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ABSTRACT 

A scheme of teleporting a superposition of coherent states  and   using a 4-partite state, a beam splitter and two 

phase shifters was proposed by N. Ba An (Phys. Rev. A, 68, 022321, 2003). The author concluded that the probability 
for successful teleportation is only 1/4 in the limit   and 1/2 in the limit   . In this paper it is shown that 

the author’s scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of 
2 . We find the minimum assured fidelity i.e., the minimum fidelity for an arbitrarily chosen information state, which 

we write MAF in this paper, for different cases. We also discuss the effect of decoherence on teleportation fidelity. We 
find that if no photons are counted in both final outputs, MAF, is still nonzero except when there is no decoherence and 
the initial state (the state to be teleported) is even coherent state. For non-zero photon counts, MAF decreases with in-

crease in 
2  for low noise. For high noise, however, it increases, attains a maximum value and then decreases 

with
2 . The average fidelity depends appreciably on the initial state for low values of 

2  only. 
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1. Introduction 

Quantum entanglement has generated much interest in 
many ingenious applications in quantum information 
science such as quantum teleportation [1-4], quantum 
computation [5], quantum dense coding [6], quantum 
cryptography [7] and quantum telecloning [8] as well as 
fundamental studies in quantum mechanics related to the 
Einstein-Podolsky-Rosen (EPR) paradox [9]. In a recent 
paper [10], a new idea of two-way quantum communica- 
tion called “secure quantum information exchange” 
(SQIE) is also introduced. If there are two arbitrary un- 
known quantum states andA B

superposition states have also been considered [17,18]. In 
addition to scheme for discrete variables, the idea was 
extended to continuous variables also both experiment- 
tally [19] and theoretically [20-22]. Entangled coherent 
states [23,24] have received much attention in the study 
of quantum entanglement and quantum teleportation. 
Effect of decoherence in teleportation has also been 
studied by various authors [25,26]. However, Fan and Lu 
An. [27] have used the terminology “coherent entangled 
states” which is completely different from “entangled 
coherent state”. The entangled states [23] used by Sand- 
ers can be denoted as entangled coherent states in spite 
the crucial difference the phase factor makes. Recently 
teleportation of states such as 

I I  , initially with 
Alice and Bob, respectively, then SQIE protocol leads to 
the simultaneous exchange of these states between Alice 
and Bob with the aid of the special kind of six-qubit en- 
tangled (SSE) state and classical assistance of the third 
party, Charlie. Teleportation of a two-mode entangled 
coherent state encoded with two-qubit information has 
also been studied in a recent paper [11-15]. Teleportation 
has been demonstrated experimentally [14-16]. Telepor- 
tation of an entangled multiparticle state and coherent  

                 (1.1) 

or  

1 2 1 2
              (1.2) 

with   a coherent state and   unknown complex 
coefficients, have been investigated by van Enk and Hi- 
rota [2] and X. Wang respectively [3]. However both the 
publications involved teleportation between two parties  *Corresponding author. 
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only. 
In a recent paper N. Ba An [4] proposed a scheme to 

teleport a single particle state of form (1.1) within a net- 
work consisting of four parties, a beam splitter and two 
phase shifters and concluded that the probability for suc- 
cessful teleportation is only 1/4 in the limit 0  and 
1/2 in the limit   . We [28-34] reexamined 
scheme of An and showed that an almost perfect teleport- 
tation can be obtained for an appreciable value of 

2 . 
Also, by including four parties, the security of the tele- 
portation increases, as David cannot decipher the original 
information until and unless he gets the results from all 
Alice, Bob and Clair. In this paper we discuss effect of 
decoherence on fidelity in such teleportation. We organ- 
ize our paper as follows. In Section 2 we outline our tele- 
portation scheme in Figure 1, which is self-explanatory 
and consider the case of no noise. In Section 3 we con- 
sider the effect of decoherence due to noise and in Sec- 

tion 4 we give conclusions. 
While considering the noisy case, we find that if no 

photons are counted in both final outputs, the minimum 
assured fidelity, which we shall write MAF in this paper, 
is nonzero except when there is no decoherence and the 
initial state is even coherent state. For non-zero photon 
counts in all cases, MAF decreases with increase in 

2  
for low noise. For high noise, however, the MAF in- 
creases, attains a maximum value and then decreases 
with 

2 . Various cases have been studied extensively 
and the results plotted.  

2. Teleportation Scheme and the Noiseless 
Case 

Let us deal here with a network consisting of four parties: 
Alice, Bob, Clair and David. Because of the network 
symmetry requirement, the four parties share a 4-partite 
entangled state of the form 

 

 
 

1, 2,3, 4

2

1 2 3 4 1 2 3 48

1
; e

2 1

E

x
x

             


             (2.1) 

 

00 0 0
I N          

1        2         3         4 
        Bob     Clair     David 

P.S.I 

7       6                     D6 

5 

 
8 

P.S.II 

 
 1, 2,3,4

1
1 2 3 4 1 2 3 482 1 x

E            




0 

D8 
 

Figure 1. Numerals 0, 1, ···, 8 refers to modes. Out of 
1,2,3,4

E , 1,2,3 and 4 goes to Alice, Bob, Clair and David respectively. 

Alice 1) converts state 1 to state 5 by using phase shifter P.S.I, 2) mixes state 5 with state 0 (information required to be tele-
ported) using a beam splitter, 3) modifies output in 7 to state 8 using phase shifter P.S.II, and 4) performs photon counting in 
6 and 8. Bob and Clair also perform photon countings in modes 2 and 3 respectively. The result, conveyed to David by a clas-
ical channel helps him retrieve the information by making a suitable unitary transformation on state 4. s  
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involving modes 1, 2, 3 and 4. State with mode 1 is sent 
to Alice, mode 2 to Bob, mode 3 to Clair and mode 4 to 
David. Consider teleportation from Alice to David and 
let the state with Alice be,  

0 0
I

0
            (2.2) 

in the mode 0, with the normalization condition  

 22 2 22e Re 1 
           We may call the state  

0
I  as the initial state. The mean number of photons is  

 22 2

0 0
1 4e Ren I a a I   

 
      

  

which is nearly 
2  for 

2
1 . In terms of even and 

odd coherent states [35], the state 
0

I  can be written as 
 

i

0 0 0 02 2
, , cos , sin eI A EVEN A ODD EVEN ODD 

0
,                     (2.3) 

where 

   2 2
, , ,

2 1 2 1
EVEN ODD

x x

  
 

   
 

 


                          (2.4) 

Constants A  and are related to each other by, 

       1 2 1 2
2 2 21 2, 2 1 2 1A x x A x

 
A    

                              (2.5) 

 
and θ and  are defined by, 

i

2
tan e A A

           (2.6) 

The initial state of the whole system is then given by,  

0,1,2,3,4 0 1,2,3,4
I E  . Alice allows mode 1 to pass  

through phase shifter P.S.I, which converts state 
1

  in  

mode 1 to state 
5

i  in mode 5. She then mixes 
modes 0 and 5 with the help of a beam splitter which 
changes [36] an input state 

0 5
 to the state   

   
6 7

1 1

2 2
i i      

in modes 6 and 7. The state after passing through the 
eam splitter is then, b  

 

   

 

6,7,2,3,4

7 2 3 4 6 2 3 48 6 7

6 2 3 4 7 2 3 47 6

1
2 0 0 2

2 1

0 2 2 0

i
x

i

       

       







     

       

           (2.7) 

 
One of the output modes, say, mode 7 is allowed to pass 
through phase shifter P.S.II which changes a state 

7
 to 

the state 
8

i , the whole process changes the combined 
state 

6,7,2,3,4
  to state 

 

   

 

6,8,2,3,4

8 2 3 4 6 2 3 48 6 8

6 2 3 4 8 2 3 48 6

1
2 0 0 2

2 1

0 2 2 0

x
       

       







      

      

          (2.8) 

 
This scheme of teleportation is shown in Figure 1. Using the expansion 2  [28-34,37], 

 

   
2

4
1 1

2 0 , 2 1 , 2
22

x
x NZE x ODD 


     ,               (2.9) 

where 
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   , 2 0NZE x x   2 1                             (2.10) 

The output state becomes 

 
     

  
   

    

 
   

    

6,8,2,3,4 6 8 234 2348

8 234 23462 4

6 234 2348

8 234 23464

6 234 2348

0 0
2 1

1
, 2 0

2 1 1

 0 , 2

1
, 2 0

2 1

 0 , 2

x

x

NZE
x x

NZE

ODD
x

ODD

 

  

  

  

  

 

 

 

 

 

       


     
 

     

    


     



       (2.11) 

where,  

  2 3234
=

4
                                      (2.12) 

 
Now, Alice performs a two-mode number measure- 

ment on the modes 6 and 8 through two detectors D6 and 
D8 at her station and conveys this result to David 
through some classical channel. Bob and Clair also carry 
out local photon number measurements of modes 2 and 3 
by their detectors D2 and D3. After receiving this infor- 
mation from Alice, Bob and Clair, David makes some 
unitary transformation to retrieve the original informa- 
tion. Let the measurement outcomes of Alice be n6 and n8, 
whereas n3 photons are counted by Bob and n3 by Clair’s 
detector.  

From Equation (2.11), it is clear that Alice’s result of 
photon countings of modes 6 and 8 is either 1) zero in 
both outputs, or 2) zero in mode 6 and non-zero even in 
the mode 8, or 3) non-zero even in the mode 6 and zero 
in the mode 8, or 4) zero in mode 6 and odd in the mode 
8 or 5) odd in the mode 6 and zero in the mode 8. We 
considered [24] different cases of results of photon 
counting in modes 6 and 8. For n2 and n3, also, we dis- 
tinguish in two cases, viz., (a) n2 + n3 is even or (b) n2 + 
n3 is odd.  

Case I: If Alice’s measurements result in zero photons 
in both modes, we find that the state with David is the 
non entangled state,  

     
234 224

+T   
          (2.13) 

It may be noted that sign ~ has been used in Equation 
(2.13) because normalization of the state has not been 
done. Also prime in T   reminds that a unitary trans- 
formation  is to be done by David resulting in tele- 
ported state 

U
=T U T  . We may write the states 

2,3
,    in terms of even and odd coherent states of 

modes 2 and 3 (see A1 in Appendix A).  
For case I (a), where, n2 + n3 is even, David’s state 

collapses into the state ,ODD   which is the odd co- 
herent state. By applying unitary transformations, it can’t 
be converted to state I  for arbitrary values of A . 
This gives maximum fidelity equal to 1 for information 

,ODD   and fidelity zero for information ,EVEN  . 
The MAF is thus zero in this case. 

For case I (b), however, where n2 + n3 is odd, 
David’s state collapses into the state ,EVEN  . Again, 
unitary transformation can’t convert it to state I  in 
this case and maximum fidelity is equal to 1 for informa- 
tion ,EVEN   and fidelity zero for information 

,ODD  . MAF is again zero in this case. 
The probability of getting the state (2.13) is, 

 

 
   

 
   

2 6 222 6

23468 68 68 23468 8 2 8 2

2 1 cos2 1 2
0,0 0,0 =

1 1 1 1
I

x xx x A
P

x x x x




        
   

               (2.14) 

 
where A  are related to   by Equation (2.6). The 
probability IP  approaches zero for an appreciable value 
of 

2 . 

Case II: If Alice’s measurements result in non-zero 
even photons in the mode 6 and zero photon in the mode 
8, we find that the state with David is,  
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   
234 234

T

  



  



    (2.15) 

The above state can be written in terms of even and  

odd coherent states of modes 2 and 3 (see A2 in Appen- 
dix A). 

For case II (a), where n2 + n3 is even, David’s state 
collapses into the state,  

 
2 2

2 24 4 4

1 1
,

1 1

x x
T A ODD A EVEN

x x 4
,     

          
              (2.16) 

Applying the unitary transformation  

4 4 4 4
, , ,U EVEN ODD ODD EVEN ,                           (2.17) 

Equation (2.16) reduces to 

2 2

2 24

1 1
,

1 1

x x
T A EVEN A ODD

x x 4
,  

 


 
                         (2.18) 

and leads to the fidelity F given by, 

 
 

 
2

2 2 22 2

4 22 24 2

1 1 cos
=

1 2 cos1 2

x A A x
F T I I T

x xx x A A





 

 

      
   

                      (2.19) 

 
This is minimum at  1 2cos x 

 4
min 1

. The MAF is the 
minimum value of F, F x  . This is quite 
close to unity for appreciable value of 

2 . 
For case II (b), where n2 + n3 is odd, David’s state 

collapses into the state, 

4 4

4 4
, ,

T

A EVEN A ODD

 

 
 

 

     
 

    (2.20) 

This is an exact replica of state 
0

I , and hence no 
unitary transformation is required for this case. The fi- 
delity is obviously unity. 

Probability for getting the state (2.15) is 

  
  
 

  

23468 68 68 23468

2 28 2 4

24 2

8 2 4

24 2

,0 0,

1 1

4 1 1

1 1 cos

4 1 1

IIP NZE NZE

x x x A A

x x

x x x

x x



 

  

    
 

    
 

   (2.21) 

This is very close to 1/4 for an appreciable value of 
2 . 

Case III: If Alice’s measurements result in zero pho- 
ton in the mode 6 and non-zero even photons in the mode 
8, we find that the state with David is,  

   
234 234

T   
          (2.22) 

The above state can be written in terms of even and 
odd coherent states of modes 2 and 3 (see A3 in Appen- 
dix A) 

For case III (a), where n2 + n3 is even, David’s state 
collapses into the state, 

4 4

2 2

2 24 4

1 1
, ,

1 1

T

x x
A ODD A EVEN

x x

 

 

 

 

     

 
 

 

 (2.23) 

After applying the unitary transformation, 

4 4

44

, ,

, ,

U ODD EVEN

EVEN ODD

 

 

 


       (2.24) 

Equation (2.23) reduces to Equation (2.18) and hence 
the fidelity for this case is same as Equation (2.19). 

For case III (b), where n2 + n3 is odd, however 
David’s state collapses into the state, 

 

4 4 4
,T A EVEN A ODD

4
,                                (2.25) 

Applying the unitary transformation, 

4 4 4 4
, , ,U EVEN EVEN ODD ODD,                         (2.26) 

 
Equation (2.25) becomes an exact replica of state 

0
I  ability of getting the state (2.22) is same as Equation 

and hence the fidelity comes out to be unity. The prob- (2.21).  
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Case IV: If Alice’s measurements result in odd pho- 
tons in the mode 6 and zero photon in the mode 8, we 
find that the state with David is,  

   
234

T   
          (2.27) 

234 

The above state can be written in terms o
odd coherent states of modes 2 and 3 (see A4 in Appen- 
di

 

f even and 

x A) 
For case IV (a), where n2 + n3 is even, David’s state 

collapses into the state, 

4 4

4 4

~

, ,

T

A EVEN A ODD

 

 
 

 

     
 

     (2.28) 

This is an exact replica of state 
0

I  and hence no 
unitary transformation is required for this case and the 
fidelity is unity. 

For case IV (b) where n2 + n3 is odd, David’s state 
collapses into the state, 

 
2 2

2 24 4 4 4

1
~ , ,

1 1

x x
T A ODD A EVEN

x x

1      
 

       
           (2.29) 

 
This is exactly the same as case II (a). Probability of getting the state (2.27) is 

  

 

 
   

2 22 4 21 cosx A A x x
4

23468 68 68 23468 4 4

1
,0 0,

4 1 4 1
IV

x
P ODD ODD

x x

              
 

       (2.30) 

 
This is very close to 1/4 for an appreciable value of 
2 . 

in th mode 6 and odd photon in the mode 8, we find that 
th

Case V: If Alice’s measurements result in zero photon 
e 

e state with David is,  

   
234 234 

In terms of even and odd coherent states 
and 3, the above state becomes, 

For case V (a), where n2 + n3 is even, David’s state 
collapses into the state, 

~T  
          (2.31) 

of modes 2 

4 4

4 4

~T  

, ,A EVEN A ODD  


 

    (2.32) 

This is exactly the same as case III (b). 
For case V (b), where n2 + n3 is odd, David’s state 

co

     

llapses into the state, 
 

21 1x 2

2 24 4 4 4
~ , ,

1 1

x
T A ODD A EVEN

x x
      

         
        (2.33) 

 
This is exactly the same as case III (a). 

he average fidelity i.e., 



T
V

av i i
i I

F PF  
e minimum value  

is seen to have 
th

  22 2
,min 1 2 1avF x x


   . For 0A 

2
5    for 

the value of is 0.99 hich  close to 
unity and we l e con  that t eportation 

ssful. 

 on Teleportation  

e that the 
es, i.e., the 

through a noisy channel and photons are transferred to 
reservoir modes making each of modes 0, 1, 2, 3 and 4 to 

,minavF  
ead to th

99, w is very
clusion he tel

is almost succe

3. Effect of Noise

Following van Enk and Hirota [2-28] we assum
initial state and the entangled state suffer loss
modes 0, 1, 2, 3 and 4 are attenuated as they travel  

have transformations of the type,  

0 1
R R

           (3.1) 

0
R

 where the second state refers to the par
voir” which interacts with the state 

t of “reser- 
  in question and 

  is the noise parame which gives the fraction of 
photons that survive the noise. The part of reservoir cou-

ed to mode 0, 1, 2, 3 and 4 will be denoted 
by 0, 1, 2, 3 and 4

ter, 

pl
R R R R R  respectively. In presence of 

noise, the state to be teleported (Equation (2.2)) develops 
into the state, 

 

0 0 0 0 0 00, 0
0I I ;k , 1

R R RR
k k                     (3.2) 

 
Here refers to the part of reservoir coupled to 

m e 0 g the information state 

    

0R  
 havin . If  con- 

tains more than one reservoir modes co
0Rod

0
I

upled to state 0  
then, 

0R
k  stands for 
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 2 22

0R i
i

, 1 .i i
i

k k k          (3.3) with similar arguments, in the presence of noise the en- 
tangled state given by (2.5) develops into the state, 

 

 
1,

1
E   1234 1 2 3 4 1234R R

K K               (3.4) 
1 2 3 42,3,4 82 1 x

 


where 

1234 1 2 3 4 1 2 1
1 1 1 1

R R R R R 1R R R
K k k k k          

R
          (3.5) 

or  

 2 2 2

1 2 1 212 1 2
, 1i i i iR R i R i

ii

K k k k k                   

We assume that the reservoir modes remain unaffected 
by phase shifter and the beam splitter and following the 

same steps as in Sectio

          (3.6) 

 
n 2, the state 

4,6,8, 0, 1234R R
 is 

seen to be  
 

 
      

   
    

   

4,6,8, 0, 1234R R

x



 
6 8 234 2344

2

8 234 2344 6

6 234 2348

4

4 8 234 2346

4 6

0 0
2 1

1
, 2 0

2 1

0 , 2

1 1
  , 2 0  

2 1

  + 0 , 2

r r
x

x
NZE r r

x

NZE r r

x
ODD r r

x

ODD

 

  

  

  



 

 

 

 



      

        

        

        

    
234

234

r r 
       

             (3.7) 

where  

 
2

0 02 3 4 1234 12340 0234
, e , and

R RR R
x r k K r k K                    (3.8) 

n
 
Tilde i    

use 
or anywhere else reminds that deco- 

herence beca of noise is being accounted for. It 
sh ld be noted that the result of photon counting in 
m  8 

of different cases the information coefficients   in 
(3.7) will be expressed in terms of A  

for obtaining fidelity 
by

Also, as discussed earlier, use ou
odes 6 and is always zero in one of the two modes 

and 1) zero or, 2) non-zero even or 3) odd in the other 
mode. In Section 2, we concluded that 1) fidelity is unity 
when total photon counts 6 8 2 3n n n n    are odd. In 
this case further, if 8 0n  , no unitary transformation is 
required; 2) if 6 0n  , this requires a unitary transforma- 
tions which changes the states to  ; and 3) for 
other results no unitary transformations exist which may 
convert perfectly the state in mode 2 to the information 
state. This was also the reason behind conclusion of N. 
Ba An that the teleportation is not possible when the re- 
sult of photon counting is even. Here also, we apply the 
same unitary transformations as in Section 2 above with 
a change that 

 

  is now replaced by  . For discussion 

 using (2.4). 
we 

the initial information I  and not the decohered in- 
formation I , as our aim is to teleport the information 
I . (3.7) may be compared to (2.13) and it may be seen 

that the state 
6,8,2,3,4

  is a 5-mode state which reduces 
to the teleported state 

4
T  with Bob after photon 

counting measurements in modes 6 and 8. The state  , 
however contains five reservoir modes also and hence 
after photon counting measurements it leads to state T  
of modes 2-4, 0R and 1234R , which contains the tele-
ported state with Bob entangled with the reservoir states. 
The reduced state with Bob can be expressed by a re-
duced density operator 0, 12Bob R R TTr   where 

T T T  . The fidelity of teleportation should obvi- 
ously be 
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 
4 4 I TF T I I T Tr          (3.9) 

where 
4

I  is t  cons  state in mode 4 identical 
with the state 

he idered

0
I . We can now discuss the various re- 

sults of photon counting. We shall report the MAF for 
 

each case so that minimum success of teleportation is 
evident. 

Case I: If Alice’s measurements result in zero photons 
in both modes, we find that the state with David is the 
non entangled state,   

     0 0
~

R R
T k k  1234 1234234 234R R

K K                        (3.10) 

For case I (a), where, n2 + n3 is even,
 

we find that the expression (B4) of fidelity has one 
minimum. The minimum is at 0

 the fidelity 

IEF  (se 5 in Appendix B) can easily be found by (3.9). 
Although no un tary transformation for successful tele- 
portation is possible, we still have a nonzero fidelity in 
this case. Putting  

e B
i

  if  
   2 8 2 8cosh 2 1 x p x p     

or at π  if  
   2 8 2 8cosh 2 1 x p x p     

These minimum values are respectively, 2 2
cos and sinA A

 
    

 
 

 
  

 
   

2 8 2

min 2 2 6

2 1 cosh
at

1 1

x p
F

p x x p





 

 

 
where  

2 8 2

min 2 2

2 1 sinh
at

x p
F





          

6
0, π

1 1p x x p 
     (3.11)  

  2 2
exp 1 ,p                (3.12) 

e note that, unlike the previous noiseless case where 
MAF was zero, MAF is nonzero here in general. It is 
zero only when there is no decoherence and the initial  

nt state. 
For case I (b), where, n  + n  is odd, the idelity 

W

state is an even cohere
2 3 f IOF  

 The (s nimum.
minimum is at 

ee B10 in Appendix B) again has one mi
 if    2 8 2 8x0  cosh 2 1 p x  

or at 
p , 

π   if    2 8 2 8cosh x2 1 p x p    . T  
minim

 

hese
um values are respectively,  

 
  

 
   

2 8 2

min 2 2 6

2 1 cosh
at 0, π

1 1

x p
F F

p x

 
 

2  8 2

min

2 1 sinh
at

x p


2 2 61 1p x x px p


 
              (3.13) 

 

 
 

Case II: If Alice’s measurements result in non-zero 
even photons in the mode 6 and zero photon in the mode 
8, we find that the state with David is,  

   
234 234

~T r  
      r   (3.14) 

For case II (a), where n2 + n3 is even, David may ap-
ply the same unitary transformation as in Section 2 above, 
with the only change that   is now replaced by  . 
The fidelity IIEF  (see (B17) in Appendix B) can again 
be found by (3.9).  

We may find the value of MAF by putting  

cos
2

A


   and sin
2

A


   

and choosing the phase factor   between A  and A , 
π 2   so as to make  2 2 2 2A A A A 

     minimum. 
Figure 2 shows variation of MAF with 

2 for different 
values of  . It is again seen that, for the noisy case 
MAF increases, attains a ma um d then
cr

xim  value an  de-
eases with 

2 . This maximum value decreases as 
2  incr
For ca (b), where n3 is o  no   

s required. The fidelity 

eases. 
se II n2 + dd, unitary

transformation i IIOF  
We

is given by
ressio 22) in Appendix B.  can 

 
the exp n (B find the 
MAF by adjusting the phase factor   between A and 
A and by varying  .  

Variation of MAF with 
2 for different values of   

is shown in Figure 3. For the no
MAF decreases uniformly with increase in 

isy case, it is seen that 
2 for sm

noise. However on increasing noise, a maximum appears 
all 

at 
2

0   followed by an r maxim  and th  
m value decreases on .  

Case III: If Alice’s measurements resu in zero pho- 
ton in the m de 6 and non-zero even photons in the mode 
8, we find that the state with David is,  

othe um
maximu  increasing noise

lt 
o

e

   
234 234

~T r r  
      

en,

  (3.15) 

For case III (a), where n2 + n3 is ev  after the re- 
quired unitary transformation (see B26), this lead to 

IIIE IIEF F . Discussions of the previous case are valid 
here also. 

For case III (b), where  n3 is odd, the results for n2 +
fidelity are IIIE IIEF F . 
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Figure 3. Figure showing variation of MAF with 
2

α  for 

different values of η for odd counts. 

in odd pho- 
ns in the mode 6 and zero photon in the mode 8, we 

find that the state with David is,  

  
Case IV: If Alice’s measurements result 

to

4 4
~T r   r          (3.16) 

For case IV (a), where n2 + n3 is even, this is exactly 
the same as case II (b). 

For case IV (b), where n2 + n3 is odd, this is exactly 
the same as case II (a). 

Case V: If Alice’s measurements result in zero photon 
in the mode 6 and odd photon in the mode 8, we find that 
the state with David is,  

4 4
~T r   r          (3.1 ) 

or case IV (b), where n  + n  is odd, this is exactly 
th

7

For case V (a), where n2 + n3 is even, this is exactly 
the same as case (III b). 

F 2 3

e same as case III (a). 
The variation of average fidelity  

V

av i i
i I

F PF


   

with 
2 for different values of   at 0.9   is shown 

Figure 4. 
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2

α for different values of θ at η = 0.9. 

 
4. Conclusions 

We conclude that, the scheme proposed by N. Ba An can 
lead to almost successful teleportation for an appreciable 
mean number of photons if we write ,EVEN   as a 
superposition of the vacuum state 0 and the non-zero 
even photon state ,NZE  , and distinguish between 
these results (zer o even) for even photon 
counts. Also, by including four parties, the security of the 
teleportation increases, as David cannot decipher the 
original information until and unless he gets the results 
from all Alice, Bob and Clair.  

For the noiseless case we find that fidelity is unity 
when total photon counts 3 are odd. In 

o and non-zer

6 8 2n n n n    
this case further, if 8 0n  , no unitary transformation 
required. For even photon counts 6 8 2 3n n n n   , a 

tary transformation is required and

is 

uni
 unity for an appreciable mean number of photons. 

 with our results for teleportation by 

 the fidelity is close 
to
These results agree
entangled coherent state [29] with similarly modified van 
Enk and Hirota’s scheme. 

While finding the fidelity with decoherence considera-
tions, we consider the information I      , 
keeping in mind our aim, viz., teleportation of this quan- 
tum information state. We investigated cases with and 
without noise, and calculated the minimum assured fidel- 
ity (MAF), which tells the minimum amount of fidelity 
which is always assured to be obtained for successful 
teleportation. Our results for the noisy case reduces to 
those for noiseless case by putting 1  . 

5. Acknowledgements 

Shivani is very grateful to Amity In lied 
Sciences, Amity University Noida who encouraged her 

stitute of App
 

Copyright © 2012 SciRes.                                                                                 JQIS 



S. A. KUMAR  ET  AL. 132 

in all aspects. Shivani is grateful to H. Prakash and N. 
Chandra for helpful discussions. 

REFERENCES 
[1] C. H. Bennett, G. Brassard, C. Crepeau . 

Peres and W. K. Wootters, “Teleporting an Unknown 
Quantum State via Dual Classical and Einstein-Podol- 
sky-Rosen Channels,” Physical Review Letters, Vol. 70, 
No. 13, 1993, pp. 1895-1899.  

, R. Jozsa, A

doi:10.1103/PhysRevLett.70.1895 

[2]  S. J. van Enk and O. Hirota, “Entangled Coherent States: 
Teleportation and Decoherence,” Physical Review A, Vol. 
64, No. 2, 2001, Article ID: 022313.  
doi:10.1103/PhysRevA.64.022313 

ortation of Entangled Coherent[3] X. Wang, “Quantum Telep  
States,” Physical Review A, Vol. 64, No. 2, 2001, Article 
ID: 022302. doi:10.1103/PhysRevA.64.022302 

[4] N. Ba An, “Teleportation of Coherent-State Superposi-
tions within a Network,” Physical Review A, Vol. 68, No. 
2, 2003, Article ID: 022321.  
doi:10.1103/PhysRevA.68.022321 

[5] D. P. DiVince tion,” Science, Vol
270, No. 5234

nzo, “Quantum Computa
, 1995, pp. 255-261.  

. 

doi:10.1126/science.270.5234.255 

[6] C. H. Bennett and S. J. Weisner, “Communication via 
One- and Two-Particle Operators on Einstein-Podolsky- 
Rosen States,” Physical Review Letters, Vol. 69, No. 20, 
1992, pp. 2881-2884. doi:10.1103/PhysRevLett.69.2881 

[7] A. K. Ekert, “Quantum Cryptography Based on Bell’s 
Theorem,” Physical Review Letters, Vol. 67, No. 6, 1991, 
pp. 661-663. doi:10.1103/PhysRevLett.67.661 

[8] M. Murao, D. Jonathan, M. B. Plenio and V. Vedral, 
“Quantum Telecloning and Multiparticle Entanglement,” 
Physical Review A, Vol. 59, No. 1, 1999, pp. 156-161.  
doi:10.1103/PhysRevA.59.156 

[9] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum- 
Mechanical Description of Physical Reality Be Consid-
ered Complete?” Physical Review, Vol. 47, No. 10, 1935, 
pp. 777-780. doi:10.1103/PhysRev.47.777 

omic, Molecular and
4. 

[10] M. K. Mishra, A. K. Maurya and H. Prakash, “Two-Way 
Quantum Communication: Secure Quantum Information 
Exchange,” Journal of Physics B: At
Optical Physics, Vol. 44, 2011, Article ID: 11550

 

[11] M. K Mishra and H. Prakash “Teleportation of a two 
Mode Entangled Coherent States,” Journal of Physics B: 
Atomic, Molecular and Optical Physics, Vol. 43, 2010, 
Article ID: 185501.  
doi:10.1088/0953-4075/43/18/185501 

[12] J.-Q. Liao and L.-M. Kuang, “Near-Complete Teleporta-
tion of Two-Mode Four-Component Entangled Coherent 
States,” Journal of Physics B: Atomic, Molecular and Op-
tical Physics, Vol. 40, 2007, p. 1183.  
doi:10.1088/0953-4075/40/6/009 

[13] H. N. Phien and N. Ba An, “Quantum Teleportation of an 
Arbitrary Two-Mode Coherent State Using Only Linear 
Optics Elements,” Physics Letters A, Vol. 372, No. 16, 
2008, pp. 2825-2829. doi:10.1016/j.physleta.2007.12.069 

[14] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. 
Weinfurter and A. Zeilinger, “Experimental Entangle-
ment Swapping: Entangling Photons that Never Inter-
acted,” Nature, Vol. 390, 1997, pp. 575.  
doi:10.1038/37539 

[15] D. Boschi, S. Branca, F. De Martini, L. Hardy and S. 
Popescu, “Experimental Realization of Teleporting an 
Unknown Pure Quantum State via Dual Classical and 
Einstein-Podolsky-Rosen Channels,” Physical Review 
Letters, Vol. 80, No. 6, 1998, pp. 1121-1125.  
doi:10.1103/PhysRevLett.80.1121 

[16] T. Ide, H. F. Hofmann, T. Kobayashi and A. Fursawa, 
“

 via Classical Channel,” Physical Review A, Vol. 66, 
2002, Article ID: 011213  

Continuous-Variable Teleportation of Single-Photon 
States

[17] M. Ikram, S.-Y Zhu and M. S. Zubairy, “Quantum Tele-
portation of an Entangled State,” Physical Review A, Vol. 
62, No. 2, 2000, Article ID: 022307.  
doi:10.1103/PhysRevA.62.022307 

[18] M. S. Zubairy, “Quantum Teleportation of a Field State,” 
Physical Review A, Vol. 58, No. 6, 1998, p. 4368.  
doi:10.1103/PhysRevA.58.4368 

[19] A. Furusawa, J. L. Sorensen, S. L. Bra
Fuchs, H. J. Kimble and E

unstein, C. A. 
. S. Polzik, “Unconditional 

ntum States,” Physical 

Quantum Teleportation,” Science, Vol. 282, No. 5389, 
1998, pp. 706-709.  

[20] S. L. Braunstein and H. J. Kimble, “Teleportation of Con-
tinuous Quantum Variables,” Physical Review Letters, 
Vol. 80, 1998, p. 869.  

[21] L. Vaidman, “Teleportation of Qua
Review A, Vol. 49, 1994, p. 1473.  
doi:10.1103/PhysRevA.49.1473 

[22] T. Ide, H. F. Hofmann, T. Kobayashi and A. Fursawa, 
“Continuous-Variable Teleportation of Single-Photon 
States,” Physical Review A, Vol. 65, No. 1, 2001, Article 
ID: 012313. doi:10.1103/PhysRevA.65.012313 

[23] B. C. Sanders, “Entangled Coherent
Review A, Vol. 45, No. 9, 1992, p. 6

 States,” Physical 
811.  

doi:10.1103/PhysRevA.45.6811 

[24] H. Jeong, W. Son, M. S. Kim, D. Ahn and C. Bru
“Quantum Nonlocality Test f

kner, 
or Continuous-Variable 

States with Dichotomic Observables,” Physical Review A, 
Vol. 67, No. 1, 2003, Article ID: 012106.  
doi:10.1103/PhysRevA.67.012106 

[25] H. Jeong, M. S. Kim and J. Lee, “Quantum-Information 

ticle ID: 052308.  

Processing for a Coherent Superposition State via a 
Mixed Entangled Coherent Channel,” Physical Review A, 
Vol. 64, No. 5, 2001, Ar
doi:10.1103/PhysRevA.64.052308 

[26] H. Jeong and M. S. Kim, “Purificat
herent States,” Quantum Inform

ion of Entangled Co-
ation and Computation, 

93.  

Vol. 2, 2002, p. 208. 

[27] H.-Y. Fan and H.-L. Lu An, “New Two-Mode Coher-
ent-Entangled State and Its Application,” Journal of 
Physics A, Vol. 37, No. 45, 2004, Article ID: 109
doi:10.1088/0305-4470/37/45/017 

[28] H. Prakash, N. Chandra, R. Prakash and S
glement Diversion between Two Pairs of Entan

hivani, “Entan-
gled Co-

Copyright © 2012 SciRes.                                                                                 JQIS 

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevA.64.022313
http://dx.doi.org/10.1103/PhysRevA.64.022313
http://dx.doi.org/10.1103/PhysRevA.64.022302
http://dx.doi.org/10.1103/PhysRevA.68.022321
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://iopscience.iop.org/0953-4075/40/6/009
http://iopscience.iop.org/0953-4075/40/6/009
http://iopscience.iop.org/0953-4075/40/6/009
http://dx.doi.org/10.1016/j.physleta.2007.12.069
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/37539
http://www.google.co.in/url?sa=t&rct=j&q=toshiki%20ide%2C%20h.%20f.%20hofmann%2C%20t.%20kobayashi%20and%20a.%20fursawa%2C%20phys.%20rev.%20a%2065%2C%20012313%20(2001).&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.alice.t.u-tokyo.ac.jp%2FPhys.%2520Rev.%2520A%252065%2C%2520012313.pdf&ei=slubUM_pF8bNrQfCjoCoCw&usg=AFQjCNEVUjkYv9hc_aXsg9QPmEHnS7zBvw
http://www.google.co.in/url?sa=t&rct=j&q=toshiki%20ide%2C%20h.%20f.%20hofmann%2C%20t.%20kobayashi%20and%20a.%20fursawa%2C%20phys.%20rev.%20a%2065%2C%20012313%20(2001).&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.alice.t.u-tokyo.ac.jp%2FPhys.%2520Rev.%2520A%252065%2C%2520012313.pdf&ei=slubUM_pF8bNrQfCjoCoCw&usg=AFQjCNEVUjkYv9hc_aXsg9QPmEHnS7zBvw
http://www.google.co.in/url?sa=t&rct=j&q=toshiki%20ide%2C%20h.%20f.%20hofmann%2C%20t.%20kobayashi%20and%20a.%20fursawa%2C%20phys.%20rev.%20a%2065%2C%20012313%20(2001).&source=web&cd=1&cad=rja&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.alice.t.u-tokyo.ac.jp%2FPhys.%2520Rev.%2520A%252065%2C%2520012313.pdf&ei=slubUM_pF8bNrQfCjoCoCw&usg=AFQjCNEVUjkYv9hc_aXsg9QPmEHnS7zBvw
http://dx.doi.org/10.1103/PhysRevA.62.022307
http://dx.doi.org/10.1103/PhysRevA.62.022307
http://dx.doi.org/10.1103/PhysRevA.58.4368
http://dx.doi.org/10.1103/PhysRevA.49.1473
http://dx.doi.org/10.1103/PhysRevA.45.6811


S. A. KUMAR  ET  AL. 

Copyright © 2012 SciRes.                                                                                 JQIS 

133

ivani, “Swap-
rthogonal Entangled

 of Entangled 
rnal of Quantum In-

herent States: Fidelity and Decoherence,” International 
Journal of Modern Physics B, Vol. 23, No. 4, 2009, p. 
585.  

[29] H. Prakash, N. Chandra, R. Prakash and Sh
ping between Two Pairs of Non-O  
Coherent States,” International Journal of Modern Phys-
ics B, Vol. 23, No. 8, 2009, p. 2083.  

[30] H. Prakash, N. Chandra, R. Prakash and Shivani, “Effect 
of Decoherence on Fidelity in Teleportation
Coherent States,” International Jou
formation, Vol. 6, No. 5, 2008, p. 1077.  
doi:10.1142/S0219749908004213 

[31] H. Prakash, N. Chandra, R. Prakash and Shivani, “Effect

012

 
of Decoherence on Fidelity in Teleportation Using Entan-
gled Coherent States,” Journal of Physics B: Atomic, 
Molecular and Optical Physics, Vol. 40, No. 8, 2007
1613. 

, p. 
doi:10.1088/0953-4075/40/8/  

.044305

[32] H. Prakash, N. Chandra, R. Prakash and Shivani, “Im-
proving the Teleportation of Entangled Coherent States,” 
Physical Review A, Vol. 75, No. 4, 2007, Article ID: 

044305. doi:10.1103/PhysRevA.75  

Shivani, “Almost 

an’ko, “Even 

eview 

[33] H. Prakash, N. Chandra, R. Prakash and Shivani, “Im-
proving the Entanglement Diversion between Two Pairs 
of Entangled Coherent States,” International Journal of 
Modern Physics B, Vol. 24, No. 17, 2010, p. 3331. 

[34] H. Prakash, N. Chandra, R. Prakash and 
Perfect Teleportation Using Entangled States,” Interna-
tional Journal of Modern Physics B, Vol. 24, No. 17, 
2010, p. 3383. 

[35] V. V. Dodonov, I. A. Malkin and V. I. M
and Odd Coherent States and Excitations of a Singular 
Oscillator,” Physica A, Vol. 72, No. 3, 1974, p. 597.  

[36] W. K. Lai, V. Buzek and P. L. Knight, “Nonclassical 
Fields in a Linear Directional Coupler,” Physical R
A, Vol. 43, No. 11, 1991, p. 6323.  
doi:10.1103/PhysRevA.43.6323 

[37] Y. K. Cheong, H. Kim and H. W. Lee, “Near-Complete 
Teleportation of a Superposed Coherent State,” Physical 
Review A, Vol. 70, No. 3, 2004, Article ID: 032327.  
doi:10.1103/PhysRevA.70.032327 

 
 

http://dx.doi.org/10.1088/0305-4470/37/45/017
http://dx.doi.org/10.1142/S0219749908004213


S. A. KUMAR  ET  AL. 134 

Appendix A 

Case I: If Alice’s measurements result in zero photons in both modes, we find that the state with David is,  

   

    

2 2

4 4 2,3 2,

4

4 4 2,3 2,3

1 1
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2 2
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, ,
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x x
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x
EVEN ODD ODD EVEN

 

 

 

 

3
,

        
 
 

      
  

          (A1) 

Case II: If Alice’s measurements result in non-zero even photons in the mode 6 and zero photon in the mode 8, we 
find that the state with David is,  
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2,3

3

,

               (A2) 

Case III: If Alice’s measurements result in zero photon in the mode 6 and non-zero even photons in the mode 8, we 
find that the state with David is,  
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Case IV: If Alice’s measurements result in odd photons in the mode 6 and zero photon in the mode 8, we find that 
the state with David is,  
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Case V: If Alice’s measurements result in zero photon in the mode 6 and odd photon in the mode 8, we find that the 
state with David is,  
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Appendix B 

Case I: If Alice’s measurements result in zero photons in both modes, we find that the state with David is,  

     0 0 1234 1234234 234
~

R R R R
T k k K K  

                         (B1) 

For Case I (a), where, n2 + n3 is even, David’s state collapses into the state,  

   4 4 4 4
T r r r    

            r                   (B2) 

In terms of even and odd coherent states, the above state becomes 
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Here,  
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

 
      




                 (B4) 

The fidelity IEF  is found to be 
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where  

  2 2
exp 1 ,p                                                (B6) 

This reduces to the result of Section 2, 
2

IF A , on putting 1  . 
For Case I (b), where, n2 + n3 is odd, David’s state collapses into the state,  
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T r r r     r                                  (B7) 

In terms of even and odd coherent states, the above state becomes 
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Here,  
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The fidelity IOF  is found to be 
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This reduces to the result of Section 2, 
2

IOF A , on putting 1  . 
Case II: If Alice’s measurements result in non-zero even photons in the mode 6 and zero photon in the mode 8, we find 
that the state with David is,  

   
234 234

~T r  
     r                                 (B11) 

For case II (a), where n2 + n3 is even, David’s state collapses into the state,  

4 4
~T r       r 

In terms of even and odd coherent states, the above state becomes 

                                   (B12) 
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David may apply the unitary transformation 

   

4 4 4 4
,U EVEN , , ,ODD ODD EVEN                          (B14) 

found in Section 2 and get the state 


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Here,  
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The fidelity IIEF for this case is found to be 
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where  

e eF Z X Y   

   2 12 2 2 2 1 2 1 1 4 41 ; and 2 1 1X x x Y x x Z x p N x x
                             (B18) 

This reduces to equation (V.22) for 1   (the noiseless case). 
n, D to the state,  For case II (b), where n2 + n3 is eve avid’s state collapses in

4 4
T r r                                           (B19) 

In terms of even and odd coherent states, the above state becomes 
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where  
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                       (B21) 

No unitary transformation is required in this case. 
The fidelity for this case is calculated to be, IIOF  
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    (B22) 

It is seen that for the noiseless case 

2 1
IIO

x x
F




1IIOF  1  . 
 zero pCase III: If Al easurements result in hoton in the mode 6 and non-zero even photons in the mode 8, we 

fin  with D
ice’s m

d that the state avid is,  

   
234 234

For case III (a), where n2 + n3 is even, David’s state collapses into the state,  

~T r r  
                                  (B23) 

4 4 ~T r r                                     (B24) 

In terms of even and odd coherent states, the above state becomes 

 

   

   

2 2

2 4

2 2

2 2 4

,

 ,
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A r r A r r ODD
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x x

x x

2
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2

1 1

1 1
T A r r A

N

x

x x


 

 

      

  
 

  
      

     

           (B25)   

The required unitary transformation for this case is, 

     
  
  

44 44
, , , ,U EVEN ODD ODD EVEN                           (B26) 

This leads to the teleported state, 

   

   

2 2

2 2 4

2 2
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2
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N
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1 1
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x x

x x





 

 

     

      

   
 

   
      

     

             (B27)  

For case III (b), where n2 + n3 is odd, David’s state collapses into the state,  

 
  
 

4 4 ~T r r                                       (B28) 

In terms of even and odd coherent states, the above state becomes 

 

   

   

2 2

4

2 2

2 2 4

,

 ,
1 1

1 1

r r EVEN

A r r A r r ODD
x x

x x

2 2

1

2

1 1

1 1
T A r r A

N

x x

x x


 

 

     

  
 

  
       

     

                (B29) 

For this case required unitary transformation is  

     
  
  

44 44
, , , ,U EVEN EVEN ODD ODD                             (B30) 

The teleported state becomes  
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   

   
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2 2 4

2 2

2 2 4

1
,

2 N

 ,

1 1

1 1

1 1

1 1

T A r r A r r EVEN

A r r A r r ODD

x x

x x

x x

x x





 

 

      

      

      
 

  

   

    
     

                 (B31) 

Case IV: If Alice’s measurements result in odd photons in the mode 6 and zero photon in the mode 8, we find that the 
state with David is,  

   
234 234

~T r r  
                                (B32) 

For case IV (a), where n2 + n3 is even, David’s state collapses into the state,  

4 4
~T r   r                                    (B33) 

For case IV (b), where n2 + n3 is odd, David’s state collapses into the state,  

4 4
~T r   r                                    (B34) 

Case V: If Alice’s measurements result in zero photon in the mode 6 and odd photon in the mode 8, we find that the 
state with David is,  

   
234 234

~T r r                                 (B35) 

For case V (a), where

   

 n2 + n3 is even, David’s state collapses into the state,  

4
~T r   4

r                                    (B36) 

For case V (b), where n2 + n3 is odd, David’s state collapses into the state,  

4
~T r   4

r      

 
 

                             (B37) 
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