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ABSTRACT 

We investigate the time dependence of the survival probability of quantum walks governed by Fibonacci walks with 
phase parameters on the trapped two-dimensional lattice. We have shown that the survival probability of the quantum 
walk decays with time obey to the stretched exponential law for all initial states of walkers. We have also shown that 
stretched exponential decay parameter β can be arranged by phase parameter combination. Obtained numerical results 
show that phase parameters can be used as a control parameter to determine the decay rate of the survival probability of 
the quantum walk. 
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1. Introduction 

In recent years, the quantum walk on the trapped lattice 
has been intensively investigated due to importance ap- 
plications in quantum information and computing. 
Therefore, many theoretical and experimental studies 
have been carried out to understand the effect of the 
trapping states on the quantum walk. For example, 
Agliari [1] considered a continuous-time quantum walk 
propagating on Erdos-Renyi random graphs in the pres- 
ence of a random distribution of traps, and showed that 
the survival probability exhibits an exponential character 
which fluctuates depending on the trap concentration. 
Zahringer et al. [2] implemented a quantum walk using 
trapped ions. They used an experimental technique to 
determine the probability distribution along a line in 
phase space. It is shown that instabilities in the trapping 
frequency leads to decoherence and by change in the 
coupling strength due to high phonon numbers. Schimitz 
et al. [3] implemented the proof of principle for the 
quantum walk of one ion in a linear ion trap. It is shown 
that quantum interference enforces asymmetric, non- 
classical distributions in the highly entangled degrees of 
freedom (of coin and position states). Xue et al. [4] im- 
plemented a multi-step quantum walk for a single 
trapped ion with interpolation between quantum and 
random walk by randomizing the generalized Hadamard 
coin flip phase. It is shown that the distribution of the 

walker spreads over unbounded position space rather 
than being folded back on itself. Agliari et al. [5] studied 
the continuous time quantum walk focusing on trapping 
processes on a ring and show that when the traps are ar- 
ranged periodically the survival probability decays as- 
ymptotically, when the traps are arranged to form a clus- 
ter the survival probability decays exponentially, on the 
other hand for randomly distributed traps the survival 
probability decays algebraically. Eckert et al. [6] imple- 
mented the quantum walk with a neutral atom trapped in 
a ground state of optical potentials by using the concept 
of spatially delocalized quibits, that is, a coin defined 
through the presence of the atom in one out of two trap- 
ping potentials. It is shown that the shaking of the trap 
position on the quantum walk leads to a flat distribution 
in the transition from quantum to classical in the inter- 
mediate. Wojcik et al. [7] studied changing a phase at a 
single point in a discrete quantum walk. For certain val- 
ues of this phase change and the internal coin-state of the 
walker it is shown the distribution exhibits the localiza- 
tion phenomenon. Altmann et al. [8] studied chaotic 
scattering, it is shown that noise enhances the trapping of 
trajectories in scattering systems. In particular, they show 
that weak noise leads to a slower decay of the survival 
probability. Karksi et al. [9] implemented a quantum 
walk on the line with single neutral atoms by determinis- 
tically delocalizing them over the sites of a one-dimen- 
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sional spin-dependent optical lattice. For symmetric and 
asymmetric quantum walks, it is shown that the distribu- 
tion is double peaked with large amplitude close to the 
edges of the distribution. Xu [10] studied coherent exci- 
ton dynamics modeled by continuous-time quantum 
walks on long-time range interacting cycles in which the 
distribution is shown to display a power law. Muelken et 
al. [11] in their quest for signatures of coherent transport 
studied exciton trapping in the continuous-time quantum 
walk, and show that the survival probability displays 
different decay domains. Finally, Gonulol et al. [12,13] 
shown that the time dependence of the survival probabil- 
ity of quantum walkers has a piecewise stretched expo- 
nential character depending on the density of traps. 

It can be seen from the brief review that, in these stud- 
ies, the focus is on how the traps affect the distribution of 
the survival probability of the usual quantum walk gov- 
erned by Hadamard, Grover or Fourier coin operators. 
Recently, the quantum walk with phase parameters has 
been considered by a number of authors, see [14] for 
example. In this study, they proposed a different coin 
operator with parameters that alters the phase of the 
states of the walk on the line, and they show that the pa- 
rameters in the coin operators affects the resulting prob- 
ability distribution of quantum walk. The variance and 
shape of the probability distribution of states of the 
quantum walk depending on the phase parameters may 
be valuable results in point of view of the theory of 
quantum computation. Therefore in this paper we will 
study the survival probability of quantum walk with 
phase parameters on the two dimensional trapped lattice. 
To this end, we consider usual quantum walk with a spe- 
cial parametrization of the Fibonacci coin operator 

 ,M    [15] and define the coin operator as C FTF  
where F  is a two-dimensional generalizetion of the 

Fibonacci operator of 
2

π π
,

2 4
M


 
 
 

 and T  is the dia- 

gonal phase adjustment. We show that the survival 
probability of the quantum walk with phase parameters 
on the trapped two dimensional lattice decays with time 
as the stretched exponentially for different initial states 
of walkers. We have also shown that stretched exponen- 
tial decay parameter β of the walk can be arranged by 
phase parameter combination. 

This paper is organized as follows. In Section 2, we 
define the quantum walk on the square lattice with phase 
parameters. We also present in this section the time evo- 
lution for a single-particle walk as well as multi-particle 
walk in which the particles are distinguishable. In Sec- 
tion 3, we derive the survival probability using the exact 
numeration method of [18]. To account for randomiza- 
tion, we also calculate the mean survival probability in 
this section. In Section 4 the numerical analysis of the 
survival probability to determine how the traps affect its 

distribution is given. Section 5 is devoted to the conclu-
sions. 

2. The Quantum Walk with Phase  
Parameters on the Square Lattice 

We consider the discrete-time quantum walk on the 
square lattice with boundary conditions. The coin space 
of a single walker is given by 

 span , , , ,L R U D  where  corre- 
sponds to the chirality states left, right, up, and down 
respectively. In this paper we will put,  

, , ,L R U D

1 0 0

0 1 0
, , ,

0 0 1

0 0 0 1

L R U D

       
       
          
       
       
       

0

0

0
      (1) 

The position space is given by 
 span , , ,P x y x y Z  . The Hilbert space of the 

total system is given by C . Recall that the 
evolution of the walk is given by 

P


 

U S I C , where 
 is the shift operator, S I  is the identity operator and 
 is the coin operator governing the walk. In this paper 

we will take 
C

C FTF , where F  is a two-dimensional 
generalization of the Fibonacci operator and  is the 
diagonal phase adjustment. In particular, diagonal phase 
adjustment can be defined as 

T

 4iπe 31 2 iπiπ, e , e  iπDiag e ,T  , where  0,1i ;  

1 1 1 1 
1 1 1 11

1 1 1 12

1 1 1 1

F
 
 
 
 



          (2) 

    

Denote the total number of sites on the lattice by , 
then the shift operator is given by, 

Q




, 1

1, , 1, ,

, 1 , , 1 ,

Q

x y

S x y x y R R x y x y L

L x y x y U U x y x y D D



     

     



 (3) 

We shall write the wave function of the walker at time 
 as, t

   
, ,

, , , ,c
c x y

t x y t c   x y    (4) 

with , , ,c L R D U . We define the state of the particle 
by, 

   
 

 
 
 
 

, , ,

, ,

, ,
, ,

, ,

, ,

L

R
c

c L R D U U

D

x y t

x y t
t x y t c

x y t

x y t




 




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 
    
  
 

    (5) 
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where  , ,c x y t  for  represent prob-
ability amplitudes of the particle at site 

 , , ,c L R D U 
 ,x y  at time 

, depending on the chirality state of the particle. In 
terms of the initial state 
t

 0 , the evolution of the 
walk is given by    0tt U  . The density op-
erator of the quantum walk is given by 
     Φ t t t  . In terms of the density operator we 

can write the probability distribution of the walker at 
time  as,  t

   
 , , ,

, , , , Φ , ,
c L R D U

P x y t c x y t c x y


    (6) 

We should note that  can be written as,   , ,P x y t 
     

   

2 2

2 2

, , , , , ,

, , , ,

L R

U D

P x y t x y t x y t

x y t x y t

 

 

 

 
     (7) 

which is standard in papers on the quantum walk instead 
of the representation above involving the density opera-
tor. 

On the other hand, single particle quantum walks can 
be easily generalized multi-particle quantum walks if the 
particles are assumed as uncorrelated, non-interacting 
and distinguishable. The multi-particle walk has been 
investigated by the author of the present paper [16,17]. 
The case where indistinguishability plays a role has also 
been considered. For simplicity in this study we consider 
walkers which are non-interacting distinguishable parti- 
cles and they are initially uncorrelated. If we assume the 
M  particles are distinguishable and are initially uncor- 
related the Hilbert space is given by 

     1 1C P C P C PM M
       

(8) 

or 

 1
M
i C P i                 (9) 

where  C P i


1,2i 
 is the Hilbert space of the  

walker for . The evolution of the 
ith

, , M
M -particle walk in which indistinguishability does not 
play a role is given by MU U   , where  U S I C  
is the same for each walker. The initial state of the M  
particles is written as 

  10 , , Mm     m     (10) 

Alternatively, Equation (10) is given by a tensor 
product of the single walker initial states as 

  10 ,M
i i

m  i             (11) 

where , im  for  is the  particle 
state with chirality 

1, 2, ,i  M ith
 , and position i  (recall we are 

assuming that there are  sites on the square lattice). In 
terms of 

m
Q

 0 , the evolution of the walk is given by 
     0

t
t U  . Using the reduced density opera-

tor  Φi t  we can write the probability distribution of a 
single walker at time  by t

   
 , , ,

, , , , , ,i i
c L R D U

x y t c x y t c x y P    (12) 

where    Φi j i .  in Equation 
(12) represents the probability of a single walker at site 

Tr t t   , ,iP x y t

 ,x y
0t
 at time  when the walker starts from site i  

at 
t m

 . The set   1, ,i M, , :P x y t


i  is the set of 
transition probabilities from i ,m  to  x y  of a single 
particle, which is the same interpretation given by Equa-
tion (6). 

3. Survival Probability 

In [18] the exact numeration method was used to calcu- 
late the survival probability in the classical random walk. 
This method was used by the authors in [12] to calculate 
the survival probability of quantum walkers on a Cayley 
graph of the cyclic group of size K  with absorbing 
trapped sites. In this section we adapt the exact numera- 
tion method to the square lattice to calculate the survival 
probability. We assume every untrapped site is occupied 
by a walker. At each step, the M  walkers perform a 
classical random walk on the square lattice, for which the 
probability of finding the particle at site  , ,iP x y t  is 
calculated with the sum of the corresponding probabili- 
ties at its nearest neighbor sites divided by four. The sur- 
vival probability at time t is given by,  

  
1 , 1

1
, ,

QM

r i
i x y

P t P x y t
M  

              (13) 

Here  enumerates a particular independent initial 
configuration of the system. Note that 

r
M Q n   or 

 1M Q   , where  is the number of traps on the  n

square lattice and 
n

 is the trapping density. We  
Q

 

take the lattice sites at   , : , 1, ,x y x y Q . If site 
 ,x y  is a trapping site, we let , so that 
the summation above is not restricted to the untrapped 
sites. We also assume that the initial configurations on 
the walkers are such that the 

 , , 0iP x y t 

M  walkers occupy all the 
untrapped sites. To account for randomization we cal- 
culate the mean survival probability, 

   
1

1 G

r
r

P t P t
G 

            (14) 

where  denotes the number of different configura- 
tions. Recall we assumed the 

G
M  walkers are distin- 

guishable and uncorrelated, so the evolution of the M- 
particle walk is equivalent to a single-particle walk with 
an ensemble of initial configurations. So by quantum 
computation of the single-particle distribution, the clas- 
sical survival probability is useful. 
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4. Numerical Analysis of the Survival  
Probability of M-Walkers with  
Phase Parameters 

In this section we numerically analyze the dynamics of 
the survival probability in the two-dimensional multi- 
particle quantum walk with phase parameters. Firstly, we 
investigate the survival probability for three different 
initial states with fixed phase parameters. Initial chirality 
states of untrapped cites are chosen as in the first case, 
L , in the second case , , ,L R D U  sequentially 

and in the last case, randomly chosen either of 
, ,L R D  or U . We call them left, sequential and 

mixed initializations respectively. In numeric simulations, 
the number of sites on the square lattice is taken to be 

. To account for random distribution of 
traps, a statistical configurational average of the mean 
survival probability is calculated over different inde- 
pendent realizations of the initial system with 

100 100Q  

100G   
different configurations. We should remark that the coin 
operator governing the walk is given by C FTF , 
where F  is a two-dimensional generalization of the 
Fibonacci operator and  is the diagonal phase adjust-
ment (see Section 2 for details). 

T

Survival probability of QW are plotted in Figures 
1(a)-(c) for left, sequential and mixed initializations and 
for different trap densities 0.1, 0.3, 0.5      and 

0.7 
0.

 with arbitrary fixed phase parameters 

1 2 3 425, 0, 0, 0,       . Figures are plotted in the 
double logarithmic scale. We see that the survival prob-
ability decreases in time and is less at higher trap densi-
ties. All different initializations show same behavior and 
the survival probability is seen to exhibit a linear de-
pendence on time in the double logarithmic scale. When 
we fit the lines to the curves in the time regime, line fits 
obey the Kohlrausch-Williams-Watts stretched exponen-
tial function [19] which is given by, 

  exp ,0 1P t t            (15) 

where exponent   determines the decay rate of the sur- 
 

 

Figure 1. The time dependence of the survival probability in 
the QW for trap densities . , . , . , . ,   0 1 0 3 0 5 0 7   

. , , , ,   1 2 3 45 0 0 0

 

phase parameters 0 2    with the 

initializations (a) left, (b) sequential, (c) mixed. 

vival probability. Figure 1 shows that the survival prob- 
ability of the Fibonacci walk with phase parameters 
evaluate with time as stretched exponential obey to 
Equation (1). As it can be seen form Figure 1, there’s no 
qualitatively different dynamical regime in decay of the 
survival probability of the quantum walk for long time 
regime. Whereas, in Ref. [12], authors have found that 
the time decay of the survival probability of the Ha- 
damard walk in the trapped space has qualitatively dif-
ferent dynamical regime for different initial configura- 
tion of the walker states. They have explained the time 
crossover behavior in dynamical regime as transition 
from Rosenstock to the Donkser and Varadhan regime. 
In short time regime in Figure 1, the numerical error 
appears which may probably cause from insufficient sta-
tistical average due to lack of computational ability of 
our personal computer. If the time crossover was being in 
the survival probability it would be appear for example at 
the trap density 0.7  . Indeed, the survival probability 
curves for all trap densities and different initial configu-
rations systematically show the linear behavior in the 
double logarithmic scale for relatively long time regime. 
Furthermore, the numerical anomaly of the survival 
probability lines in the short time regime can be affected 
by the phase parameter  . On the other hand, Figure 1 
does not clearly give any information about depending of 
the decay parameters   on phase parameters while it 
gives some information about depending of the exponent 
  on the trap density  . Therefore, in order to clarify 
the trap density dependence of the decay rate   for 
different initializations and fixed phase parameters,   
is plotted versus the trap density   in Figure 2. It can 
be seen from this figure that stretched exponential pa-
rameter   of the survival probability of quantum walk 
depends on trap density. Indeed it exhibits almost a linear 
dependence on trap density for all different initializations 
and fixed phase parameters 1 2 30.25, 0, 0,      

4 0,  . Clearly   increases with increasing trap den- 
sity. Similar behavior for Hadamard walk on the one 
dimensional randomly trapped lattice has been observed 
in the Donkser and Varadhan regime in Ref. [12]. 

In order to further investigate and clarify the phase 
parameter dependence of the decay parameter   we 
will consider different phase combination for quantum 
walk on the two dimensional randomly trapped lattice. 
However here we have considered only left initialization 
since it has been shown in Figures 1 and 2 that the 
stretched exponential parameter   of survival prob- 
ability almost linearly increases with increasing trap den- 
sity for all initializations at fixed phase parameters. For 
four different combination of the parameter, the time 
dependence of the survival probability of quantum walk 
has been plotted in Figures 3(a)-(d) in the double loga- 
rithmic scale for several trap densities. For the trap den- 
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Figure 2. Dependence of the decay parameter   on the 

trap density  , for phase parameters . ,0 25 , 1 2 0   

, 3 40 ,0   in the cases of the left, sequential and mixed 

initializations. 
 

 

Figure 3. The time dependence of the survival probability in 
the QW for trap densities . , . , . , . ,   0 1 0 3 0 5 0 7   

. , , , ,   1 2 3 40 25 0 0 0

 

and phase parameters (a)    
, . , . , 1 20 5 0 25 

; (b) 

;  ( c )  . , , ,  1 2 30 75 1 0   4 0 3  

. , ,40 25 0 ; (d) .0 5, 1 2 . , . , . 3 40 25 0 75 0 5    . 

 
sities 0.1,   0.3, 0.5    and 0.7  , we have 
chosen different phase parameter combinations in Figure 
3(a)  as  2 3 40, 0, 0,    

3 40, 0,
,  in  Figure 3(b)  as 

1 20.75, 1,    
325, 0.25, 0

 
2.5, 0.

,  i n  F i g u r e  3 ( c )  a s 

1 40   
, 0.25, 0.7

 
0.5


5
 and finally in Figure 

3(d) as 1 2 3 4, 0.5      . As it can be 
seen from all subfigures of Figure 3, the time behavior 
of the survival probability of the Fibonacci walks with 
different phase combination on the trapped space obey to 
stretched exponential law. Furthermore, this figures also 
shows that time dependence of the survival probability of 
walks are affected by phase combinations. Indeed, it 
clearly seems that the survival probability curves in Fig- 

ures 3(a) and (b) are quite different that of Figures 3(c) 
and (d). To see the phase parameter dependence of the 
stretched exponential parameter  , we have plotted 
survival probability for the different phase combinations 
at fixed trap densities in Figure 4. As it can be seen that 
the slopes of the survival probability curves for the three 
different phase combination fixed density 0.3   in 
Figure 4(a). For example, while the curves for the phase 
combinations 41 20.25, 0, 0, 03 ,      

0.1, 0.1,
 and 

1 2 3 40, 0,      

3 4, 0, 0, 0,

 are almost coincident, 
they are quite different for the phase combinations 

1 20.25      
0.25, 0.75, 0

 and 

1 2 3 40.5, .5     

0.5

    . Similar behavior 
for different phase combination at fixed trap density 
value    appears in Figure 4(b). These numerical 
results demonstrate that the stretched exponential pa- 
rameter   of the survival probability of the quantum 
walks depends on the combination of the phase parame-
ters. 

In Figure 5 the phase parameter dependence of the   
is given for several combinations of the phase parameters 
which used in Figures 3 and 4. As it can be seen this 
 

 

Figure 4. The time dependence of the survival probability in 
the QW for different phase parameters and fixed trap den-
sities (a) . 0 3 ; (b) . 0 5.  

 

 

Figure 5. The time dependence of the decay parameters   

on the trap density   for different phase parameters. 
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figure that the decay parameter   dramatically changes 
due to phase combination. For all different phase pa-
rameters the decay parameter   almost linearly in-
creases with increasing trap density. 

These results show that the phase variables of the coin 
operator of walkers can be used as an control parameter 
to adjust the decay rate of the survival probability of the 
quantum walk on the trapped lattice for all initial states 
of walkers. 

5. Conclusion 

In this study, the coin operator was taken to be a pa- 
rametrization of the usual quantum walk governed by a 
two-dimensional generalization of the Fibonacci operator 
and by adapting the exact numeration method of Havlin 
et al. [18] we have calculated the survival probability in a 
two-dimensional quantum walk with phase parameters 
on a trapped lattice. We have shown that the survival 
probability of the quantum walk decays with time obey 
to the stretched exponential law for all initial states of 
walkers. On the other hand we have shown that stretched 
exponential decay parameter   can be arranged by 
phase parameter combination. Obtained numerical results 
provide that phase parameters can be used as an control 
parameter to determine the decay rate of the survival 
probability of the quantum walk. 
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