X X F=  , 

( )( )2 2
23 23O , ,X X F=   and ( )( )2 2

24 24O , ,X X F=   are combinable, that is, 

we have the combined observable ( )( )4 4O , ,X X F=   in   such that it satisfies 

(4). Then we have a combined measurement ( )( ) [ ]( )0

4 4M O , , ,X X F S ρ=   of  

[ ]( )013M O , S ρ , [ ]( )014M O , S ρ , [ ]( )023M O , S ρ  and [ ]( )024M O , S ρ . And  

further, we have Bell’s inequality in quantum language as follows.  

13 14 23 24 2R R R R− + + ≤                     (5) 

Proof. Clearly we see, 1, 2, 3, 4i j= = ,  

( )
( ){ }( )( )

1 2 3 4

0 1 2 3 4
, , ,

, , ,ij i j
x x x x X X X X

R x x F x x x xρ
∈ × × ×

= ⋅∑           (6) 

(for example, ( ) ( ){ }( )( )
1 2 3 413 1 3 0 1 2 3 4, , , , , ,x x x x X X X XR x x F x x x xρ

∈ × × ×
= ⋅∑ ). There-

fore, we see that  

( )
( ){ }( )( )

( )
( ){ }( )( )

1 2 3 4

1 2 3 4

13 14 23 24

1 3 1 4 2 3 2 4 0 1 2 3 4
, , ,

3 4 3 4 0 1 2 3 4
, , ,

, , ,

, , , 2
x x x x X X X X

x x x x X X X X

R R R R
x x x x x x x x F x x x x

x x x x F x x x x

ρ

ρ
∈ × × ×

∈ × × ×

− + +

 = ⋅ − ⋅ + ⋅ + ⋅ 

 = − + + ≤ 

∑

∑

 

This completes the proof. 
As the corollary of this theorem, we have the followings:  
Corollary 7. Consider the parallel measurement  

( )( ) [ ]( )0

2 2
1,2, 3,4 M O , , ,i j ij ijX X F S ρ= =⊗ =   as in Theorem 6. Let  

( ) ( ) ( ) ( )( ) { }( )81 2 1 2 1 2 1 2 8
13 13 14 14 23 23 24 24, , , , , , , 1,1x x x x x x x x x X= ∈ ≡ −

 

be a measured value of the parallel measurement  

( )( ) [ ]( )0

2 2
1,2, 3,4 M O , , ,i j ij ijX X F S ρ= =⊗ =  . Let N be sufficiently large natural 

number. Consider N-parallel measurement  

( )( ) [ ]( )0

2 2
1,2, 2,31 M O , , ,N

i j ij ijn X X F S ρ= ==
 ⊗ =  ⊗   . Let { }

1

Nn

n
x

=
 be the measured 

value. That is,  

{ }

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )

1,1 2,1 1,1 2,1 1,1 2,1 1,1 2,1
13 13 14 14 23 23 24 24

1,2 2,2 1,2 2,2 1,2 2,2 1,2 2,2
13 13 14 14 23 23 24 24 8

1

1, 2, 1, 2, 1, 2, 1, 2,
13 13 14 14 23 23 24 24

, , , , , , ,

, , , , , , ,

, , , , , , ,

N Nn

n

N N N N N N N N

x x x x x x x x

x x x x x x x x
x X

x x x x x x x x

=

 
 
 
 = ∈
 
 
 
 



 

Here, note that the law of large numbers says: for sufficiently large N,  

( )1, 2,

1

1 1,2, 3,4
N

n n
ij ij ij

n
R x x i j

N =

≈ = =∑
 

Then, it holds, by the Formula (5), that  

https://doi.org/10.4236/jqis.2017.74011


S. Ishikawa 
 

 

DOI: 10.4236/jqis.2017.74011 148 Journal of Quantum Information Science 
 

1, 2, 1, 2,1, 2, 1, 2,
13 13 23 2314 14 24 24

1 1 1 1
2,

n n n nn n n nN N N N

n n n n

x x x xx x x x
N N N N= = = =

− + + ≤∑ ∑ ∑ ∑          (7)
 

which is also called Bell’s inequality in quantum language.  
Remark 8. [The conventional Bell’s inequality (cf. refs. [17] [16] [18])] The 

mathematical Bell’s inequality is as follows: Let ( ), , PΘ   be a probability space. 
Let ( ) { }( )44

1 2 3 4, , , : 1,1f f f f XΘ→ ≡ −  be a measurable functions. Define the cor-
relation functions ( )ˆ 1, 2, 3, 4ijR i j= =  by ( ) ( ) ( )di jf f Pθ θ θ

Θ∫ . Then, the follow-
ing mathematical Bell’s inequality (or precisely, CHSH inequality (cf. ref. [16])) 
holds:  

13 14 23 24 2R R R R− + + ≤                        (8) 

(E) This is easily proved as follows.  
( )

( ) ( ) ( ) ( ) ( ) ( )3 4 3 4

“the left-hand side of the above 8

d d 2f f P f f Pθ θ θ θ θ θ
Θ Θ

≤ − + + ≤∫ ∫
”

 

This completes the proof.  
Recall Theorem 6 (Bell’s inequality in quantum language), in which we have, 

by the combinable condition, the probability space ( ) ( )( )( )4 4
0, ,X X Fρ ⋅ .  

Therefore the proof of Theorem 6 and the above proof (E) are, from the mathe-
matical point of view, the same.  

3. “Bell’s Inequality” Is Violated in Classical Systems  
as Well as Quantum Systems 

In the previous section, we show that Theorem 6 (or Corollary 7) says  
(F1) Under the combinable condition (cf. Definition 4), Bell’s Inequality (5) 

(or, (7)) holds in both classical systems and quantum systems.  
Or, equivalently,  
(F2) If Bell’s Inequality (5) (or (7)) is violated, then the combined observable 

does not exist, and thus, we cannot obtain the measured value (by the combined 
measurement).  

This is similar to the following elementary statement in quantum mechanics:  
( 2F′ ) We have no (generalized) simultaneous measurement of the position ob-

servable Q and the momentum observable P, and thus we cannot obtain the meas-
ured value (by the generalized simultaneous measurement),  
which may be, from Einstein’s point of view, represented that “true value (or, 
hidden variable) of the position and momentum” does not exist. Since the error 
∆  is usually defined by rough measured value true value∆ = − , it is not easy to 
define the errors Q∆  and P∆  in Heisenberg’s uncertainty principle 2Q P∆ ⋅∆ ≥  .  

This definition was completed and Heisenberg’s uncertainty principle was 
proved in ref. [11]. Also, according to the maxim of dualism: “To be is to be per-
ceived” due to G. Berkeley, we think that it is not necessary to name that does not 
exist (or equivalently, that is not measured).  

The above statement (F2) makes us expect that  
(G) Bell’s inequality (5) (or (7)) is violated in classical systems as well as quan-
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tum systems without the combinable condition.  
This (G) was already shown in my previous paper [2]. However, I received a 

lot of questions concerning (G) from the readers. Thus, in this section, we again 
explain the (G) precisely. 

Bell Test Experiment 

In order to show the (G), three steps ([Step: I] - [Step: III]) are prepared in what 
follows.  

[Step: I]. 
Put { }1,1X = − . Define complex numbers ka  ( 1k kα β= + − ∈ : the com-

plex field) ( )1, 2,3, 4k =  such that 1ka = . Define the probability space  

( )( )2 2, ,
i ja aX X ν  such that ( )1,2, 3,4i j= =   

( ){ }( ) ( ){ }( ) ( )
( ){ }( ) ( ){ }( ) ( )
1,1 1, 1 1 4

1,1 1, 1 1 4

ν ν α α β β

ν ν α α β β

= − − = − −

− = − = + +

i j i j

i j i j

a a a a i j i j

a a a a i j i j

         (9)
 

The correlation ( ),i jR a a  ( )1,2, 3,4= =i j  is defined as follows:  

( )
( )

( ){ }( )
1 2

1 2 1 2
,

, ,ν α α β β
∈ ×

≡ ⋅ = − −∑ i ji j a a i j i j
x x X X

R a a x x x x        (10)
 

Now we have the following problem:  
(H) Find a measurement ( )( ) [ ]( )0

2 2M O , , , ρ=
i j i ja a a aX X F S    

( )1,2, 3,4= =i j  such that  

( )( ) ( ) ( )( )2
0 i j i ja a a aF Xρ νΞ = Ξ ∀Ξ∈              (11)

 

and  

{ }( ) { }( ) { }( ) { }( )1 3 1 4 2 3 2 41 1 2 2,× = × × = ×a a a a a a a aF x X F x X F x X F x X  

{ }( ) { }( ) { }( ) { }( )1 3 2 3 1 4 2 43 3 4 4,× = × × = ×a a a a a a a aF X x F X x F X x F X x  

{ }( )( )1,1 , 1,2,3,4∀ ∈ ≡ − =kx X k
 

which is the same as the condition in Remark 5.  
[Step: II]. 
Let us answer this problem (H) in the two cases (i.e., classical case and quantum 

case), that is,  

• 

)

( ) ( ) ( )( ) ( ) ( )
)

( ) ( ) ( )( ) ( ) ( )

2 2 2 2 2 2

0 0 0

1 the case of quantum systems :

,

2 the case of classical systems :

, ∞ ∞



  = ⊗ ≡ ⊗ = ⊗ 


 = Ω ⊗ Ω ≡ Ω×Ω = Ω ⊗ Ω 

B B B B B

C C C L L









     
 

1) the case of quantum system: ( ) ( )2 2 = ⊗ B B     
Put  

( )2
1 2

1 0
,

0 1
   

= = ∈   
   

e e   
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For each ( )1,2,3,4ka k = , define the observable ( )( )O , ,
k ka aX X G≡   in 

( )2B   such that  

{ }( ) { }( )1 11 11 , 1
1 12 2k k

k k
a a

k k

a a
G G

a a
−   

= − =   −   
 

where 1k k ka α β= − − . Then, we have four observable:  

( )( ) ( )( ) ( )ˆ ˆO , , , O , , 1, 2, 3, 4
i i j ja a a aX X G I X X I G i j= ⊗ = ⊗ = =  (12) 

and further,  

( )( ) ( )2 2O , , : 1, 2, 3, 4
i j i j i ja a a a a aX X F G G i j= = ⊗ = =

       
(13) 

in ( ) ( )2 2B B⊗  , where it should be noted that 
i ja aF  is separated by 

iaG  
and 

jaG .  
Further define the singlet state 0 s sρ ψ ψ=  ( )( )*2 2pS B ∈ ⊗ 

 
  , where  

( )1 2 2 1 2s e e e eψ = ⊗ − ⊗  

Thus we have the measurement 
( ) [ ]( )*2 2 0

M O ,
i ja a

B
S ρ

⊗ 
 in ( ) ( )2 2B B⊗   

( )1,2, 3,4i j= = . The followings are clear: for each ( ) { }( )22
1 2, 1,1x x X∈ ≡ − ,  

( ){ }( )( ) { }( ) { }( )( )
( ){ }( ) ( )

0 1 2 1 2

1 2

, ,

, 1, 2, 3, 4

i j i j

i j

a a s a a s

a a

F x x G x G x

x x i j

ρ ψ ψ

ν

= ⊗

= = =
       

(14) 

For example, we easily see:  

( ){ }( )( ) { }( ) { }( )( )
( ) ( )

0

1 2 2 1 1 2 2 1

1,1 , 1 1

111 ,
118

111 0 0 1 1 0 0 11 ,
110 1 1 0 0 1 1 08

ρ ψ ψ= ⊗

   
= ⊗ − ⊗ ⊗ ⊗ − ⊗        

                     
= ⊗ − ⊗ ⊗ ⊗ − ⊗                                          

i j i ja b s a a s

ji

ji

ji

ji

F G G

aa
e e e e e e e e

aa

aa
aa

( ) ( ) ( ){ }( )

111 0 0 11 ,
0 1 1 0 1 18

1 2 1 4 1,1
8

α α α β β ν





                
= ⊗ − ⊗ ⊗ − ⊗                                 

= − − = − − =
i j

j i

ji

i j i j i j i j a a

a a
aa

a a a

 

Therefore, the measurement ( ) [ ]( )2 2 0
M O ,

i ja aB
S ρ⊗ 

 satisfies the condition (H). 
2) the case of classical systems: ( ) ( ) ( )0 0 0C C C= Ω ⊗ Ω = Ω×Ω     
Put ( )( )0 0 0,ω ω ω′ ′′= ∈Ω×Ω , 

00 ωρ δ= ( ( )( )*
0

p C∈ Ω×ΩS , i.e., the point meas-
ure at 0ω )). Define the observable ( )( )2 2O : , ,

i j i ja a a aX X F=   in ( )L∞ Ω×Ω  such 
that  

( ){ }( ) ( ) ( ){ }( )
( )( )

1 2 1 2

2
1 2

, ,

, , 1, 2, 3, 4,

i j i ja a a aF x x x x

x x X i j

ω ν

ω

  = 

∀ ∈ = = ∀ ∈Ω×Ω
 

Thus, we have four observables  
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( )( ) ( )2 2O , , 1, 2, 3, 4
i j i ja a a aX X F i j= = =

            
(15) 

in ( )L∞ Ω×Ω  (though the variables are not separable (cf. the formula (13)). 
Then, it is clear that the measurement ( )0 0

M O ,
i ja aC S

ωδΩ×Ω  
 

  
 

 satisfies the con-
dition (H). 

2)’ the case of classical systems: ( ) ( ) ( )0 0 0C C C= Ω ⊗ Ω = Ω×Ω     
It is easy to show a lot of different answers from the above 2). For example, as 

a slight generalization of (9), define the probability measure ( )0 1
i j

t
a a tν ≤ ≤  such 

that  

( ){ }( ) ( ){ }( ) ( )( )
( ){ }( ) ( ){ }( ) ( )( )
1,1 1, 1 1 4

1,1 1, 1 1 4

ν ν α α β β

ν ν α α β β

= − − = − +

− = − = + +

i j i j

i j i j

t t
a a a a i j i j

t t
a a a a i j i j

t

t
      (16) 

And consider the real-valued continuous function ( )( )0t C∈ Ω×Ω  such that  
( )0 , 1t ω ω′ ′′≤ ≤  ( )( ),ω ω ω′ ′′∀ = ∈Ω×Ω . And assume that ( )0 1t ω =  for some  
( )( )0 0 0,ω ω ω′ ′′= ∈Ω×Ω , 

00 ωρ δ=  ( ( )( )*
0

p C∈ Ω×ΩS , i.e., the point measure 
at 0ω )). Define the observable ( )( )2 2O : , ,

i j i ja a a aX X F=   in ( )L∞ Ω×Ω  such 
that  

( ){ }( ) ( ) ( ) ( ){ }( )
( )( )

1 2 1 2

2
1 2

, ,

, , 1, 2, 3, 4,

i j i j

t
a a a aF x x x x

x x X i j

ωω ν

ω

  = 

∀ ∈ = = ∀ ∈Ω×Ω
            (17) 

Thus, we have four observables  

( )( ) ( )2 2O , , 1, 2, 3, 4
i j i ja a a aX X F i j= = =  

in ( )L∞ Ω×Ω  (though the variables are not separable (cf. the Formula (13)). Then, 
it is clear that the measurement 

( ) 0
M O ,

i ja aL
S

ωδ
∞  Ω×Ω  

  
 

 satisfies the condition 
(H). 

[Step: III].  
As defined by (9), consider four complex numbers ( )1; 1,2,3,4k k ka kα β= + − =  

such that 1ka = . Thus we have four observables  

( )( ) ( )( )1 3 1 3 1 4 1 4

2 2 2 2O : , , , O : , , ,a a a a a a a aX X F X X F= =   

( )( ) ( )( )2 3 2 3 2 4 2 4

2 2 2 2O : , , , O : , , ,a a a a a a a aX X F X X F= =   

in  . Thus, we have the parallel measurement  

( )( ) [ ]( )0

2 2
1,2, 3,4 M O : , , ,

i j i ji j a a a aX X F S ρ= =⊗ =   in 1,2, 3,4i j= =⊗  .  
Thus, putting  

1 2 3 4
1 1 1 11, 1, , ,

2 2
a a a a+ − − −
= − = = =  

we see, by (10), that  

( ) ( ) ( ) ( )1 3 1 4 2 3 2 4, , , , 2 2R a a R a a R a a R a a− + + =
        

(18) 

Further, assume that the measured value is ( )8x X∈ . That is,  

( ) ( ) ( ) ( )( ) { }( )81 2 1 2 1 2 1 2 2
13 13 14 14 23 23 24 24

, 1,2
, , , , , , , 1,1

i j
x x x x x x x x x X

=
= ∈ ≡ −×  
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Let N be sufficiently large natural number. Consider N-parallel measurement 

( )( ) [ ]( )0

2 2
1,2, 3,41 M O : , , ,

i j i j

N
i j a a a an X X F S ρ= ==

 ⊗ =  ⊗   . Assume that its measured 

value is { }
1

Nn

n
x

=
. That is,  

{ }

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1,1 2,1 1,1 2,1 1,1 2,1 1,1 2,1
13 13 14 14 23 23 24 24

1,2 2,2 1,2 2,2 1,2 2,2 1,2 2,2
13 13 14 14 23 23 24 24

1

1, 2, 1, 2, 1, 2, 1, 2,
13 13 14 14 23 23 24 24

1,2, 3,

, , , , , , ,

, , , , , , ,

, , , , , , ,

Nn

n

N N N N N N N N

i j

x x x x x x x x

x x x x x x x x
x

x x x x x x x x

=

= =

 
 
 
 =
 
 
 
 

∈



{ }( )82

4
1,1

N
NX  ≡ −× 

 

 

Then, the law of large numbers says that  

( ) ( )1, 2,

1

1, 1, 2, 3, 4
N

n n
i j ij ij

n
R a a x x i j

N =

≈ = =∑  

This and the Formula (18) say that  
1, 2, 1, 2,1, 2, 1, 2,
13 13 23 2314 14 24 24

1 1 1 1
2 2

n n n nn n n nN N N N

n n n n

x x x xx x x x
N N N N= = = =

− + + ≈∑ ∑ ∑ ∑
       

(19) 

Therefore, Bell’s Inequality (5) (or (7)) is violated in classical systems as well 
as quantum systems.  

Remark 9. For completeness, note that the observables O
i ja a  ( )1,2, 3,4i j= =  

in the classical ( )L∞ Ω×Ω  are not combinable in spite that these commute. 
Also, note that the Formulas (16) and (17) imply that  

{ }( ) ( ) { }( ) ( )
1 3 1 4

1 2,a a a aF x X F x Xω ω   × = × =    

{ }( ) ( ) { }( ) ( )
2 3 2 4

1 2,a a a aF x X F x Xω ω   × = × =    

{ }( ) ( ) { }( ) ( )
1 3 2 3

1 2,a a a aF X x F X xω ω   × = × =     

{ }( ) ( ) { }( ) ( )
1 4 2 4

1 2a a a aF X x F X xω ω   × = × =     

( ), ,x X ω∀ ∈ ∀ ∈Ω×Ω  

which is similar as in Remark 5; 1) or in (H).  

4. Conclusions 

In Bohr-Einstein debates (refs. [13] [14]), Einstein’s standing-point (that is, “the 
moon is there whether one looks at it or not” (i.e., physics holds without observ-
ers)) is on the side of the realistic world view in Figure 1. On the other hand, we 
think that Bohr’s standing point (that is, “to be is to be perceived” (i.e., there is 
no science without measurements)) is on the side of the linguistic world view in 
Figure 1.  

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try 
to discuss Bell’s inequality in Bohr’s spirit (i.e., in the framework of quantum lan-
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guage). And we show Theorem 6 (Bell’s inequality in quantum language), which 
says the statement (F2), that is,  

(I1) (≡(F2)): If Bell’s Inequality (5) (or (7)) is violated, then the combined ob-
servable does not exist, and thus, we cannot obtain the measured value (by the mea-
surement of the combined observable).  

Also, recall that Bell’s original argument says, roughly speaking, that  
(I2) If the mathematical Bell’s Inequality (8) is violated in Bell test experiment 

(the quantum case of Section 3.1), then hidden variables do not exist.  
It should be note that the concept of “hidden variable” is independent of mea-

surements, thus, the (I2) is a philosophical statement in Einstein’s spirit, on the 
other hand, the (I1) is a statement in Bohr’s spirit (i.e., there is no science without 
measurements). It is sure that Bell’s answer (I2) is attractive philosophically, however, 
we believe in the scientific superiority of our answer (I1). That is, we think that our 
(I1) is a scientific representation of the philosophical (I2). If so, we can, for the 
first time, understand Bell’s inequality in science. That is, Theorem 6 is the true 
Bell’s inequality. And we conclude that whether or not Bell’s inequality holds 
does not depend on whether classical systems or quantum systems (in Section 3), 
but depend on whether the combined measurement exists or not (in Section 2).  

We hope that our proposal will be examined from various points of view1. 
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