
Journal of Quantum Information Science, 2015, 5, 79-88
Published Online September 2015 in SciRes. http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2015.53010

How to cite this paper: Raychev, N. (2015) Bilaterally Symmetrical Transformation between Independent Operators and
Rotations. Journal of Quantum Information Science, 5, 79-88. http://dx.doi.org/10.4236/jqis.2015.53010

Bilaterally Symmetrical Transformation
between Independent Operators and
Rotations
Nikolay Raychev
Department of Computer Systems, Varna University of Management, Varna, Bulgaria
Email: n.raychev@abv.bg

Received 15 April 2015; accepted 30 August 2015; published 2 September 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This report describes an approach for representation of quantum operators through rotations and
rotation through quantum operators. The approach of the proposed method transforms rotation
in a kind of a unitary matrix that corresponds to the rotation. Operations with qubits are very sim-
ilar to the rotation, but with an added phase coefficient. This fact is used to create a process for
rotation between unitary matrices. This approach could be used to modifying the controls to apply
in a different basis.

Keywords
Quantum Operators, Rotations, Phase Space, Quantum Circuit

1. Introduction
The fundamental concept for realization of the transitions is based on the fact that the quantum operation is al-
ways just a unitary matrix, which may be a linear interpolation between the matrices: ()0 11tU U t U t= − + . The
operations with single qubits are very similar to the rotations, but with an added coefficient of the phase. This
fact will be used to create a method for transformation of rotational into qubit operations.

Rotations of the eigenvector of qubit could be viewed as operations in a single Bloch sphere [1]-[3]. A more
formal approach is to provide two or three fixed orthogonal axes of rotation. This allows arbitrary rotations in
three or less steps, for example, by using the angle of the construction of Euler. Logical qubits, composed of two
or more physicalturns, are possible physically different binding mechanisms to control different axes of rotation
of the field unit. For example, logical qubits formed in double quantum dots use local gradients for generating
rotations around an axis, and switched interactions generate rotations around an orthogonal axis [4] [5]. In this

http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2015.53010
http://dx.doi.org/10.4236/jqis.2015.53010
http://www.scirp.org
mailto:n.raychev@abv.bg
http://creativecommons.org/licenses/by/4.0/

N. Raychev

80

paper, cases of intermediate situations between these two extremes are investigated, where rotations can be per-
formed around an arbitrary axis constrained to lie in one plane. The main motivation for our work is the example
of single exchange of logical Qubit in triple quantum dot [6] [7]. We will build on the known results [8] that the
internal connections between the physical spins in one exchange-only qubit can be used to generate a consistent
set of rotations in the XZ basis of qubit [9].

In the development process of a circuit, quantum simulator [10]-[15] was required to seek solutions to ap-
proximate the results of the quantum operations, in order to animate what occurs without any sharp jumps. More
generally, a transition was necessary between the two operations without any jumps. This paper will show that
such rotations in a single plane reduce the total number of steps required for Qubit operations. For example, a
transformation of a state that converts specific baseline to a certain final state can be carried out in one stage,
random rotation single-Qubit can be done in two stages. We offer constructive solutions to these problems.
Given that the space of the unit matrix is very similar to the space of rotations, it is useful to turn into a kind of
rotation of the unit matrix which corresponds to the rotation in some useful way. The simplest method of
achieving this is to provide such a rotation as a quaternion, and then replace the quaternion components with the
relevant times of Pauli matrices:

1 0
1

0 1
I  

→ =  
 

0
0x

i
i i

i
σ

 
→ =  

 

0 1
1 0yj iσ  

→ =  − 

0
0z

i
k i

i
σ

 
→ =  − 

If the input rotation is a vector v, where the direction of v is the axis of rotation and the length v is the
number of rotations in radians, then the unitary matrix will turn this rotation in:

() ˆcos sin
2 2xyz

v v
U v I ivσ= +

where ˆ xyzvσ gives the vector of Pauli in v.
The problem with the linear transformation is that the intermediate matrices may not be valid operations. The

linear transformation tends to create a matrix entries, which are too close to zero, i.e. the resulting matrices will
shrink the values instead of retaining their length (which is not a desired effect, as the whole point of using
unitary matrices is to preserve the length). Actually, the goal is to be made a transformation without leaving the
space of the unitary matrices. A compact way for the parameterization of the space of the unitary matrices is:

() ()()ˆe cos sini
xyzU Ii vφ θ σ θ= +

The above equation includes four constants and three variables. The constants are the identity matrix (I), the
square root of −1 (i), the constant of Euler (e) and the vector of Pauli matrices xyzσ . The three variables are the
angle φ , the angle θ and the single vector v̂ . Each of the variables plays a different role. φ is a global
phase coefficient. It’s what distinguishes the group of unitary matrices U(2) from “the special unitary group
SU(2)”. v̂ and θ correspond to a rotation. v̂ is like an axis to rotate around, and θ is how much to rotate
around the said axis. What does it mean that v̂ and θ are like a rotation? It becomes a bit clearer when the
compact parameterization from above is expanded. Through incorporation of the Pauli matrices and splitting of
v̂ in x y z , the following is obtained:

() () () ()
1 0 0 1 0 1 0

e cos sin sin и sin
0 1 1 0 0 0 1

i i
U i x y z

i
φ θ θ θ θ
 −        

= + +        −        

This is not yet clear enough. The following part is omitted: the equation to convert from an axis-angle style

N. Raychev

81

rotation to a single quaternion style rotation:

cos sin sin sin
2 2 2 2

q i x i y j z kθ θ θ θ       = + + +       
       

The resemblance is visible. Without paying attention to the mysterious division by 2 of the angles, the Pauli
matrices actually play the role of quaternion constants: i, j and k. If each of the Pauli matrices is multiplied by i,
the following is obtained:

() () ()22 2 3
x y z x y zi i i i Iσ σ σ σ σ σ= = = = −

This, in turn, looks very similar to the way in which the quaternions are defined: 2 2 2 1ijki j k= = = = − .
Why is this similarity with the rotations important? Because it will be used for linear transformation. There are
already existing methods for smooth linear transformation between quaternions and they will be applied in order
to be handle the rotation part of the unitary operation. Then the remaining phase part simply must be inter-
polated between two angles.

The main contribution of this paper is the proposed method of mapping rotations in unitary matrices.

2. Converting Rotation into Qubit Operations
The general comparison has got many good features, but also two flaws that, if possible, should be avoided. The
first flaw is that the angles are divided by 2. Therefore, a rotation of 360˚ does not return to the starting position,
but to I− . If we use this mapping, the rotation should be of 720˚, which is confusing. The second flaw is that
there is no rotation, which corresponds to Pauli matrices. Rotation of 180˚ around the X axis gives xiσ instead
of xσ . This means that when using these rotations to define operations for quantum computer, a NOT exit can-
not be even made! It is possible these flaws to be avoided, but this will be at the expense of something else.

2.1. Phase Correction
Both of the aforementioned flaws are caused by one problem: the global phase coefficient is wrong. In order to
fix it, we have to add a specially prepared coefficient of the counter-phase. Currently a half-turn around the X
axis gives xiσ . To turn it into xσ , a phase correction factor of –i will be needed. Similarly, a coefficient
with phase correction of −1 for one full turn is also needed. After three half rotations around the X axis (or one
half turn around the negative X axis) a coefficient with phase correction of i is needed. The coefficients with
phase correction are the same for the Y and Z axes with respect to the amount of turning. Given the above in-

formation, it’s clear that is needed a correction coefficient such as 2e
v

is
, where s is either +1, or −1, depending

on the direction of rotation. Choosing s is a delicate moment, which will be discussed later. For now, it will be
used in the mapping as taken for granted:

() 2 ˆe cos sin
2 2

v
is

xyz

v v
U v I ivσ

 
= + 

 

Because the mapping formula already has two coefficients involving half-angles being multiplied together,
there are possibilities for their simplification. Let us first reveal eix in the trigonometric functions:

() ˆcos sin cos sin
2 2 2 2xyz

v v v v
U v s i s I ivσ

      
= + + +             

Then it will be divided, while the trigonometric multiplications are simple, but the elements are not yet
grouped based on the matrix coefficients:

() cos cos sin cos
2 2 2 2

ˆ sin cos sin sin
2 2 2 2xyz

v v v v
U v I s i s

v v v v
iv s i sσ

    
= +         

    
+ +         

N. Raychev

82

Let’s make the trigonometric coefficients more similar by subtracting the sign coefficients in relation to the
parity (i.e. () ()cos cossx x= and () ()sin sinsx x=):

() 2 2ˆcos sin cos sin cos sin
2 2 2 2 2 2xyz

v v v v v v
U v I is iv isσ

   
= + + +   

   

Double-Angle formulas expressing trigonometric functions of an angle 2x in terms of functions of an angle x,

()sin 2 2sin cosx x x=

() 2 2 2 2cos 2 cos sin 2cos 1 1 2sinx x x x x= − = − = −

() 2

2 tantan 2
1 tan

xx
x

=
−

() () ()1 1 1 1ˆ1 cos sin sin 1 cos
2 2 2 2xyzU v I v is v iv v is vσ    = + + + + −    
    

Simplification of the coefficients:

() () ()1 1 ˆ1 cos sin cos sin
2 2 xyzU v I v is v iv is is v vσ= + + + − +

Subtraction of is from the component on the right side:

() () ()1 1 ˆ1 cos sin 1 cos sin
2 2 xyzU v I v is v iv v is vσ= + + − − −

The coefficient of s is moved into the trigonometric functions, so they can be merged in the exponential func-
tions:

() () ()1 1 ˆ1 е 1 е
2 2

is v is v
xyzU v I ivσ= + − −

This is already simple enough. The fact that the angles are no longer being divided by two 2, shows, that the
problem with 720˚ is solved. Evaluating the mapping at () ()π,0,0 , 0, π,0U U± ± , and ()0,0, πU ± does
not give back xσ± , yσ± , and respectively zσ± . These are the correct results, with the exception of the detail
that s± should be canceled in the results by selecting s in an appropriate manner.

How should be selected whether s must be +1 or −1? A naive solution would be to always use s = 1 or −1, but

that would cause (for example) ,0,0
4

U τ 
 
 

 to differ from 3 ,0,0
4

U τ − 
 
 

 despite starting from equivalent

rotations. Negating a vector has to negate s, because, otherwise, repeatedly doing and undoing a rotation would
give matrices that were not inverses of each other. This in turn will cause an increase in the phase coefficient in-
stead of its change together with the rotations. The reversal of s without introducing a discontinuity in the phase
correction requires v to be an integer from half of the turns, as this is the only time when π πe ei iθ θ−= . How-
ever, s must be reversed for all pairs v vs v− − , including those, which are not half rotations, and the axis, can
be rotated so as to correspond to reversals. Thus, regardless of the actions, there always will be a discontinuity in
the phase correction angle (Figure 1).

The plane, in which the discontinuity occurs, can be rotated so that no rotational axes are used on it. Note that,
even if you avoid rotation axes along the bad plane, you will still run into problems when combining multiple
rotations. This is a consequence of wanting half turns to correspond to the Pauli matrices. There's no way to
avoid accumulating a global phase factor via multiple rotations because, although rotating a half turn around the
X then Y then Z axis does not give a final rotation, and x y z iI Iσ σ σ =⋅ ≠⋅ . In the end, despite the elimination
of the two flaws from the original mapping (the rotation at 720˚ and the inability to obtain the Pauli matrices)
now there is a discontinuity, where the sign of the result is switched when the rotational axis is swiveled, and
there is a problem with the phase accumulation at multiple rotations. Whether or not these disadvantages are
preferable over the initial ones depends on the particular application.

N. Raychev

83

Figure 1. Discontinuity in phase correction angle. Note: It not is necessary to have only one discontinuity. There may
be several.

2.2. Implementation
Here is python code implementing the final mapping from above:

Warning: with disadvantage; see below
defq_rotation_to_matrix(x=0, y=0, z=0):
 # Discontinuance of the phase correction in an inconvenient plane
 s = math.copysign(1, −11*x + −13*y + −17*z)
theta = math.sqrt(x**2 + y**2 + z**2)
 v = x * np.mat([[0, 1], [1, 0]]) +y * np.mat([[0, −1j], [1j, 0]]) + z * np.mat([[1, 0], [0, −1]])
ci = 1 + cmath.exp(1j * s * theta)
 # Potential division by zero!
cv = s * (1 − cmath.exp(1j * s * theta))/theta
return (np.identity(2) * ci − v * cv)/2

A notable problem in the above code is the division of the rotation angle in order to compute the unit vector

along the axis of rotation. This will cause problems at small rotations. Thus, the part eisθ

θ
− must be rewritten

so it does not involve a division. To avoid the division can be used the sine function () ()sin
sin

x
c x

x
= . Let’s

first reveal the exponential functions into trigonometric, then they should be simplified and the half-angle identi-
ties should be used and they should be simplified again:

() ()() () ()

2 2

1 cos sin 1 cos sin1 e

11 1 2sin sinsin sin2 2 sin sin sin
1 2 2
2

is s i s s is s

is is c is c

θ θ θ θ θ
θ θ θ θ

θ
θθ θ θ θ θ

θ θ θθ

− + −−
= = −

 − − 
 = − = − = −

Although the sine also has a division by zero, it can be used the fact that sin x acts as x near zero in order to

eliminate the problem. Upon approaching to zero, the series
3 5

sin
3! 5!
x xx x= − + − , divided by x, gives a good

N. Raychev

84

enough approximation
2 4 2sin 1 1

3! 5! 6
x x x x

x
= − + − ≈ − . If we switch from direct computing of sin x

x
 to using

the approximation around the time where
4

1
120
x

+ starts being rounded to 1. Given the stable sine function, and

the arbitrarily chosen plane-of-terribleness we can write the function rotation_to_matrix: defquantum_ rota-
tion_to_matrix (x=0, y=0, z=0):

It returns a unitary matrix that corresponds, in a useful, but not unique way, to a rotation around the axis <x, y,
z> by sqrt(x^2 + y^2 + z^2) radians.

 # Discontinuance of the phase correction in an inconvenient plane
 s = math.copysign(1, −11*x + −13*y + −17*z)
theta = math.sqrt(x**2 + y**2 + z**2)
 v = x * np.mat([[0, 1], [1, 0]]) +y * np.mat([[0, −1j], [1j, 0]]) +z * np.mat([[1, 0], [0, −1]])
ci = 1 + cmath.exp(1j * s * theta)
cv = math.sin(theta/2) * sinc(theta/2) - 1j * s * sinc(theta)
return (np.identity(2) * ci - s * v * cv)/2

defsinc(x):

It returns sin(x)/x, but computed in a way that does not explode when x is equal to or near zero.

sinc (0) is 1.
sinc(0) is 1.
if abs(x) < 0.0002:
return 1 − x**2/6
return math.sin(x)/x

It could be double-checked, whether the function is working correctly by printing out a few test values:
np. q_setup_printoptions(precision=5, suppress=True)
print "I", q_rotation_to_matrix()
print "I_2", q_rotation_to_matrix(x=2*math.pi)
print "X", q_rotation_to_matrix(x=math.pi)
print "Y", q_rotation_to_matrix(y=math.pi)
print "Z", q_rotation_to_matrix(z=math.pi)
print "H", q_rotation_to_matrix(x=math.pi / math.sqrt(2), z = math.pi / math.sqrt(2))
print "sqrt_1(X)", q_rotation_to_matrix(x=math.pi/2)
print "sqrt_2(X)", q_rotation_to_matrix(x=−math.pi/2)

Which prints out:
I [[1.+0.j 0.+0.j]
[0.+0.j 1.+0.j]]
I_2 [[1.+0.j 0.−0.j]
[0.−0.j 1.+0.j]]
X [[0.−0.j 1.+0.j]
[1.+0.j 0.−0.j]]
Y [[0.−0.j 0.−1.j]
 [−0.+1.j 0.−0.j]]
Z [[1.+0.j 0.+0.j]
[0.+0.j −1.−0.j]]
H [[0.70711−0.j 0.70711+0.j]
[0.70711+0.j −0.70711−0.j]]
sqrt_1(X) [[0.5−0.5j 0.5+0.5j]
[0.5+0.5j 0.5−0.5j]]

N. Raychev

85

sqrt_2(X) [[0.5+0.5j 0.5−0.5j]
[0.5−0.5j 0.5+0.5j]]

Those values look good to me (modulo the rounding error introduced by the involvement of π and 2). The
half-turns along each axis give the corresponding Pauli matrix, rotating one full turn gets us back to the identity
matrix, the quarter turns are square roots of the half turns. The Hadamard matrix is obtained by rotating a half
turn around the X + Z axis.

3. Converting the Transitions between Quantum Gates in Rotary Operations
First the unitary operation must be broken down into its quaternion and phased parts. Let’s start by braking
down the previous parameterization of the unitary group into a single matrix:

() () () ()
() () () ()

cos sin sin
e

sin cos sin
i i z x iy

U
x iy i z

φ θ θ θ
θ θ θ

 + + 
=  − − 

The values for extraction are the phase φ and the quaternion components
() () () ()cos , sin , sin и sini x y zθ θ θ θ It must be observed that ()sinx θ and ()siny θ contribute only for the

upper right and lower left part of the matrix. In addition, ()sinx θ contributes symmetrically, while ()siny θ
- asymmetrically. This allows to be solved their values, although they are still mixed with the phase, by taking
the sum and the difference along the diagonal. The same applies for ()sinz θ and ()cosi θ along the other
diagonal. To eliminate the coefficient e iφ from the extracted values, is used the fact that it should be the only
contributor of the complex values. Any component from the extracted four quaternion components can be
selected (as long as it's not zero) and pick a phase coefficient, which will make the chosen component real. Since
the given matrix certainly is unitary, the same coefficient of the phase should make the remaining quaternion
components real. Below is given a code, written in python, which carries out the described factorization:

defquantum_unitary_breakdown(m):
 Breaks an unitary matrix in quaternion and phase components.

 # Extract rotation components
 a, b, c, d = m[0, 0], m[0, 1], m[1, 0], m[1, 1]
 t = (a + d)/2j
 x = (b + c)/2
 y = (b − c)/−2j
 z = (a − d)/2

 # Extracts common phase coefficient
 p = max([t, x, y, z], key=lambda is: abs(e))
 p /= abs(p)
 pt, px, py, pz = t/p, x/p, y/p, z/p

 q = [pt.real, px.real, py.real, pz.real]
 return q, p

After the problem can be broken down into factors in the rotation and phase parts, and they can be inter-

polated separately. For the rotation part will be used a spherical transformation. In order to be interpolated
spherically between two points— 0p and 1p must be found an angle, satisfying () 0 1cos p pθ = ⋅ , and then the
result is:

()
()()
()

()
()0 1 0 1

sin 1 sin
SLerpolation ,

sin si
,

n
t t

p p t p p
θ θ

θ θ
−

= +

The obstacle here is the division by zero, when θ is zero. Fortunately, because the numerator is approaching
zero generally in the same way as the denominator, this is a case in which the obtained value does not deviate. A

N. Raychev

86

function can be defined, which calculates ()
()

sin
sin

xf
x

, but switches to an approximation, that does not divide by

zero or increase the errors at floating point numbers, when they are close to zero:

defquantum_sin_scale_ratio(theta, factor):
Returns sin(theta * factor) / sin(theta) with care around the origin to avoid dividing by zero.
Near zero, transition to an approximation, to avoid an increase from error at floating point numbers.
 if abs(theta) < 0.0001:
 # sin(x) = x − x^3/3! + ...
 # sin(f x) / sin(x)
 # = ((fx) − (fx)^3/3! + ...) / (x − x^3/3! + ...)
 # ~= ((fx) − (fx)^3/3!) / (x − x^3/3!)
 # = (f − f(fx)^2/3!) / (1 − x^2/3!)
 # = f (1 − f^2 x^2/6) / (1 − x^2/6)
 d = theta * theta / 6
 return factor * (1 − d * factor * factor) / (1 − d)
 return math.sin(theta * factor) / math.sin(theta)

The above method will be applied at the method for full transformation, when a spherical transformation is

being carried out. In order to make an angular interpolation the obvious shall be carried out: the difference be-
tween the two angles is learned, care should be taken to recourse to a roundabout way and then a linear trans-
formation should be made. To take correctly the sign of the difference is a difficult task, but it is already ex-
plained. When everything is put together, we obtain:

defquantum_unitary_lerp(u1, u2, t):
 Interpolates between two 2x2 unitary NumPy matrices.
Split into rotation and phase parts
 q1, p1 = quantum_unitary_breakdown(u1)
 q2, p2 = quantum_unitary_breakdown(u2)
 # Spherical transformation of the rotation
 dot = sum(v1*v2 for v1,v2 in zip(q1, q2))
 if dot < 0:
 # Not to be made in the long way around...
 q2 *= −1
 p2 *= −1
 dot *= −1
 theta = math.acos(min(dot, 1))
 c1 = sin_scale_ratio(theta, 1−t)
 c2 = sin_scale_ratio(theta, t)
 u3 = (u1 * c1 / p1 + u2 * c2 / p2)
 # Angular transformation of the phase
 a1 = np.angle(p1)
 a2 = np.angle(p2)
 # The smallest angular distance with a sign (mod 2pi)
 da = (a2 − a1 + math.pi) % (math.pi * 2) − math.pi
 a3 = a1 + da * t
 p3 = math.cos(a3) + 1j * math.sin(a3)
 return u3 * p3

Demonstration
Below is given a demonstration of the described above method with the developed by the author of the article

quantum simulator (Figure 2). Matrices for start and end can be entered in the text boxes and (after the entered

N. Raychev

87

Figure 2. Linear transformation. (Note: The input correction is done by doing a singular value
decomposition and omitting the non-unitary factor. This turns out to be really effective.)

matrices are adjusted, they should be unitary) a continuous transition between the two matrices is shown. It is
difficult to be checked ostensibly, whether the intermediate matrices are unitary, but it can be seen that the
movement is smooth and the colored area remains relatively constant.

4. Conclusion
Single qubit operations are a lot like rotations, but with an added phase coefficient. This fact can be used to
create a method for linear transformation between 2 unitary matrices. The method described above, works, but is
not optimal. For example, it does not ensure a constant angular speed. Also, in some cases it doesn’t take the
shortest possible path. The common method for mapping rotations into unitary matrices is smooth, but cannot
generate the Pauli matrices and requires a 720˚ turn to get back to the starting point. By applying a phase correc-
tion, we can fix those issues, but we are forced to introduce a phase discontinuity with the respect to the axis of
rotation.

References
[1] Deutsch, D. (1989) Quantum Computational Networks. Proceedings of the Royal Society London A, 425, 73.

http://dx.doi.org/10.1098/rspa.1989.0099
[2] DiVincenzo, D.P. (1995) Two-Bit Gates Are Universal for Quantum Computation. Physical Review A, 51, 1015.

http://dx.doi.org/10.1103/PhysRevA.51.1015
[3] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press,

Cambridge, UK.
[4] Loss, D. and DiVincenzo, D.P. (1998) Quantum Computation with Quantum Dots. Physical Review A, 57, 120.

http://dx.doi.org/10.1103/PhysRevA.57.120
[5] Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P. and Gos-

sard, A.C. (2005) Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 309,
2180-2184. http://dx.doi.org/10.1126/science.1116955

[6] DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G. and Whaley, K.B. (2000) Letters to Nature. Nature (London),
408, 339-342. http://dx.doi.org/10.1038/35042541

[7] Zanardi, P. and Rasetti, M. (1997) Error Avoiding Quantum Codes. Modern Physics Letters B, 11, 1085;
http://dx.doi.org/10.1142/S0217984997001304

[8] Zanardi, P. and Rasetti, M. (1997) Noiseless Quantum Codes. Physical Review Letters, 79, 3306.
http://dx.doi.org/10.1103/PhysRevLett.79.3306

[9] Duan, L.-M. and Guo, G.-C. (1998) Reducing Decoherence in Quantum-Computer Memory with All Quantum Bits
Coupling to the Same Environment. Physical Review A, 57, 737. http://dx.doi.org/10.1103/PhysRevA.57.737

[10] Raychev, N. and Racheva, E. (2015) Interactive Environment for Implementation and Simulation of Quantum Algo-
rithms. CompSysTech’15, Dublin, Ireland, 25-26 June.

[11] Raychev, N. (2012) Dynamic Simulation of Quantum Stochastic Walk. Jubilee International Congress: Science Edu-
cation in the Future (Technical University—Varna), 1, 116-124.

http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.1103/PhysRevA.51.1015
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1038/35042541
http://dx.doi.org/10.1142/S0217984997001304
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevA.57.737

N. Raychev

88

[12] Raychev, N. (2012) Classical Simulation of Quantum Algorithms. Jubilee International Congress: Science Education
in the Future (Technical University—Varna), 1, 110-116.

[13] Raychev, N. (2015) Unitary Combinations of Formalized Classes in Qubit Space. International Journal of Scientific
and Engineering Research, 6, 395-398. http://dx.doi.org/10.14299/ijser.2015.04.003

[14] Raychev, N. (2015) Functional Composition of Quantum Functions. International Journal of Scientific and Engineer-
ing Research, 6, 413-415. http://dx.doi.org/10.14299/ijser.2015.04.004

[15] Raychev, N. (2015) Logical Sets of Quantum Operators. International Journal of Scientific and Engineering Research,
6, 391-394. http://dx.doi.org/10.14299/ijser.2015.04.002

http://dx.doi.org/10.14299/ijser.2015.04.003
http://dx.doi.org/10.14299/ijser.2015.04.004
http://dx.doi.org/10.14299/ijser.2015.04.002

	Bilaterally Symmetrical Transformation between Independent Operators and Rotations
	Abstract
	Keywords
	1. Introduction
	2. Converting Rotation into Qubit Operations
	2.1. Phase Correction
	2.2. Implementation

	3. Converting the Transitions between Quantum Gates in Rotary Operations
	4. Conclusion
	References

