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Abstract 
This report describes an approach for representation of quantum operators through rotations and 
rotation through quantum operators. The approach of the proposed method transforms rotation 
in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very sim-
ilar to the rotation, but with an added phase coefficient. This fact is used to create a process for 
rotation between unitary matrices. This approach could be used to modifying the controls to apply 
in a different basis. 
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1. Introduction 
The fundamental concept for realization of the transitions is based on the fact that the quantum operation is al-
ways just a unitary matrix, which may be a linear interpolation between the matrices: ( )0 11tU U t U t= − + . The 
operations with single qubits are very similar to the rotations, but with an added coefficient of the phase. This 
fact will be used to create a method for transformation of rotational into qubit operations. 

Rotations of the eigenvector of qubit could be viewed as operations in a single Bloch sphere [1]-[3]. A more 
formal approach is to provide two or three fixed orthogonal axes of rotation. This allows arbitrary rotations in 
three or less steps, for example, by using the angle of the construction of Euler. Logical qubits, composed of two 
or more physicalturns, are possible physically different binding mechanisms to control different axes of rotation 
of the field unit. For example, logical qubits formed in double quantum dots use local gradients for generating 
rotations around an axis, and switched interactions generate rotations around an orthogonal axis [4] [5]. In this 
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paper, cases of intermediate situations between these two extremes are investigated, where rotations can be per-
formed around an arbitrary axis constrained to lie in one plane. The main motivation for our work is the example 
of single exchange of logical Qubit in triple quantum dot [6] [7]. We will build on the known results [8] that the 
internal connections between the physical spins in one exchange-only qubit can be used to generate a consistent 
set of rotations in the XZ basis of qubit [9]. 

In the development process of a circuit, quantum simulator [10]-[15] was required to seek solutions to ap-
proximate the results of the quantum operations, in order to animate what occurs without any sharp jumps. More 
generally, a transition was necessary between the two operations without any jumps. This paper will show that 
such rotations in a single plane reduce the total number of steps required for Qubit operations. For example, a 
transformation of a state that converts specific baseline to a certain final state can be carried out in one stage, 
random rotation single-Qubit can be done in two stages. We offer constructive solutions to these problems. 
Given that the space of the unit matrix is very similar to the space of rotations, it is useful to turn into a kind of 
rotation of the unit matrix which corresponds to the rotation in some useful way. The simplest method of 
achieving this is to provide such a rotation as a quaternion, and then replace the quaternion components with the 
relevant times of Pauli matrices: 

1 0
1

0 1
I  

→ =  
 

 

0
0x

i
i i

i
σ

 
→ =  

 
 

0 1
1 0yj iσ  

→ =  − 
 

0
0z

i
k i

i
σ

 
→ =  − 

 

If the input rotation is a vector v, where the direction of v is the axis of rotation and the length v  is the 
number of rotations in radians, then the unitary matrix will turn this rotation in: 

( ) ˆcos sin
2 2xyz

v v
U v I ivσ= +  

where ˆ xyzvσ  gives the vector of Pauli in v. 
The problem with the linear transformation is that the intermediate matrices may not be valid operations. The 

linear transformation tends to create a matrix entries, which are too close to zero, i.e. the resulting matrices will 
shrink the values instead of retaining their length (which is not a desired effect, as the whole point of using 
unitary matrices is to preserve the length). Actually, the goal is to be made a transformation without leaving the 
space of the unitary matrices. A compact way for the parameterization of the space of the unitary matrices is: 

( ) ( )( )ˆe cos sini
xyzU Ii vφ θ σ θ= +  

The above equation includes four constants and three variables. The constants are the identity matrix (I), the 
square root of −1 (i), the constant of Euler (e) and the vector of Pauli matrices xyzσ . The three variables are the 
angle φ , the angle θ  and the single vector v̂ . Each of the variables plays a different role. φ  is a global 
phase coefficient. It’s what distinguishes the group of unitary matrices U(2) from “the special unitary group 
SU(2)”. v̂  and θ  correspond to a rotation. v̂  is like an axis to rotate around, and θ  is how much to rotate 
around the said axis. What does it mean that v̂  and θ  are like a rotation? It becomes a bit clearer when the 
compact parameterization from above is expanded. Through incorporation of the Pauli matrices and splitting of 
v̂  in x y z , the following is obtained: 

( ) ( ) ( ) ( )
1 0 0 1 0 1 0

e cos sin sin и sin
0 1 1 0 0 0 1

i i
U i x y z

i
φ θ θ θ θ
 −        

= + +        −        
 

This is not yet clear enough. The following part is omitted: the equation to convert from an axis-angle style 
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rotation to a single quaternion style rotation: 

cos sin sin sin
2 2 2 2

q i x i y j z kθ θ θ θ       = + + +       
       

 

The resemblance is visible. Without paying attention to the mysterious division by 2 of the angles, the Pauli 
matrices actually play the role of quaternion constants: i, j and k. If each of the Pauli matrices is multiplied by i, 
the following is obtained: 

( ) ( ) ( )22 2 3
x y z x y zi i i i Iσ σ σ σ σ σ= = = = −  

This, in turn, looks very similar to the way in which the quaternions are defined: 2 2 2 1ijki j k= = = = − . 
Why is this similarity with the rotations important? Because it will be used for linear transformation. There are 
already existing methods for smooth linear transformation between quaternions and they will be applied in order 
to be handle the rotation part of the unitary operation. Then the remaining phase part simply must be inter- 
polated between two angles. 

The main contribution of this paper is the proposed method of mapping rotations in unitary matrices. 

2. Converting Rotation into Qubit Operations 
The general comparison has got many good features, but also two flaws that, if possible, should be avoided. The 
first flaw is that the angles are divided by 2. Therefore, a rotation of 360˚ does not return to the starting position, 
but to I− . If we use this mapping, the rotation should be of 720˚, which is confusing. The second flaw is that 
there is no rotation, which corresponds to Pauli matrices. Rotation of 180˚ around the X axis gives xiσ  instead 
of xσ . This means that when using these rotations to define operations for quantum computer, a NOT exit can-
not be even made! It is possible these flaws to be avoided, but this will be at the expense of something else. 

2.1. Phase Correction 
Both of the aforementioned flaws are caused by one problem: the global phase coefficient is wrong. In order to 
fix it, we have to add a specially prepared coefficient of the counter-phase. Currently a half-turn around the X 
axis gives xiσ . To turn it into xσ , a phase correction factor of –i  will be needed. Similarly, a coefficient 
with phase correction of −1 for one full turn is also needed. After three half rotations around the X axis (or one 
half turn around the negative X axis) a coefficient with phase correction of i is needed. The coefficients with 
phase correction are the same for the Y and Z axes with respect to the amount of turning. Given the above in- 

formation, it’s clear that is needed a correction coefficient such as 2e
v

is
, where s is either +1, or −1, depending  

on the direction of rotation. Choosing s is a delicate moment, which will be discussed later. For now, it will be 
used in the mapping as taken for granted: 

( ) 2 ˆe cos sin
2 2

v
is

xyz

v v
U v I ivσ

 
= + 

 
 

Because the mapping formula already has two coefficients involving half-angles being multiplied together, 
there are possibilities for their simplification. Let us first reveal eix  in the trigonometric functions: 

( ) ˆcos sin cos sin
2 2 2 2xyz

v v v v
U v s i s I ivσ

      
= + + +             

 

Then it will be divided, while the trigonometric multiplications are simple, but the elements are not yet 
grouped based on the matrix coefficients: 

( ) cos cos sin cos
2 2 2 2

ˆ sin cos sin sin
2 2 2 2xyz

v v v v
U v I s i s

v v v v
iv s i sσ

    
= +         

    
+ +         
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Let’s make the trigonometric coefficients more similar by subtracting the sign coefficients in relation to the 
parity (i.e. ( ) ( )cos cossx x=  and ( ) ( )sin sinsx x= ): 

( ) 2 2ˆcos sin cos sin cos sin
2 2 2 2 2 2xyz

v v v v v v
U v I is iv isσ

   
= + + +   

   
 

Double-Angle formulas expressing trigonometric functions of an angle 2x in terms of functions of an angle x, 

( )sin 2 2sin cosx x x=  

( ) 2 2 2 2cos 2 cos sin 2cos 1 1 2sinx x x x x= − = − = −  

( ) 2

2 tantan 2
1 tan

xx
x

=
−

 

( ) ( ) ( )1 1 1 1ˆ1 cos sin sin 1 cos
2 2 2 2xyzU v I v is v iv v is vσ    = + + + + −    
    

 

Simplification of the coefficients: 

( ) ( ) ( )1 1 ˆ1 cos sin cos sin
2 2 xyzU v I v is v iv is is v vσ= + + + − +  

Subtraction of is  from the component on the right side: 

( ) ( ) ( )1 1 ˆ1 cos sin 1 cos sin
2 2 xyzU v I v is v iv v is vσ= + + − − −  

The coefficient of s is moved into the trigonometric functions, so they can be merged in the exponential func-
tions: 

( ) ( ) ( )1 1 ˆ1 е 1 е
2 2

is v is v
xyzU v I ivσ= + − −  

This is already simple enough. The fact that the angles are no longer being divided by two 2, shows, that the 
problem with 720˚ is solved. Evaluating the mapping at ( ) ( )π,0,0 , 0, π,0U U± ± , and ( )0,0, πU ±  does 
not give back xσ± , yσ± , and respectively zσ± . These are the correct results, with the exception of the detail 
that s±  should be canceled in the results by selecting s in an appropriate manner. 

How should be selected whether s must be +1 or −1? A naive solution would be to always use s = 1 or −1, but  

that would cause (for example) ,0,0
4

U τ 
 
 

 to differ from 3 ,0,0
4

U τ − 
 
 

 despite starting from equivalent  

rotations. Negating a vector has to negate s, because, otherwise, repeatedly doing and undoing a rotation would 
give matrices that were not inverses of each other. This in turn will cause an increase in the phase coefficient in-
stead of its change together with the rotations. The reversal of s without introducing a discontinuity in the phase 
correction requires v  to be an integer from half of the turns, as this is the only time when π πe ei iθ θ−= . How-
ever, s must be reversed for all pairs v vs v− − , including those, which are not half rotations, and the axis, can 
be rotated so as to correspond to reversals. Thus, regardless of the actions, there always will be a discontinuity in 
the phase correction angle (Figure 1). 

The plane, in which the discontinuity occurs, can be rotated so that no rotational axes are used on it. Note that, 
even if you avoid rotation axes along the bad plane, you will still run into problems when combining multiple 
rotations. This is a consequence of wanting half turns to correspond to the Pauli matrices. There's no way to 
avoid accumulating a global phase factor via multiple rotations because, although rotating a half turn around the 
X then Y then Z axis does not give a final rotation, and x y z iI Iσ σ σ =⋅ ≠⋅ . In the end, despite the elimination 
of the two flaws from the original mapping (the rotation at 720˚ and the inability to obtain the Pauli matrices) 
now there is a discontinuity, where the sign of the result is switched when the rotational axis is swiveled, and 
there is a problem with the phase accumulation at multiple rotations. Whether or not these disadvantages are 
preferable over the initial ones depends on the particular application. 
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Figure 1. Discontinuity in phase correction angle. Note: It not is necessary to have only one discontinuity. There may 
be several.                                                                                           

2.2. Implementation 
Here is python code implementing the final mapping from above: 
 
# Warning: with disadvantage; see below 
defq_rotation_to_matrix(x=0, y=0, z=0): 
    # Discontinuance of the phase correction in an inconvenient plane 
    s = math.copysign(1, −11*x + −13*y + −17*z) 
theta = math.sqrt(x**2 + y**2 + z**2) 
    v = x * np.mat([[0, 1], [1, 0]]) +y * np.mat([[0, −1j], [1j, 0]]) + z * np.mat([[1, 0], [0, −1]]) 
ci = 1 + cmath.exp(1j * s * theta) 
    # Potential division by zero! 
cv = s * (1 − cmath.exp(1j * s * theta))/theta 
return (np.identity(2) * ci − v * cv)/2 
 

A notable problem in the above code is the division of the rotation angle in order to compute the unit vector  

along the axis of rotation. This will cause problems at small rotations. Thus, the part eisθ

θ
−  must be rewritten 

so it does not involve a division. To avoid the division can be used the sine function ( ) ( )sin
sin

x
c x

x
= . Let’s  

first reveal the exponential functions into trigonometric, then they should be simplified and the half-angle identi-
ties should be used and they should be simplified again: 

( ) ( )( ) ( ) ( )

2 2

1 cos sin 1 cos sin1 e

11 1 2sin sinsin sin2 2 sin sin sin
1 2 2
2

is s i s s is s

is is c is c

θ θ θ θ θ
θ θ θ θ

θ
θθ θ θ θ θ

θ θ θθ

− + −−
= = −

 − − 
 = − = − = −

 

Although the sine also has a division by zero, it can be used the fact that sin x  acts as x near zero in order to  

eliminate the problem. Upon approaching to zero, the series 
3 5

sin
3! 5!
x xx x= − + − , divided by x, gives a good 
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enough approximation 
2 4 2sin 1 1

3! 5! 6
x x x x

x
= − + − ≈ − . If we switch from direct computing of sin x

x
 to using 

the approximation around the time where 
4

1
120
x

+  starts being rounded to 1. Given the stable sine function, and  

the arbitrarily chosen plane-of-terribleness we can write the function rotation_to_matrix: defquantum_ rota-
tion_to_matrix (x=0, y=0, z=0): 

It returns a unitary matrix that corresponds, in a useful, but not unique way, to a rotation around the axis <x, y, 
z> by sqrt(x^2 + y^2 + z^2) radians. 
 
    # Discontinuance of the phase correction in an inconvenient plane 
    s = math.copysign(1, −11*x + −13*y + −17*z) 
theta = math.sqrt(x**2 + y**2 + z**2) 
    v = x * np.mat([[0, 1], [1, 0]]) +y * np.mat([[0, −1j], [1j, 0]]) +z * np.mat([[1, 0], [0, −1]]) 
ci = 1 + cmath.exp(1j * s * theta) 
cv = math.sin(theta/2) * sinc(theta/2) - 1j * s * sinc(theta) 
return (np.identity(2) * ci - s * v * cv)/2 
 
defsinc(x): 

It returns sin(x)/x, but computed in a way that does not explode when x is equal to or near zero. 
 
sinc (0) is 1. 
sinc(0) is 1. 
if abs(x) < 0.0002: 
return 1 − x**2/6 
return math.sin(x)/x 
 

It could be double-checked, whether the function is working correctly by printing out a few test values: 
np. q_setup_printoptions(precision=5, suppress=True) 
print "I", q_rotation_to_matrix() 
print "I_2", q_rotation_to_matrix(x=2*math.pi) 
print "X", q_rotation_to_matrix(x=math.pi) 
print "Y", q_rotation_to_matrix(y=math.pi) 
print "Z", q_rotation_to_matrix(z=math.pi)  
print "H", q_rotation_to_matrix(x=math.pi / math.sqrt(2), z = math.pi / math.sqrt(2)) 
print "sqrt_1(X)", q_rotation_to_matrix(x=math.pi/2) 
print "sqrt_2(X)", q_rotation_to_matrix(x=−math.pi/2)  
 
Which prints out: 
I [[ 1.+0.j  0.+0.j] 
[ 0.+0.j  1.+0.j]] 
I_2 [[ 1.+0.j  0.−0.j] 
[ 0.−0.j  1.+0.j]] 
X [[ 0.−0.j  1.+0.j] 
[ 1.+0.j  0.−0.j]] 
Y [[ 0.−0.j  0.−1.j] 
 [−0.+1.j  0.−0.j]] 
Z [[ 1.+0.j  0.+0.j] 
[ 0.+0.j −1.−0.j]] 
H [[ 0.70711−0.j  0.70711+0.j] 
[ 0.70711+0.j −0.70711−0.j]] 
sqrt_1(X) [[ 0.5−0.5j  0.5+0.5j] 
[ 0.5+0.5j  0.5−0.5j]] 
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sqrt_2(X) [[ 0.5+0.5j  0.5−0.5j] 
[ 0.5−0.5j  0.5+0.5j]] 
 

Those values look good to me (modulo the rounding error introduced by the involvement of π and 2 ). The 
half-turns along each axis give the corresponding Pauli matrix, rotating one full turn gets us back to the identity 
matrix, the quarter turns are square roots of the half turns. The Hadamard matrix is obtained by rotating a half 
turn around the X + Z axis. 

3. Converting the Transitions between Quantum Gates in Rotary Operations 
First the unitary operation must be broken down into its quaternion and phased parts. Let’s start by braking 
down the previous parameterization of the unitary group into a single matrix: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

cos sin sin
e

sin cos sin
i i z x iy

U
x iy i z

φ θ θ θ
θ θ θ

 + + 
=  − − 

 

The values for extraction are the phase φ and the quaternion components  
( ) ( ) ( ) ( )cos , sin , sin и sini x y zθ θ θ θ  It must be observed that ( )sinx θ  and ( )siny θ  contribute only for the 

upper right and lower left part of the matrix. In addition, ( )sinx θ  contributes symmetrically, while ( )siny θ  
- asymmetrically. This allows to be solved their values, although they are still mixed with the phase, by taking 
the sum and the difference along the diagonal. The same applies for ( )sinz θ  and ( )cosi θ  along the other 
diagonal. To eliminate the coefficient e iφ  from the extracted values, is used the fact that it should be the only 
contributor of the complex values. Any component from the extracted four quaternion components can be 
selected (as long as it's not zero) and pick a phase coefficient, which will make the chosen component real. Since 
the given matrix certainly is unitary, the same coefficient of the phase should make the remaining quaternion 
components real. Below is given a code, written in python, which carries out the described factorization:  

 
defquantum_unitary_breakdown(m): 
    Breaks an unitary matrix in quaternion and phase components. 
 
    # Extract rotation components 
    a, b, c, d = m[0, 0], m[0, 1], m[1, 0], m[1, 1] 
    t = (a + d)/2j 
    x = (b + c)/2 
    y = (b − c)/−2j 
    z = (a − d)/2 
 
    # Extracts common phase coefficient 
    p = max([t, x, y, z], key=lambda is: abs(e)) 
    p /= abs(p) 
    pt, px, py, pz = t/p, x/p, y/p, z/p 
 
    q = [pt.real, px.real, py.real, pz.real] 
    return q, p 
 
After the problem can be broken down into factors in the rotation and phase parts, and they can be inter- 

polated separately. For the rotation part will be used a spherical transformation. In order to be interpolated 
spherically between two points— 0p  and 1p  must be found an angle, satisfying ( ) 0 1cos p pθ = ⋅ , and then the 
result is: 

( )
( )( )
( )

( )
( )0 1 0 1

sin 1 sin
SLerpolation ,

sin si
,

n
t t

p p t p p
θ θ

θ θ
−

= +  

The obstacle here is the division by zero, when θ  is zero. Fortunately, because the numerator is approaching 
zero generally in the same way as the denominator, this is a case in which the obtained value does not deviate. A  
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function can be defined, which calculates ( )
( )

sin
sin

xf
x

, but switches to an approximation, that does not divide by  

zero or increase the errors at floating point numbers, when they are close to zero: 
 
defquantum_sin_scale_ratio(theta, factor): 
Returns sin(theta * factor) / sin(theta) with care around the origin to avoid dividing by zero. 
# Near zero, transition to an approximation, to avoid an increase from error at floating point numbers. 
    if abs(theta) < 0.0001: 
        # sin(x) = x − x^3/3! + ... 
 # sin(f x) / sin(x) 
 # = ((fx) − (fx)^3/3! + ...) / (x − x^3/3! + ...) 
 # ~= ((fx) − (fx)^3/3!) / (x − x^3/3!) 
 # = (f − f(fx)^2/3!) / (1 − x^2/3!) 
 # = f (1 − f^2 x^2/6) / (1 − x^2/6) 
        d = theta * theta / 6 
        return factor * (1 − d * factor * factor) / (1 − d) 
    return math.sin(theta * factor) / math.sin(theta) 
 
The above method will be applied at the method for full transformation, when a spherical transformation is 

being carried out. In order to make an angular interpolation the obvious shall be carried out: the difference be-
tween the two angles is learned, care should be taken to recourse to a roundabout way and then a linear trans-
formation should be made. To take correctly the sign of the difference is a difficult task, but it is already ex-
plained. When everything is put together, we obtain: 

 
defquantum_unitary_lerp(u1, u2, t): 
   Interpolates between two 2x2 unitary NumPy matrices. 
# Split into rotation and phase parts 
    q1, p1 = quantum_unitary_breakdown(u1) 
    q2, p2 = quantum_unitary_breakdown(u2) 
    # Spherical transformation of the rotation 
    dot = sum(v1*v2 for v1,v2 in zip(q1, q2)) 
    if dot < 0: 
        # Not to be made in the long way around... 
        q2 *= −1 
        p2 *= −1 
        dot *= −1 
    theta = math.acos(min(dot, 1)) 
    c1 = sin_scale_ratio(theta, 1−t) 
    c2 = sin_scale_ratio(theta, t) 
    u3 = (u1 * c1 / p1 + u2 * c2 / p2) 
    # Angular transformation of the phase 
    a1 = np.angle(p1) 
    a2 = np.angle(p2) 
    # The smallest angular distance with a sign (mod 2pi) 
    da = (a2 − a1 + math.pi) % (math.pi * 2) − math.pi 
    a3 = a1 + da * t 
    p3 = math.cos(a3) + 1j * math.sin(a3) 
    return u3 * p3 
 
Demonstration 
Below is given a demonstration of the described above method with the developed by the author of the article 

quantum simulator (Figure 2). Matrices for start and end can be entered in the text boxes and (after the entered  
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Figure 2. Linear transformation. (Note: The input correction is done by doing a singular value 
decomposition and omitting the non-unitary factor. This turns out to be really effective.)          

 
matrices are adjusted, they should be unitary) a continuous transition between the two matrices is shown. It is 
difficult to be checked ostensibly, whether the intermediate matrices are unitary, but it can be seen that the 
movement is smooth and the colored area remains relatively constant. 

4. Conclusion 
Single qubit operations are a lot like rotations, but with an added phase coefficient. This fact can be used to 
create a method for linear transformation between 2 unitary matrices. The method described above, works, but is 
not optimal. For example, it does not ensure a constant angular speed. Also, in some cases it doesn’t take the 
shortest possible path. The common method for mapping rotations into unitary matrices is smooth, but cannot 
generate the Pauli matrices and requires a 720˚ turn to get back to the starting point. By applying a phase correc-
tion, we can fix those issues, but we are forced to introduce a phase discontinuity with the respect to the axis of 
rotation. 
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