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Abstract 
The time dependence of probability and Shannon entropy of a modified damped harmonic oscil-
lator is studied by using single and double Gaussian wave functions through the Feynman path 
method. We establish that the damped coefficient as well as the system frequency and the distance 
separating two consecutive waves of the initial double Gaussian function influences the coherence 
of the system and can be used to control its decoherence. 
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1. Introduction 
The study of dissipative systems and their quantization is of a great theoretical and practical value in view of 
many different situations in which dissipative phenomena with a quantum origin manifest themselves [1]. With-
in these dissipative systems, the damped harmonic oscillator (DHO) is the simplest quantum systems displaying 
the dissipation of energy. It is of great physical importance and has found many applications especially in quan-
tum optics [2] [3]. For example, it plays a central role in the quantum theory of lasers and masers [4]. Moreover, 
damped harmonic oscillators are used to investigate the quantum decoherence (QD) phenomenon whose role 
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became relevant in many interesting physical problems such as quantum computation and quantum information 
processing [5], material science [6]-[8], heavy ion collisions [9], quantum gravity and cosmology [10]-[22], and 
condensed matter physics [23]-[25]. In many cases, physicists are interested in understanding the causes of QD 
in order to prevent decoherence from damaging quantum states and protect the information stored in these states. 
Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen 
as signals in some experiments. However, QD has negative effects in many areas such as quantum computation 
and quantum control of atomic and molecular processes. The physics of information and computation is a do-
main where decoherence is an obvious major obstacle in the implementation of information-processing hard-
ware. It takes advantage on the superposition principle [26]. QD is a condition that has to be satisfied in order 
that a system could be considered as classical. This condition requires that the system should be in one of rela-
tively permanent states (called by Zurek “preferred states”) and the interference between different states should 
be negligible [27] [28]. The loss of coherence can be achieved by introducing an interaction between the system 
and environment [23] [29] [30]. 

Nowadays, a great deal of research is dedicated to understanding decoherence in harmonic oscillator [31] [32]. 
Isar et al. [33] determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal 
bath using Lindblad theory [34] [35]. Other authors [36] use a semi-classical approach to examine decoherence 
in a harmonic oscillator coupled to a thermal harmonic bath. Darius et al. [37] exploit the Feynman path integral 
to study the memory in a non-locally damped oscillator. Moreover, Ozgur et al. [32] determine the time depen-
dence of Leipnik’s entropy in the damped harmonic oscillator via path integral techniques. Another strategy to 
describe dissipative quantum systems is based on the idea of Bateman [38]. 

In this paper, we investigate the coherence of the damped harmonic oscillator using the Caldirola-Kanai mod-
el [39] but based on the idea of Bateman [38]. This model is known as a popular model used to describe dissipa-
tive systems coupled to a harmonic bath. It has many applications like reproducing classical effects or giving a 
good Hamiltonian necessary to exhibit the phenomenon of decoherence [38]. This paper is organized as follows. 
In Section 2, we present the mathematical tools based on the path integral formalism. We also discuss the case 
of the damped harmonic oscillator and build the associated propagator. In Section 3, we derive the general ex-
pressions of the thermodynamic parameters of the system, and analyze the effects of the damping constant on 
the distribution probability and the Shannon entropy for a single Gaussian wave function. The influence of the 
system’s frequency has also been measured on these parameters. Hence, we consider a double Gaussian wave 
function and make numerical investigations appreciate the impact of the damping constant, the distance separat-
ing the two wave functions and the system’s frequency on the thermodynamic characteristics of the system. 
Discussion and concluding remarks are given in the last section. 

2. Fundamental Definitions 
We start by presenting the model which consists of a particle of mass m , labeled by the position variable q  
and the momentum p . Then follows the description of the used mathematical tools which is the path integral 
formalism introduced by Feynman [40]. These tools suggest that the transformation function called propagator is  

analogue to ( )exp cl
i S


 in which clS  stands for the action, solution of Hamilton-Jacobi equation. On the other  

way, the transition amplitude of the particle (of mass m ) from the position aq  at time at  to the position bq  
at time bt , known as the propagator, represents the solution of the Schrodinger equation. Nowadays, several 
problems of physics are solved via these techniques [32] [41]. 

Next, we consider the Bateman Hamiltonian [38] defined as: 

[ ] 2H pp xp xp xxγ= − − +Ω                                  (1) 

where p  and x  are the mirror variables corresponding to the coordinate x  and the momentum p . The 
quantities γ  and Ω  are respectively the damped coefficient and the system frequency. The associated lagran-
gian is given by 

( )L xx xx xx xxγ= − + − 

                                    (2) 

Using Euler-Lagrange equation, we derive the following two motion equations [42]: 
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                                     (3) 

Bateman’s dual Hamiltonian describes classical mechanics correctly, but this model faces some difficulties. It 
violates Heisenberg’s principle for 0γ ≠ . Therefore, to solve quantum mechanical problem, Caldirola-Kanai [39] 
build a theory based on the idea of Bateman dissipative system by considering the standard Hamiltonian of har-
monic oscillator with time dependent mass given by [39] ( ) ( )0exp 2m t m tγ= . Hence, the Hamiltonian and the 
Lagrangian of the system become respectively: 

( ) ( )

( )

2
2 2

2 2 2

1 ,
2 2

1 1exp 2  .
2 2

pH m t x
m t

L px H t mx m x

ω

γ ω

= +

 = − = −  
 

                         (4) 

Here, ω  is the system frequency. From the Lagrangian theory and exploiting quantities (4), the equation of 
motion takes the form: 

22  0x x xγ+ +Ω =                                       (5) 

The classical solution of (5) is given by 

( ) ( ) ( )1 1 2 2exp expx t C a t C a t= +                                 (6) 

where in 1a  and 2a  are complex quantities defined as: 1a iγ= − − Ω , 2a iγ= − + Ω  with 2 2ω γΩ = − . The 
integration constants 1C  and 2C  are evaluated when the particle moves from the position ax  at the time at  to 
the position bx  at time bt . The determination of the propagator is convenient for founding quantum mechanical 
solution for this Hamiltonian. Therefore, the classical action clS  is defined as: 

( ) ( ) ( )2 2 2 2 2 20, , d d d
2 2

b b

a a

t t

cl
t t

mmS L x x t t x x t x x tω ω= = − = −∫ ∫ ∫    

whose computation for the current study case leads to: 

( ){ } ( ){ } ( ){ }
0 1 0 2

exp 2 sin exp 2cl
a b a b a b

m m
S

t t t t t t
µ γµ

γ γ
Ω

= +
− + Ω − − +

                    (7) 

in which we set: 

( ) ( ) ( ) ( ){ }
( ) ( )

2 2
1

2 2
2

exp 2 exp 2 2 exp cos ,

exp 2 exp 2 .
b a a b a b a b a b

b a a b

x t x t x x t t t t

x t x t

µ γ γ γ

µ γ γ

   = − + − − − + + Ω −  
= − − −

 

From the classical action, the expression of the corresponding propagator is defined below. 

( ) ( )
, , exp

2π sin cl
m ix x t S

i t
Ω  ′ℵ =  Ω   

                              (8) 

Substituting (7) into (8), we obtain the following expression for the quantum propagator of damped harmonic 
oscillator:  

( )
( ){ } ( ){ }

1 2

0, , exp
2π exp 2 sina b cl

a b b a

m ix x t S
i t t t tγ

 Ω  ℵ =    + Ω −     


                 (9) 

This result is identical to the one establish in [41] using the propagator method developed by Um et al. [43]. It 
also appears from (9) that the propagator ( ), ,a bx x tℵ  depends on the damped coefficient γ  that links the system 
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with the environment in which it evolves. 
Hereafter, we intend to use the propagator (9) and derive some characteristic parameters (such as the distribu-

tion probability and the Shannon entropy) of the system subjected respectively to single and double Gaussian 
wave functions. These investigations aim to measure the impact of the environment on the behavior of the system 
when the latter progresses. 

3. Calculations and Results 
3.1. System Properties under a Single Gaussian Wave Function 
In this section, we exploit the single Gaussian wave function to examine the impact of the environment on the 
distribution probability and the Shannon entropy for a specific damped harmonic oscillator and therefore, to 
measure its coherence. 

3.1.1. Distribution Probability 
Making use of [31], we determine the distribution probability for a single Gaussian wave packet to find the particle 
at coordinate x  at the time t . Nowadays, several problems of physics are solved via path integral techniques. It 
gives analytical solution for various coupling problems. This probability can be written in the Feynman-Hibbs 
form as [44]: 

( ) ( ) ( ) ( ) ( ) ( )2
, , d d , , , , ,0 ,0b b a b a b b bP x t x t x x x x t x x t x xϕ ϕ ϕ∗′ ′ ′= = ℵ ℵ∫ ∫               (10) 

which presents the link between the distribution probability ( ),P x t  and the propagator (9) for a given wave 
function ϕ . In expression (10), ( ),0bxϕ  designates the initial Gaussian wave packet centered at 0 0x =  with 
[31]: 

( )
21 42

2,0 2π exp
4b
xxϕ σ
σ

−  
 = −  

 
                            (11) 

The quantity ( ) ( ),0 ,0b bx xϕ ϕ∗′  defines the pure electronic density matrix and 2 2mσ Ω
. Based on (9), we 

evaluate the propagator 

( ) ( ) ( )
( ){ }

0 exp 2
, , , , exp

2π sin
b

a b a b cl
b a

m t ix x t x x t S
t t
γ∗

 Ω  ′ℵ ℵ =    Ω −     


 

which takes the following form after substitution of the classical action clS : 

( ) ( ) ( )
( ){ } ( ) ( )0 2 2exp 2

, , , , exp
2π sin

b
a b a b b b b b

b a

m t
x x t x x t a x x b x x

t t
γ∗

 Ω  ′ ′ ′ℵ ℵ = − + −   Ω −  

           (12) 

With 

( ) ( ){ } ( )
( )

0
0

2 exp
exp 2 cot ,    

sin
a b a

b b a
b a

ix m t tia m t t t b
t t

γ
γ γ

 Ω +  = Ω Ω − + = −   Ω − 


            (13) 

Therefore, the distribution probability (10) yields the following expression: 

( )
( )

1 2 2 2
0

2 42 4

2 exp 2  1 1 2exp
sin 2π 1 161 16

bm t bP
t aa

σ γ σ
σσ

 Ω    =    Ω −   −   

                (14) 

This relation shows that the distribution probability is an explicit function of space and time. Figure 1(a) 
presents its evolution when the damping coefficient γ  is null (pure state). This plot shows that the probability 
decreases with space and increases with time. We observe that the probability behaves like in the case of free 
particle as shown in [32]. For non-zero values of γ  Figure 1(b) gives the evolution of the same probability.  
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(a) 

 
(b) 

Figure 1. Distribution probability for a single Gaussian wave function with the 
parameters 0.7Ω = , 0 1m = , 1=  and two values of γ  (a): 0γ =  (pure state) 

and (b): 0.3γ =  (damped state). 
 
From the obtained curve, one observes that the probability increases with the growth of the damping coefficient. 
This result traduces the fact that the interaction between the system and the environment induces a modification of 
the former. It also establishes the existence of the critical value cγ  of γ  over which the probability will exceed 
unit. The determination of cγ  is useless here since we are not concerned with the consequences of its existence in 
the present work. Furthermore, we intend to deeply examine another aspect of the coherence of the system by 
investigating the influence of the environment on the Shannon entropy. 

3.1.2. Shannon Entropy 
It is well known that the major way to appreciate the purity of a system is to study the evolution of its entropy. 
When this quantity tends to zero, we obtain a pure state. Decoherence stands for the loose of information in the 
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system. This occurs when the exchange between the environment and the system affects the evolution of the 
concerned system. Mathematically, the entropy 1S  is defined by Boltzmann-Shannon as: 

1 ln dBS K P P x
+∞

−∞

= − ∫                                   (15) 

in which BK  represents the Boltzmann constant and P  is the distribution probability defined by (14) for a 
single Gaussian function. Therefore, it appears that the Shannon entropy 1S  is an explicit function of time. But it 
also deals with the system frequency. Indeed, Figure 2 gives the evolution of this entropy in terms of time and 
system frequency for pure system. From this graph, we note that the entropy oscillates with time. Therefore, the 
information is periodically transferred between the environment and the system. 

However, when 0γ ≠ , Figure 3 presents the behavior of temporal evolution of the entropy versus the system  
 

 
Figure 2. The 3D entropy for a simple harmonic oscillator with the parameters 
of Figure 1(a). 

 

 
Figure 3. The 3D entropy as function of time and the system frequency for the 
parameters of Figure 1 with 0.1γ = . The transfer of information between the 
system and the environment has no periodicity. 

00.20.40.60.81

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

Om 

t

S(
t)

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5

6

7

8

0
0.5

1

t

Om 

S(
t)



F. B. Pelap et al. 
 

 
220 

frequency Ω . This plot shows that the Shannon entropy loses its periodicity and decays with the system fre-
quency. Furthermore, this entropy 1S  grows with time and the damped factor as shown on Figure 4. These re-
sults indicate that the damped factor enhances the transfer of information between the system and the environment. 
Also the fact that the envelope of the curve of Shannon entropy increase implies that this information is losing in 
time. This traduces the decoherence of the system. 

3.2. System Properties for a Double Gaussian Case 
In this section, we focus our attention on the study of the effects of the double Gaussian approximation function on 
 

 
(a) 

 
(b) 

Figure 4. Behavior of the Shannon entropy ( )1S t  for several values of the damped 

factor (a): 0.001γ =  and (b): 0.006γ = . 
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the interaction between our damped harmonic oscillator and its environment. For this purpose, the initial state for 
the double Gaussian wave function is given by [31] 

( ) ( )
2 221 42

2 2 2

1 1,0 8π 1 exp exp exp
2 28 4 4b

d d dx x xϕ σ
σ σ σ

−       − − −    ′ = + − + +           
                 

          (16) 

in which d defines the distance between the top of the two successive waves in the double Gaussian state. To 
appreciate the impact of this new wave packet on the thermodynamic parameters of the system, we seek separately 
its distribution probability and Shannon entropy. 

3.2.1. Distribution Probability 
The corresponding distribution probability P′  is obtained by substituting expression (16) into (10). The com-
putation yields the upcoming quantity: 

1 2 1 2
2

2 4

16π e e e e
1 16

u u v vAP
a

σ

σ
   ′ = + ⋅ +   

−
                            (17) 

wherein 
( )

( )

22

1 2 2

4

16 1 4

d b
u

a

σ

σ σ

+
=

−
; 

( )
( )

22

2 2 2

4

16 1 4

d b
u

a

σ

σ σ

−
=

−
; 

( )
( )

22

1 2 2

4

16 1 4

d b
v

a

σ

σ σ

−
=

+
; 

( )
( )

22

2 2 2

4

16 1 4

d b
v

a

σ

σ σ

+
=

+
 and 

( )

( )

21 22
0 2

2

2

8π exp 2
8

.
2π sin 1 exp

8

-

b
dσ  m t

A
dt

γ
σ

σ

 
Ω − 

 =
  

Ω + −  
  



 

One could note that the distribution probability depends not only on time, position and system frequency, but 
also on the distance separating the two successive peaks of the double Gaussian function. In the limit case 0d = , 
we recover the probability (14) that deals with a single Gaussian wave function. 

The Spatiotemporal evolution of the probability (17) is plotted on Figure 5. These figures confirm the fact that, 
the probability grows with the increment of the damped factor γ  (showing that the information is losing with the 
increasing of the damping coefficient). Analysis of Figure 5(a) and Figure 1(a) shows that the distance d  im-
proves the probability meanwhile the double Gaussian wave function is welcome for the study of the probability 
of this particle. 

3.2.2. Shannon Entropy 
In this subsection, we investigate the Shannon entropy relates to the double Gaussian wave function for a specific 
damped harmonic oscillator. Owing to the definition, this entropy is: 

( )2 ln dBS t K P P x
+∞

−∞

′ ′= − ∫                                  (18) 

in which the probability P′  is defined by (17). Hereafter, we explore the influence of each system characteristics 
on the evolution of this entropy. 

First, Figure 6 presents the effects of the distance d  on the behavior of the entropy ( )2S t  for the pure state. 
From these curves, one observes that the entropy amplitude has an unchanged time behavior for given values of 
d . It appears from these curves that the factor d  can be used to control the transfer of information between 
system and its environment. 

Next, we examine the influence of the damped factor 0γ ≠  on the entropy (18) as shown on Figure 7. These 
plots confirm the fact that the presence of γ  induces the decoherence of the system. Comparison of Figure 6(b) 
and Figure 7(b) shows that the growth of γ  affects the coherence of the system. At the end, we compare the plot 
of Figure 7(a) and Figure 7(b), and appreciate the cumulative effects of d  and γ  on the coherence of the 
system. These graphs let appear that d  and γ  contribute to the decoherence of the system: one ( )γ  increases 
the magnitude of the entropy while the other ( )d  reduces the periodicity of the information transferred. 
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(a) 

 
(b) 

Figure 5. Distribution probability versus space and time for a double Gaussian 
wave function with the parameters 0.7Ω = , 0 1m = , 1= , 0.1d =  and various 

values of γ : (a): 0γ =  and (b): 0.1γ = . 

4. Conclusions 
In this paper, we have examined the dynamics of the modified damped harmonic oscillator constructed from the 
Caldirola-Kanaï model and based on the idea of Bateman. For this purpose, the Feynman path integral method has 
been used to investigate the time dependent probability and the entanglement entropy exploiting the single and 
double Gaussian initial states. In these two initial states, we have shown that the Shannon entropy decreases with 
the system frequency and grows with the others parameters (such as time or damped factor). For both cases, we 
have established that the distribution probability possesses the same behavior. In the specific case of the double 
Gaussian approximation, we have obtained that the distribution probability and the Shannon’s entropy have been 
improved by the distance between two consecutive peaks of the wave. 
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(a) 

 
(b) 

Figure 6. Shannon entropy ( )2S t  as function of time for the parameters of Figure 
5(a) with several values of d : (a): 0.1d =  and (b): 1.4d = . 

 
In the absence of the damped factor, we have recovered the results that link with the system in its pure state. 

Here, the information is exchanged periodically between the corresponding harmonic oscillator and the envi-
ronment. For non-zero values of the damped factor, it has appeared that this transfer of information loses its pe-
riodicity traducing the loss of information in the system (decoherence phenomena). These results could be of 
great interest for engineering purposes since it becomes necessary to control the effects of the environment on the 
evolution of the system in order to reduce its decoherence. This phenomenon of controlling decoherence in an 
evolving system is essential in the construction of quantum computers that need the use of systems taken in their 
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(a) 

 
(b) 

Figure 7. Temporal evolution of the Shannon entropy for the parameters of Figure 
6 with 0.003γ =  and various values of d : (a): 0.1d =  and (b): 1.4d = . The 
factor d  can be used to control the decoherence of the system. 

 
different superposition states. Our study has also shown that such aim could be achieved by acting on the 
damped coefficient, the frequency of oscillation and/or the type of state as control parameter. 
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